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An adaptive control algorithm for the spacecraft attitude tracking problem for the case
when the spin axis directions of the flywheel actuators are uncertain is developed. The
spacecraft equations of motion in this case are fully nonlinear and can be represented
as a Multi-Input-Multi-Output (MIMO) system. Adaptive tracking control is therefore
challenging for this problem. In this paper the second-order equation of motion of the
spacecraft plus the actuators is initially converted to a first-order state space form, and
subsequently an adaptive controller is designed based on Lyapunov stability theory. A
smooth projection algorithm is then applied to keep the parameter estimates inside a
singularity-free region. The controller successfully deals with unknown misalignments of
the axis directions of the flywheel actuators. It is noted that the proposed design procedure
can also be easily applied to more general MIMO dynamical systems.

I. Introduction

Adaptive attitude control of a spacecraft with uncertain parameters has been studied intensively in the
past decade.1–8 However, most (if not all) of the previous research work deals only with uncertainties in the
inertia matrix of the spacecraft, assuming that an exact model of the actuators is available. In other words,
these results have been derived under the implicit assumption that the torque axis directions and/or input
scalings of the actuators (such as gas jets, reaction wheels, or CMGs/VSCMGs etc.) are exactly known.
This assumption is rarely satisfied in practice because of misalignment of the actuators during installation,
due to aging and wearing out of the mechanical and electrical parts, etc. For most cases the effect of
these uncertainties on the overall system performance is not significant. However, for the case of flywheels
used as “mechanical batteries” in a Integrated Power and Attitude Control System (IPACS)8–10 even small
misalignments of the flywheel axes can be detrimental. Flywheels for IPACS applications spin at very high
speeds and have large amounts of stored kinetic energy (and hence angular momentum). Precise attitude
control requires proper momentum management, while not generating large spurious output torques. This
can be achieved with the use of at least four flywheels (in the simplest scenario) whose angular momenta
have to be canceled or regulated with high precision. If the exact direction of the axes of the flywheels
(hence the angular momenta) are not known with sufficient accuracy, large output torque errors will impart
the attitude of the spacecraft.

One of the main difficulties encountered when designing adaptive controllers dealing with actuator uncer-
tainties is the Multi-Input-Multi-Output (MIMO) form of the spacecraft equations of motion. The controller
has to track at least three attitude parameters (for full three-axis attitude control). Complete control there-
fore requires, in general, three or more actuator torques. A lot of research has been devoted to the adaptive
tracking problem. Most previous results in this area deal only with the Single-Input-Single-Output (SISO)
or uncoupled multi-input case. Slotine et al.1,11 proposed adaptive controllers for MIMO systems, but these
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systems must be Hamiltonian, and the uncertainties should appear in the inertia and/or Coriolis/centrifugal
terms, but not in the actuators. Ge12 derived an adaptive control law for multi-link robot manipulator
systems with uncertainties in the control input term, but the uncertainty must be in the input scalings.
That is, the uncertainty matrix is diagonal if it is represented in multiplicative form.

Recently, Chang13 provided an adaptive, robust tracking control algorithm for nonlinear MIMO systems.
His work is based on the “smooth projection algorithm,” which has also been used in Refs. 14 and 15
for adaptive control of SISO systems. This algorithm plays a key role in our developments and keeps the
parameter estimates inside a properly defined convex set, so that the estimates do not drift into a region
where the control law may become singular. By “singularity” here we mean actuator configurations for
which the control logic commands have very large values.

In this article, an adaptive control law is designed for spacecraft attitude tracking using Variable Speed
Control Moment Gyros (VSCMGs),8,10,16 whose gimbal axis directions are not exactly known. A VSCMG is
a spacecraft attitude actuator, which has been recently introduced as an alternative to conventional control
moment gyros (CMGs) and reaction wheels (RWs). It seems to be especially suitable for IPACS applications
(since the attitude control and the energy storage functions can be “decoupled”8), as well as for developing
singularity-free steering laws in lieu of standard CMGs.16 A VSCMG generates a torque by exchanging
angular momentum (both in magnitude and direction) with the spacecraft body. As its name implies, a
VSCMG is essentially a single-gimbal control moment gyro (CMG), where the flywheel is allowed to have
variable speed. A VSCMG is therefore a hybrid device that combines the capabilities of a conventional
single-gimbal CMG and a reaction wheel.

