
Information-Theoretic Stochastic Optimal Control
via Incremental Sampling-based Algorithms

Oktay Arslan
oktay@gatech.edu

Evangelos A. Theodorou
evangelos.theodorou@ae.gatech.edu

Panagiotis Tsiotras
tsiotras@gatech.edu

Abstract—This paper considers optimal control of dynamical
systems which are represented by nonlinear stochastic differential
equations. It is well-known that the optimal control policy for
this problem can be obtained as a function of a value function
that satisfies a nonlinear partial differential equation, namely, the
Hamilton-Jacobi-Bellman equation. This nonlinear PDE must be
solved backwards in time, and this computation is intractable for
large scale systems. Under certain assumptions, and after apply-
ing a logarithmic transformation, an alternative characterization
of the optimal policy can be given in terms of a path integral. Path
Integral (PI) based control methods have recently been shown to
provide elegant solutions to a broad class of stochastic optimal
control problems. One of the implementation challenges with this
formalism is the computation of the expectation of a cost func-
tional over the trajectories of the unforced dynamics. Computing
such expectation over trajectories that are sampled uniformly
may induce numerical instabilities due to the exponentiation of
the cost. Therefore, sampling of low-cost trajectories is essential
for the practical implementation of PI-based methods. In this
paper, we use incremental sampling-based algorithms to sample
useful trajectories from the unforced system dynamics, and make
a novel connection between Rapidly-exploring Random Trees
(RRTs) and information-theoretic stochastic optimal control. We
show the results from the numerical implementation of the
proposed approach to several examples.

Keywords—path integral, stochastic optimal control, sampling-
based algorithms

I. INTRODUCTION

In [1], [2], the authors showed the connection between
Kullback-Leibler (KL) and Path Integral (PI) control with
an information-theoretic view of stochastic optimal control.
In addition, the authors derived the iterative path integral
optimal control without relying on policy parameterizations,
as in [3]. We review the work in [1], [2] starting with
the definitions of free energy and relative entropy and their
connections to dynamic programming. In addition, we discuss
how the iterative scheme developed in [2] and [1] can be
modified to incorporate incremental sampling-based methods
such as Rapidly-exploring Random Trees (RRT) to guide
sampling [4]–[6]. An early approach which leverages the RRT
algorithm to solve stochastic optimal control problems for
linear systems under environmental uncertainty is given in [7].

Within the mathematical framework of path integral con-
trol, the Feynman-Kac lemma plays an essential role, since it
creates a connection between Stochastic Differential Equations
(SDEs) and backward Partial Differential Equations (PDEs).

The authors are with the Daniel Guggenheim School of Aerospace En-
gineering and the Institute for Robotics and Intelligent Machines, Georgia
Institute of Technology, Atlanta, GA 30332-0150, USA.

This fundamental connection between SDEs and backward
PDEs has inspired new avenues for the development of
stochastic control algorithms such as Policy Improvement with
Path Integrals (PI2) [3] that rely on forward sampling. PI2 has
been applied to a plethora of motor control tasks from robotic
object manipulation and locomotion to general trajectory op-
timization and gain scheduling [3], [8], [9], but it relies on a
suitable parameterization of the optimal control policy. While
policy parameterization such as Dynamic Movement Primitives
(DMPs) [10] improves sampling by steering trajectories in
high-dimensional state spaces towards areas of interest, it does
not exploit the feedback structure provided by the path integral
control framework. In PI2 trajectories are sampled from the
initial state of the task, the optimal parameter variations are
computed, and the parameters are updated. In the next iteration,
trajectories are sampled again from the same initial state and
the iterative process continues until convergence. It is clear
that in the case of policy parameterization one has to explicitly
design the structure of the feedback control policy and then
treat the gains as parameters to be optimized.

With respect to information theoretic formulations of policy
search methods, [11], our work here does not depend on policy
parameterizations and is grounded on the Relative Entropy
- Free Energy Dualities and their connection to Dynamic
Programming Principle.

II. NOTATION

A probability space is a triple (Ω, F , p) where (Ω,F) is
a measurable space with Ω a non-empty set, which is called
the sample space, F ⊆ 2Ω a σ-algebra of subsets of Ω, whose
elements are called events, and p is a probability measure on
F , that is, p is a finite measure on F with p(Ω) = 1.

A real random variable is a function X : Ω → R with
the property that {ω ∈ Ω : X(ω) ≤ x} ∈ F for each x ∈ R.
Such a function is said to be F-measurable. An extended (real)
random variable can also take the values ±∞. If X is a random
variable on the probability space (Ω, F , p), then its expectation
is defined by

Ep [X] =

∫
Ω

X(ω) dp(ω), (1)

provided that the integral in the right-hand side exists. As
usual, and for notational simplicity, in the sequel we will drop
the explicit dependence on ω ∈ Ω in (1). In other words, the
notation Ep [X] is another (shorter) notation for the integral∫
Xdp.

III. STOCHASTIC CONTROL BASED ON FREE ENERGY
AND RELATIVE ENTROPY DUALITIES

Let (Ω,F) be a measurable space where Ω is a non-empty
set and F ⊆ 2Ω is a σ-algebra of subsets of Ω, and let P(Ω)
be the set of all probability measures defined on (Ω,F).

