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Abstract-Earlier work has demonstrated the feasibility of using aerobraking tethers for the exploration 
of the solar system. In fact, compared to chemical propulsion, the tether mass is usually much less than 
the required propellant mass. The basic concept involves an orbiter and a probe connected by a thin tether. 
The probe is deployed into the atmosphere of a planet where aerodynamic drag decelerates it. The tension 
on the tether provides the braking effect on the orbiter, thus eliminating the need for a propulsive 
maneuver. During the maneuver the orbiter travels outside the atmosphere, and does not require heat 
shielding. In the previous work a suboptimal solution was found where the system maintained a near 
vertical orientation during the fly through. In this paper we consider the minimum tether mass required 
for specified aerocapture conditions. As an intermediate step, we find the trajectory which provides the 
minimum tension on the tether. The fact that the orbiter must remain outside the atmosphere is introduced 
as an altitude constraint. The results are significant for future solar system exploration. 

1. INTRODUCTION 

In the history of the exploration of the solar system, 
some of the most successful and most ambitious 
missions have involved dual vehicle spacecraft. In 
such a mission (the Viking program being the best 
known) one vehicle (a probe or lander) is delivered to 
the planet’s surface or atmosphere, while the second 
one (the orbiter) remains in orbit around the planet. 
The Galileo spacecraft, currently on its way to 
Jupiter, is representative of several missions being 
proposed in this category. When the spacecraft 
arrives at the target planet, the orbiter performs 
a propulsive maneuver to achieve capture, while 
the probe relies on an aerobraking maneuver to 
decelerate. 

The aerobraking tether shown in Fig. 1 eliminates 
the need for the orbiter propulsive maneuver. The 
spacecraft consists of an orbiter and a probe that are 
connected by a thin tether. When the vehicle arrives 
at the planet, the probe flies into the atmosphere, as 
before, while the orbiter is decelerated by tether 
tension, thus eliminating the need for propellant. 
Note that the orbiter remains outside the atmosphere 
during the maneuver and does not require additional 
aerodynamic shielding. After capture has occurred, 
the tether may be severed, allowing the probe to land 
on the planet, or the system may remain together and 
additional aerobraking maneuvers can be performed 
to finalize the orbit. 

tPaper IAF-93-A.2.13 presented at the 44th International 
Astronautical Congress, Graz, Austria, 16-22 October 
1993. 

The concept of using tethers for aeroassisted ma- 
neuvers has appeared in the literature as early as 
1986, being mentioned by Carroll [l] and Purvis and 
Penzo [2]. The idea was previously proposed at the Jet 
Propulsion Laboratory in 1984 by Sirlin et al.[3]. 
Despite the early introduction of the aerobraking 
tether idea and the great interest that tethers in space 
have received in recent years, work on tethers in an 
atmosphere has been very limited. Lorenzini et al. [4] 
analyzed the behavior of a tethered system in the 
Martian atmosphere, but the spacecraft was main- 
tained in circular orbit using thrusters. More recently, 
Warnock and Cochran [5] studied the orbital lifetime 
of tethered satellites. This is a very complete analysis 
of orbit decay but no attempt was made to use the 
drag for maneuvering. 

Analysis by Puig-Suari and Longuski [6] involved 
modeling the tether as a rigid rod with the conjecture 
that, if aerobraking is feasible with such a simple 
model, then a more involved study would be war- 
ranted. This conjecture is supported by the early 
work of Lorenzini et al. [4], which demonstrates that 
a flexible tether, subjected to aerodynamic loads, 
remains relatively straight, at least in a circular orbit. 
Even though the rigid rod model does not include 
flexible effects, it retains the essential behavior of the 
system by taking into account distributed gravita- 
tional and aerodynamic forces. Using this model, 
Puig-Suari and Longuski demonstrate the physical 
feasibility of aerobraking with a tether in [6] and [7]. 