The equations of motion of a spacecraft with a cluster of VSCMGs are rather complicated.8,10,17 Thus, in
this paper a set of simplified equations will be used to assist with the control law design. The final controller
will nonetheless be validated against the complete, nonlinear model.

Even though the baseline control design is provided for a spacecraft with VSCMGs, it can be easily
generalized and applied to other dynamical systems, whose equations of motion can be written in the
standard second-order vector form, for instance, a spacecraft controlled by means of other types of actuators
or multi-link robot manipulators.

II. Problem Statement

Consider a spacecraft with a VSCMG cluster containing N flywheels, as shown in Figure 1.
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Figure 1. Spacecraft Body with a Single VSCMG.

The definition of the axes in Figure 1 are as follows (i = 1, . . . , N).

• ĝi : VSCMG gimbal axis unit vector
• ŝi : VSCMG spin axis unit vector
• t̂i : VSCMG transverse axis unit vector (torque vector) given as t̂i = ĝi × ŝi.
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With a slight abuse of notation, in the sequel we will use boldface symbols to denote both a vector and
its representation in a standard basis. This simplification should not cause any problems, as the meaning of
the expression (and the basis used) should be clear from the context. If we need to refer to a representation
with respect to a specific frame, we will use subscripts to denote the frame used.

The dynamic equations of motion of the spacecraft can be written as8

J̇ω + Jω̇ + AgIcgγ̈ + AtIws[Ω]dγ̇ + AsIwsΩ̇ + ω×
(
Jω + AgIcgγ̇ + AsIwsΩ

)
= 0, (1)

where J = BI + AsIcsA
T
s + AtIctA

T
t + AgIcgA

T
g is the total moment of inertia of the spacecraft, ω is the

body rate vector of the spacecraft, and γ = (γ1, . . . , γN )T ∈ R
N and Ω = (Ω1, . . . ,ΩN )T ∈ R

N are column
vectors, whose elements are the gimbal angles and the wheel speeds of the VSCMGs with respect to the
gimbals, respectively. The matrices A� ∈ R

3×N have as columns the gimbal, spin and transverse directional
unit vectors expressed in the body-frame, where � is g, s or t. They depend on the gimbal angles as follows

Ag = Ag0 (2)
As = As0[cos γ]d + At0[sin γ]d (3)
At = At0[cos γ]d − As0[sin γ]d (4)

The matrices Ic� and Iw� are diagonal with elements the values of the inertias of the gimbal plus wheel
structure and wheel-only-structure of the VSCMGs, respectively. The skew-symmetric matrix v×, for v ∈ R

3,
represents the cross product operation. See Refs. 8 and 18 for the details in deriving (1).

In general, the total moment of inertia of the spacecraft will change as the VSCMG rotates about its
gimbal axis, so the matrix J is a function of a gimbal angle γ, that is, J = J(γ). However, this dependence
of J on γ is weak, especially when the size of spacecraft main body is large. We will therefore assume that
J is constant (J̇ = 0) during controller design. In addition, to simplify the analysis, the gimbal acceleration
term AgIcgγ̈ will be ignored. This assumption is standard in the literature,16,19,20 and essentially amounts
to gimbal angle rate servo control. It is also useful to assume that the gimbal angle rate term AgIcgγ̇ does
not contribute significantly to the total angular momentum. One then obtains the simplified equation of
motion as

Jω̇ + C(γ,Ω)γ̇ + D(γ)Ω̇ + ω×h = 0, (5)

where,
h = Jω + AsIwsΩ, (6)

is the total angular momentum of the spacecraft and VSCMG system, and where,

C(γ,Ω) = AtIwsΩd, D(γ) = AsIws. (7)

Notice that this equation has been derived for a spacecraft with a VSCMG cluster, and therefore it subsumes
the reaction wheel case (by setting γ to be constant to the above equations), and the conventional CMG
case (by setting Ω to be constant).