Definition 1: Let p ∈ P(Ω) be a probability measure, x =
x(ω), ω ∈ Ω be a random variable, t, ρ ∈ R be real numbers,
and let J (x, t) be a measurable function. The Helmholtz free
energy of J (x, t) with respect to p is defined by

Ep (J (x, t); ρ) = log

(∫
exp (ρJ (x, t)) dp

)
= logEp [exp (ρJ (x, t))] . (2)

Definition 2: Let p, q ∈ P(Ω) be two probability mea-
sures. The relative entropy of p with respect to q is defined
as1:

KL (q‖p) =


∫

log

(
dq

dp

)
dq if q� p and log

(
dq

dp

)
∈ L1,

+∞ otherwise.
(3)

We will also consider the function ξ(x, t), defined by

ξ(x, t) = 1
ρEp (J (x, t); ρ) = 1

ρ logEp [exp (ρJ (x, t))] . (4)

To derive the basic relationship between free energy and
relative entropy [13], we express the expectation Ep taken
under the probability measure p as a function of the expectation
Eq taken under the probability measure q. More precisely, we
have:

Ep [exp (ρJ (x, t))] =

∫
exp (ρJ (x, t))

dp

dq
dq.

By taking the logarithm of both sides of the previous
equation and by making use of Jensen’s inequality [13], it
can be shown that:

logEp [exp (ρJ (x, t))] ≥
∫
ρJ (x, t) dq−KL (q‖p) . (5)

Let ρ < 0. By multiplying both sides of (5) with −1/|ρ|,
one obtains:

ξ(x, t) = − 1

|ρ|
Ep (J (x, t); ρ) ≤ Eq [J (x, t)] +

1

|ρ|
KL (q‖p)

(6)

where Eq [J (x, t)] =

∫
J (x, t) dq. The inequality (6) pro-

vides us with a duality relationship between relative entropy
and free energy. Essentially, one could define the following
minimization problem:

− 1

|ρ|
Ep (J (x, t); ρ) = inf

q∈P(Ω)

(
Eq [J (x, t)] +

1

|ρ|
KL(q‖p)

)
.

(7)

It can be shown that the infimum in (7) is attained at q∗,
where

dq∗ =
exp (−|ρ|J (x, t))∫
exp (−|ρ|J (x, t)) dp

dp. (8)

1Given two probability measures p and q, we say that q is absolutely
continuous with p and write q � p if q = 0 ⇒ p = 0, see page 161
of [12].

One can put q∗ in (7) to verify that the right-hand side of the
equation is indeed equal to its lower bound [13].

A rather intuitive way of writing (6) is to express it in the
following form:

− 1

|ρ|
Ep (J (x, t); ρ)︸ ︷︷ ︸

Helmholtz Free Energy

≤ Mean State Cost +
1

|ρ|
Information Cost︸ ︷︷ ︸

Non-Equilibrium Free Energy
(9)

where “Mean State Cost” and “Information Cost” are defined
as Eq [J (x, t)] and KL (q‖p), respectively.

In the next sections, we derive the form of (7) for the
case when x is the state of a nonlinear stochastic differential
equation affine in noise and control.

A. Application of the Legendre Transformation to Stochastic
Differential Equations

We consider the general uncontrolled and controlled
stochastic dynamics affine in noise as follows:

dx = A(x) dt+ C(x) dw(0), (10)

dx = F(x,u) dt+ C(x) dw(1), (11)

where x ∈ Rn denotes the state of the system, u ∈ Rm
denotes the control input, C(x) ∈ Rn×m is the diffusion
matrix, F(x,u) ∈ Rn is the drift dynamics, and w(0),(1) ∈ Rm
are Wiener processes (Brownian motion). The upper-scripts (0)
and (1) are used to distinguish the two noise processes in the
uncontrolled and controlled dynamics, respectively. The drift
term A(x) ∈ Rn is defined by A(x) = F(x, 0). The diffusion
matrix may be partitioned as C(x) = [0 Cᵀ

c (x)]
ᵀ where

0 ∈ R(n−m)×m and Cc(x) ∈ Rm×m is invertible. Similarly,
the drift term in the controlled dynamics may be partitioned as
F(x,u) = [F

ᵀ
1(x,u) Fᵀ

2(x,u)]
ᵀ where F1(x,u) ∈ R(n−m)

and F2(x,u) ∈ Rm; and the drift term in the uncontrolled
dynamics may be partitioned as A(x) = [A

ᵀ
1(x) Aᵀ

2(x)]
ᵀ

where A1(x) ∈ R(n−m) and A2(x) ∈ Rm. The class of
systems whose matrices can be partitioned as such contains
rigid body, and multi body dynamics as well as kinematic
models such as the ones considered in this work. Henceforth,
for simplicity, we will assume that m = n. The case when
m < n can be treated similarly; see for instance [14]. Let
Σ(x) = C(x)Cᵀ(x) ∈ Rm×m and also define the following
quantity:

δF(x,u) = F(x,u)−A(x) = F(x,u)− F(x, 0), ∀x,u.

To the system (11) we also associated the state cost

J (x(·), t) = Φ(x(tf)) +

∫ tf

t

q(x(τ), τ) dτ. (12)

where the function q : (x, t) 7→ r returns a non-negative real
number r for a given state x and time t. With a slight abuse
of notation we will also use J (x, t) to denote the value of
J (x(·), t) along the trajectory x(·) starting from x = x(t)
at time t. Expectations evaluated on trajectories generated by
the uncontrolled dynamics and controlled dynamics will be
represented by Ep[·] and Eq[·], respectively. The following
fact can be found in [14].