In [8], Puig-Suari and Longuski deal with the 
difficult task of finding targeting conditions. Simple 
analytical models are developed to facilitate the de- 
termination of the initial conditions required for 
aerocapture. First, an analytical approximation for 
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Orbiter 

Fig. 1. Aerobraking tether 

the change in velocity during the atmospheric portion 
01 the trajectory is found in terms of error functions. 
Next, perturbation techniques are used to determine 
approximate equations for the motion of the system 
outside the atmosphere (i.e. with no aerodynamic 
effects). These two approximate models provide a 
way to determine a good first guess for initial con- 
ditions. The precise initial conditions are found 
iteratively by performing numerical analysis with 
the (much more complicated) complete rigid rod 
model. This makes it possible to define and simulate 
the behavior of many types of tether aerocapture 
maneuvers. 

Longuski et al. [9] compare the performance of the 
tether system with that of the traditional propulsive 
maneuver in missions to all the atmosphere-bearing 
planets in the solar system. The relative performance 
of the two systems is determined by comparing the 
mass of the tether and the mass of the propellant 
required to capture the orbiter. Despite the fact that 
no attempt is made to determine the minimum tether 
mass required for the maneuvers, the results show a 
clear mass advantage in the tethered system. 

The results obtained with the rigid rod are very 
encouraging, but the flexibility of a real tether may 
have detrimental effects on the performance of the 
system. In [lo] and [l l] flexible tether models are 
developed to permit the analysis of more realistic 
tethered systems. The results obtained with the flex- 
ible models indicate that the basic behavior of the 
tethered system is very similar to that observed with 
the rigid rod model. This validates the earlier conjec- 
ture that the rigid rod model might serve as a 
reasonable tool for the preliminary assessment of 
tether aerobraking problems. In fact (when the 
proper care is exercised) the rigid rod model is very 
faithful to the actual behavior so that flexible analysis 

is only necessary in the final stages of the design 
process. 

In this paper optimization techniques are used to 
determine the aerobraking maneuver which mini- 
mizes the tether mass. The optimum maneuver may 
be used to increase the already significant mass 
advantage of the tether aerobraking system over the 
traditional propulsive maneuvers. 

2. AEROBRAKING TETHER DESIGN CONCEPTS 
AND RESULTS 

In [9] aerobraking tether design concepts are 
developed for the exploration of the solar system. 
The model used in the analysis assumes a rigid tether, 
planar motion and an exponential atmosphere. The 
study includes missions to Venus, Mars, Jupiter, 
Saturn, Uranus, Neptune, Titan and a Mars-Earth 
return mission. In this preliminary study, certain 
specifications are made which ultimately lead to 
unique designs for braking into a capture orbit 
about these planets. These specifications include the 
following. 

(1) 

(2) 

The fly-through maneuver (Fig. 2) is 
designed so that the inertial spin rate during 
atmospheric entry, Q,, is equal and oppo- 
site to the spin rate during exit, R,,, 

% = -% (1) 

This requirement is called spin matching. 
The tether length is specified so that the 
location of the center of pressure with re- 
spect to the probe, lPS, coincides with that of 
the center of percussion, Iv. This require- 
ment is called center matching: 

1,s = l,C (2) 

Fig. 2. Aerobraking maneuver. 



Aerobraking tethers 491 

(3) 

(4) 

(5) 

The ballistic coefficient of the probe is equal 
to the ballistic coefficient of the tether: 

rl /(Co, d) = mp I(&, S,) (3) 

where r) is the tether linear density, which 
depends on the tether mass and its dimen- 
sions, CD, and C, are the drag coefficients 
of the tether and the probe, respectively, d is 
the diameter of tether and S, is the frontal 
area of the probe. In [9] the values assumed 
for CD, and Cn, are 2 and 1, respectively. 
This requirement is called aeromatching. 
The mass of the orbiter, RI,, and the mass of 
the probe, mp, are both assumed to be equal 
to 1000 kg: 

m,=m,= 1OOOkg (4) 