The modified Rodrigues parameters21–23 (MRPs) are chosen to describe the attitude kinematics of the
spacecraft. The MRPs are defined in terms of the Euler principal unit vector η̂ and angle φ by σ =
η̂ tan(φ/4). The MRPs have the advantage of being well defined for the whole range for rotations,21,22,24

i.e., φ ∈ [0, 2π). The differential equation that governs the kinematics in terms of the MRPs is given by

σ̇ = G(σ)ω (8)

where G(σ) = 1
2

(
I+[σ×]+σσT − [12 (1+σT σ)] I

)
and I is the 3×3 identity matrix. We hasten to point out

that the use of the MRPs to describe the kinematics is done without loss of generality. Any other suitable
kinematic description could have been used with the conclusions of the paper remaining essentially the same.

From Eq. (8), one obtains ω = G−1(σ)σ̇ and σ̈ = G(σ)ω̇ + Ġ(σ, σ̇)ω. The total angular momentum h,
written in the body frame can be expressed as h = RB

I (σ)HI , where RB
I (σ) is the rotational matrix from the

inertial frame I to the body frame B, and HI is the total angular momentum written in the I-frame. If we
assume that no external control/disturbance torques act on the spacecraft, then the total angular momentum
of the spacecraft-VSCMG system is conserved (in both magnitude and direction) during a maneuver, and
thus HI is constant. From, Eq. (5), one can then write

G−T JG−1σ̈ − G−T JG−1ĠG−1σ̇ + G−T ω×(RB
I (σ)HI) + G−T (Cγ̇ + DΩ̇) = 0, (9)
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equivalently,
σ̈ = F ∗(σ, σ̇) + G∗(σ, σ̇)u, (10)

where,

F ∗(σ, σ̇) = H∗−1
(
G−T JG−1ĠG−1σ̇ − G−T ω×(RB

I (σ)HI)
)

, (11a)

G∗(σ,γ,Ω) = −H∗−1G−T Q, (11b)

H∗(σ) = G−T JG−1, (11c)
Q(γ,Ω) = [C(γ,Ω) , D(γ)], (11d)

with control input vector,
u = [γ̇T , Ω̇

T
]T ∈ R

2N×1. (12)

Therefore, the equation of motion in state-space form can be written as

d
dt

[
σ

σ̇

]
=

[
0 I
0 0

][
σ

σ̇

]
+

[
0
I

](
F ∗(σ, σ̇) + G∗(σ, σ̇)u

)
. (13)

Suppose now that there are uncertainties in the modelling of the actuators, so that the exact values of
the initial/reference axis directions and scaling input gains are unknown. Let us assume that the actual
initial axis direction matrices of the wheels can be expressed as

As0 = An
s0 + A∆

s0, At0 = An
t0 + A∆

t0 (14)

where An
•0 are known nominal values and A∆

•0 are unknown constant values of the matrices As0 and At0.
Moreover, since we do not know the exact angular momentum of the VSCMG cluster, the total angular
momentum HI can be expressed as

HI = Hn
I + H∆

I (15)

where Hn
I is the known nominal value of HI in the inertial frame, and H∆

I is an unknown constant vector.
Dropping the arguments for convenience, the system matrices in (11a) and (11b) can be decomposed as

F ∗ = F ∗n + F ∗∆, G∗ = G∗n + G∗∆ (16)

where,

F ∗n = H∗−1
(
G−T JG−1ĠG−1σ̇ − G−T ω×(RB

I (σ)Hn
I)
)

, (17)

F ∗∆ = −H∗−1 (G−T ω×(RB
I (σ)H∆

I )
)
, (18)

and

G∗n = −H∗−1G−T Qn, (19)