Proposition 1: Given the measures p, q induced by the
trajectories of (10) and (11), respectively, the Radon-Nikodym
derivative of q with respect to p is defined by

dq

dp
= exp

(∫ tf

t

δFᵀ(x(τ),u(τ))C−1(x(τ)) dw(1)(τ)

)
+

exp

(∫ tf

t

1
2
δFᵀ(x(τ),u(τ))Σ−1(x(τ)) δF(x(τ),u(τ)) dτ

)
.

(13)

Given equation (13), the relative entropy term in (6) takes
the form:

1

|ρ|
KL(q‖p) =

Eq

[
1

2|ρ|

∫ tf

t

δFᵀ(x(τ),u(τ))Σ−1(x(τ))δF(x(τ),u(τ)) dτ

]
,

Substituting the previous expression of the Kullback-
Leibler divergence into (6) one obtains

− 1

|ρ|
Ep (J (x, t); ρ) ≤ Eq [J (x, t)] +

Eq

[
1

2|ρ|

∫ tf

t

δFᵀ(x(τ),u(τ))Σ−1(x(τ))δF(x(τ),u(τ)) dτ

]
.

The previous equation can be written in the form (9) with state
cost term defined as Eq [J (x, t)] and information cost defined
as Eq

[
1

2|ρ|

∫ tf
t
δFᵀ(x(τ),u(τ))Σ−1(x(τ))δF(x(τ),u(τ)) dτ

]
.

Next, we further specialize the class of systems where (9) is
applied to, and discuss its connections to stochastic optimal
control as in [1], [2], [13]. To this end, let us consider the
special case of (10) and (11) with uncontrolled and controlled
stochastic dynamics of the following form, respectively:

dx = f(x) dt+
1√
|ρ|

B(x) dw(0), (14)

dx = f(x) dt+ B(x)

(
u dt+

1√
|ρ|

dw(1)

)
, (15)

where x ∈ Rn denotes the state of the system, B(x) ∈ Rn×m
is the control/diffusion matrix, f(x) ∈ Rn is the passive
dynamics, u ∈ Rm is the control vector and w(0),(1) are m-
dimensional Wiener noise processes.

For the dynamics in (14) and (15) the form of the Radon-
Nikodym derivative in (13) can be computed as follows.
Noticing that δF(x,u) = B(x)u, C(x) = B(x)/

√
|ρ| and

Σ(x) = B(x)Bᵀ(x)/|ρ|, and substituting these expressions
in (13) yields

dq

dp
= exp (|ρ|η(u, t)) and

dp

dq
= exp (−|ρ|η(u, t)), (16)

where η(u, t) is given by:

η(u, t) =
1

2

∫ tf

t

uᵀ(τ)u(τ) dτ +
1√
|ρ|

∫ tf

t

uᵀ(τ) dw(1)(τ).

(17)

Substitution of (16) and (17) into inequality (6) yields the
following result:

− 1

|ρ| logEp [exp (−|ρ|J (x, t))] ≤ Eq [J (x, t) + η(u, t)]. (18)

Since the noise and the control terms are uncorrelated and the
expectation of the noise is zero, the expectation on the right
side of the inequality in (18) is further simplified as follows:

− 1

|ρ|
logEp [exp (−|ρ|J (x, t))]︸ ︷︷ ︸

ξ(x,t)

≤

Eq

[
J (x, t) + 1

2

∫ tf

t

u(τ)ᵀu(τ) dτ

]
.︸ ︷︷ ︸

Total Cost

(19)

The right-hand side term in the above inequality corre-
sponds to the cost function of a stochastic optimal control
problem that is bounded from below by the free energy.
Surprisingly, inequality (19) was derived without relying on
any principle of optimality. Inequality (19) essentially defines
a minimization process in which the right-hand side part of the
inequality is minimized with respect to η(u, t) and therefore
with respect to the corresponding control u. At the minimum,
when u = u∗, the right-hand side of inequality in (19) attains
its optimal value ξ(x, t). Under the optimal control u∗, and
according to (8), the corresponding optimal distribution takes
the form

dq∗ =

exp
(
− |ρ|Φ(x(tf))

)
exp

(
−|ρ|

∫ tf

t

q(x(τ), τ) dτ

)
∫

exp
(
− |ρ|Φ(x(tf))

)
exp

(
−|ρ|

∫ tf

t

q(x(τ), τ) dτ

)
dp

dp.

(20)

The work [1], [2] inspired by early mathematical develop-
ments in control theory [13], [15], has shown that the value
function ξ(x, t) in (19) satisfies the Hamilton-Jacobi-Bellman
equation and it has made the connection with more recent work
in machine learning [16], [17] on Kullback-Leibler and path
integral control.