The tether is assumed to be Hercules AS4 
graphite [12] with a tensile strength, cU, and 
a density, p,: 

6, = 3.6 GN/m2 

pt = 1800 kg/m’ (6) 

(6) The planets are assumed to be in circular, 
co-planar orbits. Arrival conditions are cal- 
culated by assuming an interplanetary 
Hohmann transfer. The spacecraft is then 
captured into a near-parabolic orbit about 
the target planet so that: 

e = 0.9999 (6) 

(where e is the eccentricity with respect to the 
planet). 

From conditions (l)-(3), and assuming that the 
tether is nearly vertical at closest approach, it is 
shown in [9] that the mass of the tether is approxi- 
mated by: 

m =Prmo(mo+m,)Ay2 
t %m, 

where AV is the change in velocity required at the 
target planet in order to achieve capture. 

In [9] a comparison is made between the mass of 
the tether [eqn (7)] and the propellant mass required 

Radius 

(Lm) 

3550 
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=4l-l-l 
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Fig. 4. Orientation angle, a, and ai. 

(to slow down the orbiter) with a chemical rocket 
system, Am : 

Am = mo(e@@bn) - 1) (8) 

where g is the acceleration due to gravity at the 
Earth’s surface and IsP is the specific impulse. The 
value for ZsP is assumed to be 300 s. The results of this 
comparison, presented in Table 1, are quite exciting 
because in every case the tether mass is smaller than 
the required propellant mass. The greatest absolute 
savings occur at Mars (144 kg) and the greatest 
percentage savings are found at Jupiter (81%). The 
design tension, computed by the simple formula[9] 

T = mAm, + mnp) 
4m,l 

AP (9) 

is a very good approximation for the actual tension 
observed in the simulation of the fly-through 
maneuver. 

In every case, the design specifications (l)-(3) 
result in a tether length of approx. 1.8H (scale 
heights), so that the maximum atmospheric density at 
the probe is approx. 6 times (e” times) larger than 
that at the orbiter. The difference between the orbiter 
minimum height and the probe minimum height is 
nearly the full length of the tether, which reflects the 
fact that the tether is in a local vertical position, as 
desired, during the closest approach phase. 

The specific characteristics of the Mars maneuver 
are shown in Figs 3-5. Figure 3 shows the radius of 

Force 7500- 

loo 200 300 400 

Tie (s) 

Fig. 3. Orbiter and probe trajectories. Fig. 5. Tension and normal forces on probe. 
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the orbiter, R,, and of the probe, R,, with respect to 
the center of the planet. Note that the radius of Mars 
is 3398 km. During atmospheric fly through the mini- 
mum altitudes of the orbiter and the probe are 92.5 
and 80.7 km, respectively. The difference between 
these values is nearly the length of the tether. Next, 
the orientation of the tether, s( (with respect to the 
local vertical), and its spin rate, ai, are shown in Fig. 
4. The graph clearly shows that during fly through the 
tether remains at a near vertical orientation (a = 0). 
The values of the normal and tension forces at the 
probe end of the tether are plotted in Fig. 5 (the 
forces on the orbiter are very similar). The graph 
shows that forces due to spin are equal before and 
after impact (due to the spin matching condition). 
Also, the normal force is close to zero, which was one 
of the goals of the design. Note that the tether 
designed for this maneuver has an ultimate strength 
of 15,500 N [from eqn (9)] which is higher than the 
maximum value of tension observed in the simu- 
lation Also note that the actual tension due to spin 
is, in this case, overestimated by eqn (9). 

The promising results obtained in [9] and summar- 
ized in Table 1 for the rigid rod model demand that 
a deeper examination of the potential of aerobraking 
tethers be made. In the following analysis, we 
examine the question of optimal tether mass. 