G∗∆ = −H∗−1G−T Q∆, (20)

where Qn and Q∆ are the nominal and uncertain values of the matrix Q in Eq. (11d), respectively.
Notice that F ∗∆ is linear in the uncertain elements of the vector H∆

I , thus it can be written as

F ∗∆ = YF ΘF (21)

where ΘF = H∆
I . The matrix YF is the “regressor matrix,” and can be constructed from the measurements

of σ and σ̇. In addition, G∗∆ can be written similarly as

G∗∆ = YGΘG, (22)

where ΘG is a 12N × 2N matrix defined by

ΘG = diag[ΘG1,ΘG2, · · · ,ΘG2N ], (23)

ΘGi = ΘG(i+N) = [t∆
i0

T
, s∆

i0

T
]T ∈ R

6×1, i = 1, · · · , N, (24)
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and YG is a 3 × 12N matrix defined by

YG = [YG1, YG2, · · · , YG2N ], (25)

where,

YGi = −H∗−1G−T Icg[I3 cos γi, −I3 sin γi] ∈ R
3×6, i = 1, · · · , N, (26)

YGi = −H∗−1G−T Icg[I3 sin γi, I3 cos γi] ∈ R
3×6, i = N + 1, · · · , 2N. (27)

III. Adaptive Controller Design

Assume that the attitude to be tracked is given in terms of some known functions σd(t), σ̇d(t) and σ̈d(t)
for t ≥ 0. Here σd is the MRP vector presenting the attitude of a desired reference frame (D-frame) with
respect to the inertial frame (I-frame). Defining the error

e �
[

σe

σ̇e

]
=

[
σ − σd

σ̇ − σ̇d

]
, (28)

one obtains the tracking error dynamics from Eq. (13) as

ė = A0e + B (F ∗(σ, σ̇) + G∗(σ, σ̇)u − σ̈d) , (29)

where

A0 �
[

0 I
0 0

]
, B �

[
0
I

]
. (30)

It can be easily shown that the pair (A0, B) is controllable, so one can choose a gain matrix K such that
A � A0 − BK is Hurwitz, and rewrite (29) as

ė = Ae + B (Ke + F ∗(σ, σ̇) + G∗(σ, σ̇)u − σ̈d) (31)

Let now P = PT > 0 be a solution to the Lyapunov equation

AT P + PA + R = 0, R = RT > 0, (32)

and choose a Lyapunov function as

V =
1
2
eT Pe +

1
2αF

Θ̃T
F Θ̃F +

1
2αG

Tr(Θ̃T
GΘ̃G), αF , αG > 0, (33)

where Θ̃• � Θ̂• − Θ•, and Θ̂• is an estimate of Θ• to be determined by the parameter adaptation law.
Since the dynamics ė = Ae is asymptotically stable, if the matrices F ∗(σ, σ̇) and G∗(σ, σ̇) were com-

pletely known we could choose u to cancel the extra terms in (31), that is,

G∗(σ, σ̇)u + Ke + F ∗(σ, σ̇) − σ̈d = 0. (34)

Since F ∗(σ, σ̇) and G∗(σ, σ̇) are not known, we will use (16) and replace (34) with its best estimate, that
is,

(G∗n + YGΘ̂G)u + Ke + (F ∗n + YF Θ̂F ) − σ̈d = 0. (35)

Assuming we have at least two wheels (N ≥ 2), the solution to (35) exists as long as the 3 × 2N matrix
(G∗n + YGΘ̂G) has full row rank. In this case, the minimum norm solution is given by

u = (G∗n + YGΘ̂G)†(−Ke − F ∗n − YF Θ̂F + σ̈d), (36)

where (•)† denotes the pseudo-inverse of a matrix. The tracking error dynamics with the control law (36)
reduces to

ė = Ae + B
(
Ke + F ∗n + YF ΘF + (G∗n + YGΘ̂G − YGΘ̃G)u − σ̈d

)
= Ae + BKe + BF ∗n + BYF (Θ̂F − Θ̃F )

+ B(−Ke − F ∗n − YF Θ̂F + σ̈d) − BYGΘ̃Gu − Bσ̈d

= Ae − BYF Θ̃F − BYGΘ̃Gu.