B. Connection with Dynamic Programming (DP)

An important question that arises is: What is the link
between (19) and the principle of optimality in dynamic
programming? To address this question, we show that ξ(x, t)
satisfies the Hamilton-Jacobi-Bellman (HJB) equation associ-
ated with the optimal control problem (15)-(12) and hence,
ξ(x, t) is the corresponding value function of the following
minimization problem

ξ(x, t) =

= min
u(τ)

t≤τ≤tf

Eq

[
Φ(x(tf)) +

∫ tf

t

(q(x(τ), τ) + 1
2
uᵀ(τ)u(τ)) dτ

]

= min
u(τ)
t≤τ≤tf

Eq

[
J (x, τ) + 1

2

∫ tf

t

uᵀ(τ)u(τ) dτ

]
, (21)

where the expectation is computed over the trajectories of (15).
To see this, we introduce Ψ(x, t) , Ep [exp (ρJ (x, t))] and
apply the Feynman-Kac lemma [18] to arrive at the backward
Chapman-Kolmogorov partial differential equation (PDE)

−∂tΨ(x, t) = − |ρ|q(x, t)Ψ(x, t) + fᵀ(x)∇Ψx(x, t)

+
1

2|ρ|
tr (∇Ψxx(x, t)B(x)B(x)ᵀ) (22)

with boundary condition Ψ(x(tf), tf) = exp
(
− |ρ|Φ(x(tf)

)
,

which governs the evolution of Ψ(x, t) along the
trajectories of (15) subject to x = x(t). Since
ξ(x, t) = − log Ψ(x, t)/|ρ|, it follows that ∂tΨ(x, t) =
−|ρ|Ψ(x, t)∂tξ(x, t),∇Ψx(x, t) = −|ρ|Ψ(x, t)∇ξx(x, t)
and ∇Ψxx(x, t) = |ρ|Ψ(x, t)∇ξxx(x, t) −
|ρ|2Ψ(x, t)∇ξx(x, t)∇ξᵀx(x, t). In this case, it can be
shown that ξ(x, t) satisfies the nonlinear PDE

−∂tξ(x, t) = q(x, t) +∇ξᵀx(x, t)f(x)

− 1
2∇ξ

ᵀ
x(x, t)B(x)Bᵀ(x)∇ξx(x, t)

+
1

2|ρ|
tr (∇ξxx(x, t)B(x)Bᵀ(x)) , (23)

subject to the boundary condition ξ(x(tf), tf) = Φ(x(tf)).
The nonlinear PDE (23) corresponds to the HJB equation
associated with the optimal control problem (21) and hence
ξ(x, t) is the corresponding minimizing value function [19]. It
is important to note, however, that the principle of optimality
was not used to derive (23).

C. Path Integral Control with Initial Sampling Policies

According to (19), one need to sample trajectories under
the uncontrolled dynamics and evaluate the left-hand side of
(19) on these trajectories in order to find the value function
ξ(x, t). However, in high-dimensional spaces, it is desirable
to steer sampling toward specific areas of the state space. To
do so, we have to incorporate an initial control policy into the
uncontrolled dynamics. Therefore, instead of sampling from
the uncontrolled dynamics (14), we sample trajectories based
on the following stochastic dynamics:

dx = f(x) dt+ B(x)

(
uin dt+

1√
|ρ|

dw(1)

)
, (24)

where uin is an initial control policy. In [1], [2], the authors de-
rived an iterative PI control without relying on previous policy
parameterizations. More precisely, when sampling trajectories
from the dynamics (24) the work in [1] and [2] showed that
the value function ξ(x, t) is expressed as

ξ(x, t) = − 1

|ρ|
log

(∫
exp (−|ρ|S (x,uin(x, t), t)) dqin

)
where the term S(x,uin) is defined as

S(x,uin) = Φ(x(tf)) +

∫ tf

t

q(x(τ), τ) dτ︸ ︷︷ ︸
J (x,t)

+

1

2

∫ tf

t

uᵀ
in(τ)uin(τ) dτ +

1√
|ρ|

∫ tf

t

uᵀ
in(τ) dw(1)(τ)︸ ︷︷ ︸

η(uin,t)

,

(25)

where the term η(uin, t) appears due to sampling based on the
dynamics (24), while the term J (x, t) is the state-dependent
part of the total cost function in (19). The path integral control
is now expressed as [2]

uPI(x, t) dt = uin(x, t) dt+ δu(x, t), (26)

where the term δu(x, t) is defined by

δu(x, t) =
1√
|ρ|

Eq∗

[
dw(1)

]
=

1√
|ρ|

∫
dw(1) dq∗, (27)

and where the expectation is taken under the optimal proba-
bility

dq∗ =
exp (−|ρ|S(x,uin))∫

exp (−|ρ|S(x,uin)) dqin

dqin. (28)

During implementation, equation (27) is approximated as

δu(x, t) =
1√
|ρ|

#traj∑
k=1

pkdw(1)(ωk)

pk =
exp (−|ρ|S(xk,uin))∑#traj
`=1 exp (−|ρ|S(x`,uin))

(29)

The initial policy uin can be a suboptimal control law, a hand-
tuned PD, PID control, or feedforward control. In this paper,
we consider a feedforward control given by the RRT algorithm
as the initial control policy. The RRT algorithm is proven to be
a simple, iterative algorithm that quickly searches complicated,
high-dimensional spaces for feasible paths. It grows a space-
filling tree by drawing a random sample from the search
space and connecting the nearest point in the tree to the new
random sample at each iteration. This helps the tree to grow
its branches toward unexplored regions of the search space
quickly, i.e., achieving Voronoi bias [4]–[6]. In this case, the
RRT-based optimal path integral control takes the form

uPI(x, t) dt = uRRT(t) dt+ δu(x, t). (30)

In the next section, we discuss how to use the RRT algorithm
to compute the initial control policy uRRT.