3. OPTIMAL TETHER MASS MANEUVERS 

In the analysis performed in [9], the design process 
is structured to develop an aerobraking maneuver 
that requires a low tether mass (i.e. a low tether 
strength) in order to compete favorably with the 
propulsive systems. However, the starting point in the 
analysis assumes a dumbbell type maneuver, with the 
tether in a nearly vertical orientation at periapsis. In 
[8], a vast range of maneuvers seems possible between 
the extremes represented by the (vertical) dumbbell 
and (horizontal) drag chute maneuvers, and the 
possibility that some of these maneuvers may result 
in lower tether masses remains unexplored. One of 
the reasons to address the dumbbell case first is the 
ease with which the normal forces can be analyzed 
and the system designed to eliminate them. This 
requirement arises from the fact that the rigid rod 
model lacks the sophistication to incorporate the 
bending associated with normal forces. The develop- 
ment of the flexible models in [lo] and [1 1] validates 
the rigid rod as an excellent design tool and also 
allows the analysis of a wider variety of tethered 
systems. At this point, a more systematic analysis of 
the possible tether aerobraking maneuvers is not only 
possible but also very desirable. 

Before we proceed in the next section with the 
optimization problem, we should mention briefly that 
optimization problems, in general, can take many 
iterations to converge and can be very sensitive to 
computational round-off and/or truncation errors. 
This is especially true for most practical problems- 

like the one treated in the present paper-where no 
explicit formulae for the gradient or the Hessian of 
the cost function are available. One must resort to 
numerical calculation of these quantities using finite 
difference methods, thus introducing an additional 
error in the calculations. Most optimization algor- 
ithms therefore benefit from good starting guesses for 
the solution. A good starting guess, apart from the 
fact that it can accelerate the convergence of the 
algorithm, can lead to the global rather than to a 
local minimum. One therefore has to be very careful 
in choosing initial guesses. Experience, judgement 
and (sometimes) luck can be the difference between 
success (convergence) and failure (divergence). There- 
fore, very complex problems are best solved by an 
evolutionary approach, whereby a problem with a 
smaller number of independent variables is solved 
first. Solutions from lower order problems can then 
be used as starting points for more complex problems 
with more independent parameters. 

With this philosophy in mind we first solve the 
minimum force problem for an aerobraking tether. In 
this formulation the length of the tether is kept fixed, 
and the optimization algorithm will provide the mini- 
mum force maneuver for the given tether. One can 
then redesign the tether (e.g. change its diameter) to 
withstand the required force by the minimum amount 
of mass. Therefore, the minimum force solution for 
a given length of the tether is dual to the problem of 
minimum mass for this tether length. The results of 
the minimum force problem can then be used, as 
mentioned earlier, as good initial guesses for the 
complete minimum mass problem, where the length 
of the tether is among the design parameters. 

3.1. Minimum force analysis 

We initiate the search for the optimal tether 
maneuver by determining the aerobraking maneuver 
that minimizes the forces on the tether. For a given 
design, this optimum maneuver can be analyzed as a 
constrained optimization problem and solved using 
non-linear programming techniques. Once the physi- 
cal parameters for the system are specified, the tether 
aerobraking maneuver can be defined by three 
parameters: the initial conditions outside the atmos- 
phere, or, and oi,, and the radius of periapsis for the 
hyperbolic orbit, rper . Thus the optimization process 
involves the search for the optimum initial conditions 
in a three dimensional parameter space. For the 
analysis presented here, the total force on the tether 
is defined as the (magnitude of the) vector addition of 
the tension and normal forces. Note that, for a given 
set of initial conditions, determination of the maxi- 
mum force requires the computation of the complete 
atmospheric fly-through maneuver. Therefore the 
maximum force is computed only a posteriori. 
Clearly, an analytic computation of the gradients of 
the cost (i.e. force) with respect to the design par- 
ameters is out of the question. In addition, some 
constraints must be placed on the problem in order 
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to assure that the resulting optimum trajectory 
provides an acceptable aerobraking maneuver. First, 
we provide the value of the final orbit eccentricity 
that must be achieved by the maneuver, e,, and 
introduce it as an equality constraint. Next, the 
objective of keeping the orbiter higher than the probe 
is introduced as an inequality constraint on the 
difference in the minimum altitudes of the orbiter and 
the probe, Ah,, during the maneuver. Finally, the 
presence of compressive forces on the tether is 
prevented with an additional inequality constraint. 
Mathematically the problem can be written as: 