(37)
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The time derivative of V then becomes

V̇ = 1
2e

T (AT P + PA)e − eT PBYF Θ̃F − eT PBYGΘ̃Gu

+
1

αF

˙̂ΘF Θ̃F +
1

αG
Tr( ˙̂ΘGΘ̃G)

= − 1
2e

T Re + 1
αF

Θ̃T
F ( ˙̂ΘF − αF Y T

F BT Pe) + 1
αG

Tr[Θ̃T
G( ˙̂ΘG − αGY T

G BT PeuT )]

= − 1
2e

T Re + 1
αF

Θ̃T
F ( ˙̂ΘF − αF Y T

F BT Pe) +
∑2N

i=1 Θ̃T
Gi(

˙̂ΘGi − αGY T
GiB

T Peui).

(38)

Choosing the parameter adaptation law

˙̂ΘF = αF Y T
F BT Pe, (39)

˙̂ΘGi = αGY T
GiB

T Peui, i = 1, · · · , 2N. (40)

results in V̇ = − 1
2e

T Re < 0. It follows that e → 0 as t → ∞.

A. Parameter Projection

A drawback of the previous adaptation law is that the estimate of the parameter Θ̂G can result in (G∗n +
YGΘ̂G) losing rank. If we use more than two VSCMGs with their nominal gimbal axes not parallel to each
other,16 the nominal matrix G∗n has necessarily full row rank. Therefore, if the true value of the parameter
uncertainty ΘG is bounded by a sufficiently small number, and we can also keep its estimated value Θ̂G

small, then we can expect that G∗n + YGΘ̂G will also be full row rank. To this end, we make the following
two assumptions.

• Assumption 1. The actual value ΘGi belongs to the set ΩΘGi
=
{
ΘGi ∈ R

6 | ‖ΘGi‖2 < βGi

}
, where

βGi > 0 is known.

• Assumption 2. Let the set Ω̂ΘGi
=
{

Θ̂Gi ∈ R
6 | ‖Θ̂Gi‖2 < βGi + δGi, δGi > 0

}
. The set Ω̂ΘGi

con-

tains ΩΘGi
in its interior. If Θ̂Gi ∈ Ω̂ΘGi

for all i = 1, · · · , 2N , then (G∗n + YGΘ̂G) is non-singular.

Now, instead of the adaptation law (40), one can use the “smooth projection algorithm”13–15

˙̂ΘGi = Proj(Θ̂Gi,ΦGi), i = 1, · · · , 2N, (41)

where
ΦGi � Y T

GiB
T Peui, (42)

and

Proj(Θ̂Gi,ΦGi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

αGΦGi, if (i) ‖Θ̂Gi‖2 < βGi ,

or ‖Θ̂Gi‖2 ≥ βGi and ΦT
GiΘ̂Gi ≤ 0,

αG

(
ΦGi − (‖Θ̂Gi‖2−βGi)Φ

T
GiΘ̂Gi

δGi‖Θ̂Gi‖2 Θ̂Gi

)
if (ii) ‖Θ̂Gi‖2 ≥ βGi and ΦT

GiΘ̂Gi > 0.

(43)

This adaptation law is identical to (40) in case (i), and switches smoothly to another expression in case
(ii). The projection operator Proj(Θ̂Gi,ΦGi) is locally Lipschitz in (Θ̂Gi,ΦGi), thus the system has a unique
solution defined for some time interval [0, T ), T > 0. It can be verified that the adaptation rule (41)-(43)
satisfies

Θ̃T
Gi(

˙̂ΘGi − αGΦGi) ≤ 0. (44)

As a result,
Θ̂Gi(t = 0) ∈ ΩΘGi

⇒ Θ̂Gi(t) ∈ Ω̂ΘGi
, ∀t ≥ 0. (45)
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The proof of this statement can be seen as follows. In case (i) the equality in Eq. (44) trivially holds, and
˙̂ΘT