IV. TRAJECTORY SAMPLING VIA SAMPLING-BASED
ALGORITHMS

In high dimensional state spaces, sampling of useful trajec-
tories from the unforced dynamics can be a tedious task. This
issue can be addressed by first computing a “good enough”
initial trajectory and then sampling local trajectories in the
neighborhood of this trajectory. In the proposed approach, we
use a probabilistic algorithm to find uin in (24) and compute an
initial trajectory quickly. Probabilistic methods have proven to
be very efficient for the solution of motion planning problems
with dynamic constraints in high dimensional search spaces.
Among them, Rapidly-exploring Random Trees (RRTs) [4]–[6]
are among the most popular for solving single query motion
planning problems. The main body of the RRT algorithm is
given in Algorithm 1.

In the proposed approach, we leverage the speed and
exploration capabilities of the RRT algorithm to compute
an initial policy quickly by modifying the RRT primitive
procedures. The proposed algorithm PI-RRT uses the path-
integral approach to compute optimal trajectories that in-
corporate the system uncertainty (i.e., the risk of collision
with obstacles). Since both final time and final state are
given, the search space is formed by adding an additional
time dimension T to the state space X . Our search space,
goal set and free space are thus defined as Z = X × T ,
Zgoal = Xgoal × Tgoal, and Zfree = Z \ Zgoal, respectively.
The RRT algorithm is then run to find a trajectory starting
from an initial point zinit = (xinit, tinit) to the goal set Zgoal

while avoiding the obstacles in X . The primitive procedures
borrowed by the RRT algorithm are Sample, Nearest, Steer

and Extend. In addition, given a trajectory σ, the Boolean
function ObstacleFree(σ) checks whether σ belongs to Zfree

or not. It returns True if the trajectory is a subset of Zfree, i.e.,
σ ⊂ Zfree, and False otherwise. Details for these procedures
can be found in [20]. In addition, the PI-RRT algorithm uses
the following procedures:

Steer : Given two points z1 and z2 in Zfree, Steer ex-
tends z1 toward z2 by sampling trajectories from the unforced
dynamics of the system. Specifically, the procedure samples a
set of trajectories emanating from z1 and returns the closest
end point of this set of trajectories to the point z2 with respect
to a given distance function.

Extend: is a function that extends the nearest vertex of the
graph G toward the randomly sampled point zrand. Since time
always flows in forward direction, we make sure that Extend
computes valid connections, i.e., it returns false if the time
value of zrand is less than that of the nearest vertex in the
graph. The Extend procedure of the RRT algorithm is shown
in Algorithm 2.

ExtractPath: is a function that process on a tree data
structure and extracts the information of the collision free
trajectory starting from the current state to the goal set and the
corresponding the control signal. The RRT Algorithm returns
a tree G which contains the information of control inputs at
each vertex of the tree at Line 5. Then, the ExtractPath
procedure is subsequently called at the next line and it con-
catenates the control inputs by backtracking from the goal set
toward the current state.

Execute: is a function that performs some initial portion
of a given control signal on the system.

MeasureState: is a function that returns the current state
of the system after it is executed with some control input. Since
the system is subjected to noise, there is usually a difference
between the real and the simulated state.

ComputeVariation: is a function that implements the
path-integral control approach. After the RRT Algorithm
computes a feasible trajectory and the corresponding control
input, a fixed number of trajectories are locally sampled in the
vicinity of this trajectory. Then, the correction term in control
is computed as simply a weighted average of the noise profiles
that create the local trajectories.

Algorithm 1: Body of the RRT Algorithm
1 RRT(zinit, Zgoal, Z)
2 V ← {zinit}; E ← ∅;
3 G ← (V ,E);
4 for i = 1 to N do
5 zrand ← Sample(i);
6 G ← Extend(G, zrand);

7 return G

The body of the path-integral based RRT algorithm is
shown in Algorithm 3. It runs in a receding horizon fashion,
that is, it computes a “good enough” control input and executes
the first portion of the control signal at each time step. The
algorithm starts by initializing the current time and state with
the initial values in Lines 2-3. The algorithm then computes
an initial policy in Line 5 by using the RRT algorithm. The
steering procedure in the RRT algorithm is slightly modified in

Algorithm 2: Extend Procedure for RRT Algorithm
1 Extend(G,z)
2 (V ,E)← G;
3 znearest ← Nearest(G, z);
4 (znew,σnew,unew)← Steer(znearest, z);
5 if ObstacleFree(σnew) then
6 V ← V ∪ {znew};
7 E ← E ∪ {(znearest, znew)};
8 return G′ ← (V ,E)

order to sample dynamically feasible trajectories. The steering
procedure first samples a fixed number of trajectories from
the unforced dynamics and then chooses the one that has
the closest terminal state toward the desired point. Once a
trajectory that reaches the goal set has been computed, the
corresponding trajectory σRRT, along with control the signal
uRRT, are extracted from the computed data structure in Line
6. Then, the algorithm proceeds by locally sampling trajecto-
ries around (σRRT,uRRT) and computes the variation in the
control δu(x, t) according to (27) by using information of local
trajectories. Since we have M number of local trajectories,
the expectation in (27) is numerically approximated by using
the expression in (29). For each local trajectory σk, a cost
value is computed as S(σk,uRRT) and its desirability value
is computed by exponentiating the corresponding cost value,
i.e., dk = exp(−|ρ|S(σk,uRRT)). Then, the variation term in
control δu(x, t) is computed by taking the weighted average
of all noise profiles which create the local trajectories and
the weight of each trajectory is computed as the normalized
desirability value, i.e., pk = dk/Σ

N
`=1d`. The iteration of the

algorithm is completed by executing the first τ times of the
computed control signal and the algorithm keeps repeating the
same steps until the final time is reached.