minimize: F,,,(x) 

x = ]&I 5 &I 9 rperlf 

subject to: e - e, = 0 

Ah -Ah,>0 

T,,, ’ 0 

(10) 

(11) 

(12) 

(13) 

where e and Ah are the eccentricity and altitude 
difference achieved by the maneuver and T,, is the 
minimum tension on the tether. 

A large variety of techniques exists to solve a 
problem of the form given above. In this paper 
optimization software based on the exterior penalty 
method[l3,14] is applied to the tether problem. This 
method incorporates the active constraints in the 
objective function by performing successive uncon- 
strained minimizations of the function: 

Fk=F,,,(x)+r$G,(x), k=1,2,3 ,... 
,=I 

and increasing the value of the factor, rkr after each 
iteration. Here G,(x) is some function of the con- 
straints g, (j = 1, 2, 3) and r, is a positive constant 
known as the penalty parameter. For our analysis we 
choose 

G,(x) = {max]O, g,(x)1)2 

The unconstrained minimizations are performed 
using Powell’s method with a golden section method 
for the one-dimensional minimizations [13,14]. In the 
optimization procedure, the rigid rod model is the 
only practical model due to the large number of 
iterations required. (Typically the force optimization 
process requires several hours of CPU time on a Sun 
Spare 10 workstation using the rigid rod model.) The 
validity of the optimum maneuver can be determined 
by performing a flexible analysis after the optimiz- 
ation process, as in [I 51. 

The optimization method is first applied to the 
Mars aerocapture design [9,15]. The parameters are 
taken directly from the results of that maneuver (see 
Table 1 where e = 0.9999 and Ah = 12 km). The 
resulting optimum maneuver (see Figs 6 and 7) is 
significantly different from the maneuver described in 
Figs 4 and 5. During the optimal fly through, the 
minimum orientation angle of the tether is greater 

270 , 
225 f& =12 
180 = 10 

sa 

aMeg) 135 

90 

45 
0 

7 

Oil--n-i 
100150200250300350400 

Tie (s) 

Fig. 6. Orientation angle (optimum force trajectories) 

than zero. This fly-through angle means that the 
tether is subjected to significant tension at all points 
in the trajectory, which reduces the tendency to bend 
(in a flexible tether). In addition to these favorable 
characteristics, the maneuver reduces the forces from 
over 12,000 N (Table 1) to 9000 N while achieving the 
same eccentricity. (Note in Fig. 7 the large reduction 
over Fig. 5 in the forces before and after impact due 
to the reduction in spin rate.) Small normal forces 
appear in the maneuver since the effective area of the 
tether is reduced by the fly-through orientation and 
this slightly offsets the aeromatching condition. Also 
note that the spin-matching condition emerges, in a 
natural way, as part of the optimum solution. 

We observe that the altitude constraint is active in 
the previous maneuver (Ah, = 12 km), and wish to 
investigate the effect of a reduction of the A& require- 
ment. When this is done the forces are further 
reduced as the Ah, requirement is relaxed, until a 
value of 8 km is reached. Beyond this point, any 
further reductions in Ah, have no effect on the 
maneuver (see Figs 6 and 7). Thus, the optimum 
maneuver for an unconstrained clearance maintains a 
clearance of 8 km. In this maneuver, the forces are 
reduced to the minimum value of about 7000 N, with 
a fly-through orientation of about 55. at closest 
approach. 