GiΘ̂Gi = αGΦT
GiΘ̂Gi ≤ 0, thus the estimate Θ̂Gi moves closer to zero. In case (ii), the left hand side of

Eq. (44) becomes

Θ̃T
Gi(

˙̂ΘGi − αGΦGi) = −αG
(‖Θ̂Gi‖2 − βGi)ΦT

GiΘ̂Gi

δGi‖Θ̂Gi‖2
Θ̃T

GiΘ̂Gi ≤ 0, (46)

because Θ̃T
GiΘ̂Gi ≥ 0 as shown in Figure 2. On the other hand,

˙̂ΘT
GiΘ̂Gi = αGΦT

GiΘ̂Gi

(
1 − (‖Θ̂Gi‖2 − βGi)

δGi

)⎧⎪⎪⎨
⎪⎪⎩

< 0 if ‖Θ̂Gi‖2 > βGi + δGi,

= 0 if ‖Θ̂Gi‖2 = βGi + δGi,

> 0 if ‖Θ̂Gi‖2 < βGi + δGi,

(47)

thus Θ̂Gi does not drift outward the set Ω̂ΘGi
.

Θ̂Gi

ΘGi

0

ΩΘGi

Ω̂ΘGi

Θ̃Gi

Figure 2. Θ̃T
GiΘ̂Gi ≥ 0 in Case (ii).

From the above observations, one concludes that using the feedback law (36) and the adaptation laws
(39) and (41), one obtains that

V̇ ≤ − 1
2e

T Re < 0, (48)

and (G∗n + YGΘ̂G) will not lose rank, if we choose the initial parameter guess Θ̂Gi(0) inside the set ΩΘGi
.

For instance, we may take Θ̂Gi(0) = 0. Moreover, Eq. (48) implies that e → 0 as t → ∞, since R is
positive-definite.

IV. Numerical Example

A numerical example for a satellite with a VSCMGs cluster is provided in this section to test the proposed
adaptive control algorithm. In the previous section, the simplified equations of motion, given by (5), with
several assumptions were used for the adaptive control design, but in this section the complete nonlinear
equations of motion, given in Eq.(1), and the acceleration steering law derived in Ref. 8 are used to predict
and validate the performance of the proposed controllers under realistic conditions. The parameters used for
the simulations are chosen as in Table 1. We also assume a standard four-VSCMG pyramid configuration,
as shown in Figure 3.
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Table 1. Simulation Parameters

Symbol Value Units

N 4 −
θ 54.75 deg

ω(0) [0, 0, 0]T rad/sec

ω̇(0) [0, 0, 0]T rad/sec2

σ(0) [0, 0, 0]T −
γ(0) [0, 0, 0, 0]T rad

γ̇(0) [0, 0, 0, 0]T rad/sec2

BI

⎡
⎢⎣ 15053 3000 −1000

3000 6510 2000
−1000 2000 11122

⎤
⎥⎦ kg m2

Icg diag{0.7, 0.7, 0.7, 0.7} kg m2

Iwt, Iwg diag{0.4, 0.4, 0.4, 0.4} kg m2

Igs, Igt, Igg diag{0.1, 0.1, 0.1, 0.1} kg m2

The nominal values of the axis directions at γ = [0, 0, 0, 0]T in this pyramid configuration are

An
s0 = [s1, s2, s3, s4] =

⎡
⎢⎣ 0 −1 0 1

1 0 −1 0
0 0 0 0

⎤
⎥⎦ , (49)

An
t0 = [t1, t2, t3, t4] =

⎡
⎢⎣ −0.5774 0 0.5774 0

0 −0.5774 0 0.5774
0.8165 0.8165 0.8165 0.8165

⎤
⎥⎦ . (50)

The (unknown) actual axis directions used in the present example are assumed as∗

As0 =

⎡
⎢⎣ 0.0745 −0.9932 −0.1221 0.9901

0.9919 −0.1024 −0.9911 −0.1033
0.1033 −0.0547 −0.0536 −0.0954

⎤
⎥⎦ , (51)