Algorithm 3: Body of the PI-RRT Algorithm
1 PI-RRT(zinit, Zgoal, Z)
2 (ti,xi)← zinit; (tf ,Xgoal)← Zgoal;
3 zi ← zinit;
4 while ti < tf do
5 G ← RRT(zi, Zgoal, Z);
6 (σRRT,uRRT)← ExtractPath(G);
7 δu[ti,tf] ← ComputeVariation(uRRT,M);
8 u← uRRT + δu;
9 Execute(u[ti,ti+τ]);

10 xi ← MeasureState(ti + τ); ti ← ti + τ ;
11 zi ← (xi, ti);

V. COMPARISON WITH EXISTING METHODS

In [7], the authors introduced Chance Constrained Rapidly-
exploring Random Trees (CC-RRT) algorithm to solve motion
planning problems involving uncertainty in the location of
the obstacles. Their approach is applicable for linear systems
subject to process noise and/or uncertain obstacles which are
assumed to be convex polyhedra. Due to the uncertainties
in the problem, it may not be possible to identify a path
guaranteed to be collision free surely. Therefore, the main idea
in [7] is to relax this feasibility condition and introduce the
notion of chance constraints, which guarantees probabilistic
feasibility of computed trajectories. Under the assumption of

Gaussian noise, probabilistic feasibility at each time step can
be established through simple simulation of the state condi-
tional mean and the evaluation of linear constraints. After some
algebraic operations, these probabilistic inequality constraints
are converted into deterministic ones that yield conservative
bounds in lieu of the inequality constraints representing the
obstacles. Although both our approach and the CC-RRT al-
gorithm leverage the RRT algorithm, they differ from each
other in several ways. The PI-RRT algorithm can be applied
to nonlinear systems which is affine in control and it does
not impose any condition on the shape of the obstacles. Also,
since the PI-RRT algorithm tries to compute the desirability
function, i.e., the value function under exponentiation, it pro-
vides guarantees of optimality, whereas the CC-RRT algorithm
only ensures path feasibility and relies on random sampling
of controls to compute good enough trajectories without any
guarantees.

VI. NUMERICAL SIMULATIONS

In this section, we present a series of simulated experiments
using a kinematic car model. We are interested in controlling a
vehicle, whose motion is described by the following kinematic
equations:

ẋ = v cos θ, ẏ = v sin θ, θ̇ = w/r (31)

where x, y are the Cartesian coordinates of a reference point
of the vehicle, v is its speed, w is the control input and r
is a positive constant. We assume that the admissible control
inputs, are restricted by w ∈ [−1, 1]. We would like to find an
optimal policy for the heading rate w to move the vehicle from
a given initial configuration (xi, yi, θi)

ᵀ to a final configuration
(xf , yf , θf)

ᵀ within some fixed final time tf .

Let x1 = x, x2 = y, x3 = θ be the states and u = w be
the control input of the system. Then (31) can be rewritten as

ẋ1 = v cos x3, ẋ2 = v sin x3, ẋ3 = u/r. (32)

Assuming the system is subjected to noise of intensity α in
the control channel, (32) can be written in the standard form(

dx1

dx2

dx3

)
=

(
v cos x3

v sin x3

0

)
dt+

(
0
0

1/r

)
(u dt+ α dw), (33)

where f , B and ρ in (24) are defined as follows

f(x) =

(
v cos x3

v sin x3

0

)
, B =

(
0
0

1/r

)
, ρ = − 1

α2
.

The following parameters were used in the numerical
simulations: x0 = (−9 0 0)

ᵀ, t0 = 0, xf = (9 0 0)
ᵀ,

tf = 10, dt = 0.1, v = 2.0.

A. Example 1: Single-slit Obstacle

The objective in this problem is to find trajectories for
the vehicle in a square environment with a box-like obstacle
having a single slit. The trajectories computed by the PI-
RRT algorithm at different stages are shown in Figure 1.
The initial state is plotted as a yellow square and the goal
region is shown in blue with magenta border (right-most). The
computed path by the RRT algorithm following the unforced

dynamics is shown in yellow. The locally sampled trajectories
which are bundled around the yellow trajectory are shown in
different colors. The trajectory of the vehicle due to execution
of the control policy for some finite time horizon is shown in
magenta.