The results of further investigation into the mini- 
mum force problem with unconstrained altitude are 
presented in Table 2 for the Mars tether with different 
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Fig. 7. Forces on the probe (optimum force trajectories). 



Aerobraking tethers 495 

Table 2. Mars minimum force results for unconstrained altitude7 

e A V (km/s) urn,” (degrees) Ah F,, (N) 

0.50 1.33 64.0 (72.5) 3.82 14,400 (I 3,200) 
0.75 0.983 62.2 (67.7) 5.65 10,700 (9720) 
0.99 0.676 55.3 (60.2) 8.21 6990 (6620) 
1.20 0.422 39.2 (48.4) 11.3 3990 (3970) 
1.40 0.192 30.1 (28.0) 12.5 1260(1370) 
1.50 0.0819 -0.660(17.1) 14.5 249 (356) 

tValues in parentheses were predicted from eqn (47). 

target eccentricities. In Fig. 8 we plot the maximum 
tether force, F,,,,,, and the minimum orientation 
angle, amin, against A.V. We see that F,,,, increases 
nearly linearly with AV while Q, asymptotically 
approaches 90”, which is equivalent to a drag chute 
maneuver. For low AV, the u,,,~” is nearly zero, 
approaching the vertical dumbbell maneuver. We will 
refer to this new type of maneuver (i.e. a maneuver 
having non-zero tl,in) as an inclined maneuver. 

3.2. Sliding pendulum model 

During minimum force fly through we notice that 
near the time of closest approach, the tension force 
remains nearly constant, when the altitude is uncon- 
strained. This is evident in the plateau that appears 
in Fig. 7 for Ah, < 8. Another interesting feature that 
can be observed is that the orbiter altitude remains 
nearly constant during the atmospheric fly through, 
while the probe swings down into the atmosphere. 
This behavior is apparent in both the vertical dumb- 
bell maneuver (Fig. 3) as well as in the optimal force 
and optimal mass solutions[lS]. The pendulum 
motion of the probe suggests that the or- 
biter-probe-tether system can be modeled as a sliding 
pendulum, where the orbiter represents a sliding 
attachment point and the probe and tether represent 
the pendulum (see Fig. 9). In this motion the probe 
swings down to a minimum orientation angle, a,,,, 
and is bounced back up and out of the atmosphere, 
while the orbiter maintains a nearly constant altitude. 
With this behavior in mind, we will attempt to 
construct a simple analytic model of the tension force 
in order to better understand the dynamics of the 
problem and to guide the numerical determination of 
the minimum force and minimum mass trajectories. 

The A I/ obtained from the atmospheric fly through 

0 0.20.40.60.8 1 1.2 1.4 

AV Ws) 

Fig. 8. Minimum force results with no altitude constraint 
(Mars). 

can be approximated by an impulse analysis for a 
particle[l6,17]: 

AV=rprVWr 

(To find the impulsive AV for the entire tether see [8]. 
For a more sophisticated analysis of atmospheric fly 
through see Vinh et al. [18] and Vinh [19]). Equation 
(14) is given in terms of periapsis conditions, as 
indicated by the subscript “per”, so that rpcr is the 
radius at periapsis, V,, is the velocity at petiapsis and 
ppr is the atmospheric density at periapsis. The drag 
coefficient, Co, corresponds to a cross sectional area 
of A. The variable e is the approach eccentricity, 
relative to the planet or satellite. The term /3 is the 
inverse scale height (/I = l/H). (It is interesting to 
note that, according to Vinh [19], the product fir,, is 
nearly constant for variable rper and /I.) 