At0 =

⎡
⎢⎣ −0.6570 0.0029 0.6485 0.1394

−0.0291 −0.4929 −0.1206 0.6335
0.7533 0.8701 0.7516 0.7611

⎤
⎥⎦ . (52)

The reference trajectory is chosen so that the initial reference attitude is aligned with the actual attitude,
and the angular velocity of the reference attitude is chosen as

ωd(t) = 0.02 ×
(

sin(2πt/800), sin(2πt/600), sin(2πt/400)
)T

rad/sec. (53)

Figure 4 shows the time history of the reference attitude using the Euler parameters (quaternions).
The feedback gain K in (31) is chosen so that the eigenvalues of the matrix A = A0 − BK are given by

eig(A) = {−0.1 ± 0.1i, −0.1
√

2,−0.15 ± 0.15i, −0.15
√

2}.
The remaining design parameters for the adaptive control law are chosen as

R = I6, βGi = 0.1, δGi = 0.05, αF = 1.0 × 107, αG = 1.0 × 103.

∗The actual directions are taken by small angle rotations from the nominal directions, thus the orthogonality t̂i · ŝi = 0 still
holds for each VSCMG.
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Figure 3. A VSCMGs system with pyramid configuration at γ = [0, 0, 0, 0]T .

Before applying the designed adaptive control law, we first performed a simulation without adaptation,
for comparison purposes. Figure 5 shows the attitude error under the control law with the adaptation gains
αF and αG set to zero.

Figures 6-9 show the simulation results using the designed adaptive control law. As shown in Figure 6,
the attitude error is significantly attenuated using the adaptive controller. The error does not converge
to zero because of the simplifying assumption made during the design step of the adaptation law, when
the effects of extra (albeit small) dynamics were ignored. Figure 7 shows the time history of the parameter
estimate Θ̂F . The bold dot horizontal lines denote the actual values of the components of ΘF . The estimates
approach the actual values, but they do not perfectly converge to these values owing again to the ignored
dynamics. Figure 8 shows the time history of ‖Θ̂Gi‖2. It is shown that ‖Θ̂Gi‖2 does not drift more than
βGi + δGi = 0.15 owing to the smooth projection algorithm.

As is the case with similar adaptive algorithms, the designed adaptive law does not guarantee a priori
that the parameter estimates converge to their actual values. This is because the number of the parameters
to be estimated is large. Note that, generally speaking – and for a linear system – convergent estimation of m
parameters requires at least m/2 sinusoids in the reference signal. For the nonlinear case such simple relation
may not be valid.25 Additionally, in Figures 7 and 8, irregular large excursions of the parameter estimates
(where the parameter estimates exhibit intermittent short periods of burst), are shown. These phenomena
are well known in the adaptive control literature and they generally occur due to lack of persistency of
excitation.26 Finally, Figure 9 shows the states of the VSCMG cluster. The values remain within their
acceptable limits.

V. Conclusion

An adaptive control law is proposed for the attitude control problem of a spacecraft with a flywheel
actuator model having unknown bounded constant uncertainties. The general case of a spacecraft with a
variable-speed CMG (VSCMG) cluster is dealt with in detail. The standard CMG and RW actuators follow
our developments as special cases. The adaptive law is based on the smooth projection algorithm in order
to avoid singularities that may be caused by the drift of the parameter estimates. The projection algorithm
forces the parameter estimates to stay inside a certain convex set that contains the unknown actual values.
Although the control law was designed based on the simplified equations of motion, numerical examples
using the full equations showed very good performance, with the tracking error significantly reduced when
compared to the non-adaptive case. Though the method still leaves room for improvement (for instance, a
way to reduce the number estimated parameters would be extremely beneficial), the present article provides
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Figure 5. The Attitude Error Trajectory Without Adaptation.

a first step in solving the general problem of spacecraft control with actuator misalignment/uncertainties.
This problem does not seem to have received its due attention in the literature.
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