To understand how the intensity of the noise level affects
the patterns of the trajectories of the system, we run the
algorithm and analyzed the situation for three different cases,
α = 0.25, 0.5 and 1.0 corresponding to low, medium and
high intensity noise levels in the control channel. As shown in
Figure 1 (a)-(c), the PI-RRT algorithm computes trajectories
that pass through the slit most of the time when there is
low intensity noise in the control channel. As a first step,
the PI-RRT algorithm computes a baseline trajectory using
the RRT algorithm. The vertices and the edges of the tree
computed by the RRT algorithm are shown in green and blue
colors, respectively. During the simulations, it was observed
that this baseline trajectory does not necessarily pass through
the slit. The RRT algorithm sometimes returns a baseline
trajectory that passes close by the upper or the lower sections
of the obstacle due to both the noise which is observed in the
dynamics and the randomized nature of the algorithm itself.
The PI-RRT algorithm then samples a bundle of trajectories
around the baseline trajectory in order to compute the variation
term for the new control input. The new control input is
computed by summing up the baseline control policy returned
by the RRT algorithm and the variation term, which is the
weighted average of the contribution of each locally sampled
trajectory. These weights are computed by using the cost
information of each locally sampled trajectory. We observed
that the distribution of the trajectories, which pass close to
the upper or lower corners or through the slit, changes as the
intensity of the noise increases. For higher intensity of the
noise, the PI-RRT algorithm computes trajectories which do
not pass through the slit but rather pass close to the upper or
lower corners. This change in the distribution of trajectories is
shown in Figures 1 (d)-(f) for medium intensity noise and in
Figures 1 (g)-(i) for high intensity noise.

B. Example 2: Double-slit Obstacle

Next, we consider a more challenging motion planning
problem. In this case, there are two slits on the obstacle block
and the length of the slits is longer than in the previous
example. The longer length of the slits results in a higher
probability of collision while traversing through the slit, which
makes the motion planning problem more challenging.

A study was performed in order to compare the perfor-
mance of the PI-RRT algorithm with the RRT algorithm. No
variation term in the control input was computed for the RRT
algorithm, and it was simply executed in a receding horizon
fashion. All algorithms were run for 6000 iterations to find a
baseline trajectory. The results over 100 trials are shown in
Figures 2, 3 and 4. The trajectories that result in collision are
plotted in Figure 2 (a), (d) for the low noise level, Figure 3
(a), (d) for the medium noise level, and Figure 4 (a), (d) for
the high noise level for the RRT and PI-RRT algorithms,
respectively. Also, the distribution of collision-free trajectories
is plotted in Figure 2 (c), (f) for the low noise level, Figure 3
(c), (f) for the medium noise level, and Figure 4 (c), (f) for
the high noise level for the RRT and PI-RRT algorithms,

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(a)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(b)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(c)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(d)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(e)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(f)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(g)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(h)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(i)

Figure 1. The trajectories computed by the PI-RRT algorithm for stochastic optimal control of the kinematic car model under different levels of noise injected
to the control channel: (a)-(c) is with α = 0.25, (d)-(f) is with α = 0.50, and (g)-(i) is with α = 1.0.

respectively. The distribution of trajectories and the number
of trajectories which result in a collision are summarized in
Table I. Under the ‘Success’ column, the rows of the table
contain the number of collision-free trajectories which pass
through the bottom corner, bottom slit, top slit and top corner
of the block. As shown in Table I, the PI-RRT computes safer
control policies which reduce the risk of having a collision.
On the other hand, both the RRT and the PI-RRT compute
trajectories that are almost equally distributed over both slits.

In summary, it was observed that the behaviors of both
algorithms are similar for the case with high noise level. As the
noise level decreases, most of the failed cases, not surprisingly,
occur when the algorithms try to compute a path that passes
through the slits. Our simulation results demonstrate that the
PI-RRT algorithm tends to compute trajectories that have larger
clearance from obstacles and hence outperforms the standard
RRT algorithm, resulting in a smaller failure rate.

Table I. MONTE-CARLO RESULTS FOR DOUBLE-SLIT OBSTACLE

α = 0.25 α = 0.50 α = 1.00
Success Fail Success Fail Success Fail

RRT 0 24 20 0 56 23 8 11 27 31 48 0 0 44 8
PI-RRT 0 44 45 0 11 35 9 8 37 11 47 0 0 49 4

VII. CONCLUSION

In this paper, the PI-RRT algorithm is proposed in order
to solve a class of stochastic optimal control problems. The

proposed approach makes a novel connection between incre-
mental sampling-based algorithms and path integral control.
The work in this paper can be extended in several directions.
First, a parallel version of the algorithm can be implemented
by sampling local trajectories or computing several initial
trajectories simultaneously. Second, since there exist many
variants of the standard RRT algorithm, one can implement
different sampling-based algorithms to compute initial trajec-
tories and incorporate them within the path integral framework.
For example, the RRT∗ [20] and the RRT# algorithms [21],
which are both asymptotically optimal, can be used to compute
bundles of good initial trajectories in a single pass; however,
such an algorithm would require more elaborate computations
for implementing the steering function, e.g., backward inte-
gration of a stochastic differential equation. This is part of
ongoing work. Finally, we plan to apply PI-RRT to robotic
systems with many states/degrees of freedom and compare it
with CC-RRT.

REFERENCES

[1] E.A. Theodorou and E. Todorov. Relative entropy and free energy
dualities: Connections to path integral and kl control. In the Proceedings
of IEEE Conference on Decision and Control, pages 1466–1473, Dec
2012.