Since the drag at periapsis is given by 

we can write, from eqn (14), that 

(15) 

mAV 
fp,,C,,A = - 

rper Vper 
(16) 

so that the drag can be rewritten as 

Dper= mAV (17) 

Noting that the velocity at periapsis can be expressed 
in terms of the local circular speed, V,,, we have 

VP,,= 
J 

+(l +e)=&GV,, (18) 
per 

and we obtain 

D,,=mAV (1% 

The expressions for drag [eqn (19)] and A V [eqn (14)] 
imply that a characteristic fly-through time can be 
computed as 

(20) 

Fig. 9. Sliding pendulum. 

AA 3X-B 
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which turns out to be about 95 s for Mars aerocap- 
ture. (Note that this value is very close to the actual 
fly-through times observed in the simulations in 
Figs 3-7.) 

We can now derive the equations of motion for the 
sliding pendulum depicted in Fig. 9. Here we assume 
that the drag force, D, acts only on the probe. The 
orbiter is assumed to slide along a “frictionless wire” 
which provides a vertical reaction force, R. In this 
sliding pendulum there is no gravity. (The wire is, of 
course, a fictitious device which represents the hori- 
zontal trajectory of the orbiter). There are two de- 
grees of freedom represented by the variables x and 
cc; the unit vectors i,i, i? are fixed in the inertia1 
reference frame. 

The location of the center of mass of the tether 
system is given by 

r=(x-I,sinol)Z+I,coscr3 (21) 

where f, is the distance from the orbiter to the center 
of mass: 

(22) 

and where m is the total mass, 

m =m,+m,+m, (23) 

Differentiating eqn (21) twice, we obtain 

f = (c? - l,di cos CI + /,oi’sin cr)T 

-(Z,&sincr +I,oi2coscc)~ (24) 

Thus, from Newton’s second law we have 

D 
R-10dicosu+l,ci’sinu=-- (25) 

m 

I,disincr +l,ci2cosc1 =R (26) 
m 

To remove the unknown, R, from eqn (26) we can use 
Euler’s law 

M’=jl’ (27) 

The system angular momentum about the center of 
mass is 

H’=loifc (28) 

where I is given by [ 151: 

m, (C + 1:) 
I =m,Ii+ 3, + m,li (29) 

and where 

, =l(m,+jm,) 
P m 

I = I, + I, (30) 

The moment about the center of mass is 

M’=(I,Dcoscc -L,Rsina)k (31) 

Substituting eqn (31) and the derivative of eqn (28) 
into eqn (27) provides 

Iti=I,Dcosa -1,Rsina (32) 

Eliminating R from eqns (32) and (26) we obtain 

$= 
I,Dcosu -ml~ci2cosu since 

I + ml2 sin2 a: 
(33) 

0 

Equations (25) and (33) provide the final equations 
of motion. Our main goal in deriving these equations 
is to provide an expression for the tension in the 
tether. This is most easily obtained by considering 
Newton’s law for the orbiter, which moves along the 
x direction and is subject to a single force component 
along x: 

m,i = -Tsincr 

Thus, the tension is 
. 

T=__m,x 
an tl 

Substituting for f from eqn (25) into eqn (35), we 
obtain 

m,D T=-- 
m,l,di cos a 

m sin u sin c( 
+ m,10ci2 (36) 

Next, we can eliminate & in eqn (36) through 
expression (33) to obtain our final relation for the 
tension: 

Dm 
T=” l- 

m1,1, cos’ u 

m sina I + ml: sin2 u > 

+m,10ci2 ( 1 + 
ml: cos2 u 

I + ml: sin2 u > 
(37) 

Our hypothesis is that the minimum force maneu- 
ver maintains a nearly constant tether tension during 
fly through, so that if we can calculate the value of 
T at two points in the atmosphere and set the two 
values equal, then we may find an approximate value 
for the optimal amin (given in Table 2 for Mars). 