[2] E. Theodorou, D. Krishnamurthy, and E. Todorov. From information
theoretic dualities to path integral and kullback-leibler control: Contin-
uous and discrete time formulations. In The Sixteenth Yale Workshop
on Adaptive and Learning Systems.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(a)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(b)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(c)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(d)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(e)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(f)
Figure 2. Distribution of trajectories for kinematic car model under low intensity of noise injected to the control channel (α = 0.25) is shown in (a)-(c) for
the RRT algorithm, and in (d)-(f) for the PI-RRT algorithm. The trajectories which hit the obstacles are shown in (a), (d). The collision-free trajectories at an
intermediate stage are shown in (b), (e), and at the final stage are shown in (c), (f).

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(a)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(b)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(c)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(d)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(e)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(f)
Figure 3. Distribution of trajectories for kinematic car model under medium intensity of noise injected to the control channel (α = 0.50) is shown in (a)-(c)
for the RRT algorithm, and in (d)-(f) for the PI-RRT algorithm. The trajectories which hit the obstacles are shown in (a), (d). The collision-free trajectories at
an intermediate stage are shown in (b), (e), and at the final stage are shown in (c), (f).

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(a)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(b)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(c)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(d)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(e)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(f)
Figure 4. Distribution of trajectories for kinematic car model under high intensity of noise injected to the control channel (α = 1.0) is shown in (a)-(c) for
the RRT algorithm, and in (d)-(f) for the PI-RRT algorithm. The trajectories which hit the obstacles are shown in (a), (d). The collision-free trajectories at an
intermediate stage are shown in (b), (e), and at the final stage are shown in (c), (f).

[3] E. Theodorou, J. Buchli, and S. Schaal. A generalized path integral
approach to reinforcement learning. Journal of Machine Learning
Research, (11):3137–3181, 2010.

[4] S. M. LaValle and J. J. Kuffner, Jr. Rapidly-exploring random trees:
Progress and prospects. In B. R. Donald, K. Lynch, and D. Rus, editors,
New Directions in Algorithmic and Computational Robotics, pages 293–
308. 2001.

[5] S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[6] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki,
and S. Thrun. Principles of Robot Motion: Theory, Algorithms, and
Implementations. Intelligent Robotics and Autonomous Agents. The
MIT Press, May 2005.

[7] B. Luders, M. Kothari, and J. P. How. Chance constrained RRT
for probabilistic robustness to environmental uncertainty. In AIAA
Guidance, Navigation, and Control (GNC), Toronto, Canada.

[8] J. Buchli, F. Stulp, E. Theodorou, and S. Schaal. Learning variable
impedance control. The International Journal of Robotics Research,
30(7):820–833, April 2011.

[9] F. Stulp, E.A. Theodorou, and S. Schaal. Reinforcement learning
with sequences of motion primitives for robust manipulation. IEEE
Transactions on Robotics, 28(6):1360–1370, 2012.

[10] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal.
Dynamical movement primitives: Learning attractor models for motor
behaviors. Neural Computation, 25(2):328–373, 2013.

[11] Jan Peters, Katharina Mülling, and Yasemin Altun. Relative entropy
policy search. In Proceedings of the Twenty-Fourth National Conference

on Articial Intelligence, 2010.

[12] B.K. Øksendal. Stochastic differential equations : An introduction with
Applications. Springer, Berlin ; New York, 6th edition, 2003.

[13] P. Dai Pra, L. Meneghini, and W. Runggaldier. Connections between
stochastic control and dynamic games. Mathematics of Control, Signals,
and Systems, 9(4):303–326, December 1996.

[14] J. Yang and J. H. Kushner. A Monte Carlo method for sensitivity
analysis and parametric optimization of nonlinear stochastic systems.
SIAM Journal in Control and Optimization, 29(5):1216–1249, 1991.

[15] W. H. Fleming and W. M. McEneaney. Risk-sensitive control on an
infinite time horizon. SIAM Journal on Control and Optimization,
33(6):1881–1915, November 1995.

[16] H. J. Kappen, V. Gómez, and M. Opper. Optimal control as a graphical
model inference problem. Machine Learning, 87(2):159–182, 2012.

[17] E. Todorov. Efficient computation of optimal actions. Proceedings of
the National Academy of Sciences, 106(28):11478–11483, 2009.

[18] A. Friedman. Stochastic Differential Equations and Applications. Dover
Books on Mathematics. Dover Publications, December 2006.

[19] R. F. Stengel. Optimal Control and Estimation. Dover Publications,
New York, 1994.

[20] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal
motion planning. The International Journal of Robotics Research,
30(7):846–894, 2011.

[21] O. Arslan and P. Tsiotras. Use of relaxation methods in sampling-
based algorithms for optimal motion planning. In IEEE International

Conference on Robotics and Automation, pages 2421–2428, Karlsrühe,
Germany, May 6–10, 2013.

	Introduction
	Notation
	Stochastic Control Based on Free Energy and Relative Entropy Dualities
	Application of the Legendre Transformation to Stochastic Differential Equations
	Connection with Dynamic Programming (DP)
	Path Integral Control with Initial Sampling Policies

	Trajectory Sampling via Sampling-based Algorithms
	Comparison with Existing Methods
	Numerical Simulations
	Example 1: Single-slit Obstacle
	Example 2: Double-slit Obstacle

	Conclusion
	References