The tension comes from two sources: spin tension 
and drag tension. Naturally, before the tether enters 
the atmosphere it is subjected to only spin tension, 
but upon entry, drag tension becomes apparent. Of 
course as the tether translates through the atmos- 
phere the moment from the drag force reduces the 
spin rate and hence the spin tension. When the spin 
rate becomes zero 

ci=o (38) 

the system reaches its minimum orientation, u,,,, and 
eqn (37) becomes 

D m 
T(u,,,)=+ 

m1,1, cos? a,,, 

I + ml: sin’ 5(,,, > 
(39) 

m sin amin 

At an earlier stage, as the tether just enters the 
sensible atmosphere, a suitable value for the entry a 
can be chosen, u,,,~~, where the spin rate ci,,,,, has not 
been significantly altered and where drag tension is an 
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important effect. Following the approach of [9] and must be included in the analysis. However, since we 

[15], we can determine the change in spin rate from want the tether to be only strong enough to withstand 
the law of angular impulse and angular momentum. the forces in a particular maneuver, we can eliminate 
We assume that the linear impulse, P, is applied at the the diameter from the optimization space. The mini- 
probe to cause the required change in velocity, AV: mization can then be defined as: 

P=(m,+m,+m,)AV (40) 

At the time of closest approach, the orientation of the 
tether is tilted by an angle a,in. The angular impulse 
at this orientation is given by 

PI, cos a,in = IAQ (41) 

where the reference point is the center of mass, AR is 
the change in inertial spin rate and IAR is, of course, 
the change in angular momentum. 

From eqns (41), (40) and (30) we find that the 
change in spin rate is 

A~=(mO+~m~)~A~cosa, 
I mm (42) 

Keeping in mind the spin matching condition (1) and 
that d can be approximated by the inertial spin rate, 
R, we have 

minimize: m,(x) 

x = [aO, ai,, rpcr, 4 (48) 

subject to: e - e, = 0 (49) 

Ah -Ah,>0 (50) 

T,,, > 0 (51) 

where m, is the tether mass. (Note that the compu- 
tation of m,, for a given vector x, includes the 
numerical (iterative) determination of the tether 
diameter required by the forces due to that particular 
maneuver. This, along with the inclusion of the length 
as a fourth dimension in x, increases the number of 
iterations, and increases the required CPU time 
significantly.) 

c?,,,,, z Qi, = -tAQ (43) 

At a,,,,), we can determine the tension from drag by 
using the exponential atmosphere relation 

D enlry = D,, exr4 - @OS a,in - ~0s a,,,,Yf4 (44 

so that the total tension is found by substituting eqns 
(43) and (44) into eqn (37). The only remaining issue 
is to estimate the value of acntry. Heuristically, we find 
that 

Before proceeding to the numerical computation of 
optimal tether masses for the various solar system 
bodies, we first consider an analytic approach which 
may be able to predict the characteristics of the 
optimal mass solution. We have already seen in the 
minimum force analysis that the minimum force often 
occurs at non-zero ci,,,. This leads to the possibility 
that a minimum mass solution may exist at some 
non-zero a,,, . 

x,,t,y x 90” (45) 

Intuitively, eqn (45) seems reasonable because at 90 
no appreciable spin rate change can occur, and yet 
the effect of drag must be noticeable since at this 
point the probe is only one tether length above its 
lowest altitude in the atmosphere. For the tether 
designs given in Table 1, this altitude is only 1.8H, 
which will provide some drag tension. Thus, our 
expression from eqn (37) becomes 

We also observe that another minimum mass 
candidate solution is the vertical dumbbell maneuver. 
This solution has the great advantage of being easy 
to calculate from eqn (7). Thus we have two candi- 
date solutions for minimum mass: (i) the vertical 
dumbbell maneuver (a,,, = 0) and (ii) the inclined 
maneuver (amin > 0). 

We can find an approximate analytic solution 
for the inclined maneuver by the following procedure. 
First we take the characteristics of the vertical dumb- 
bell tether given in Table 1 (AV, m,, I, T, H, V,, , 
rperr e) where all the values are calculated analytically. 
[For example we find T from eqn (9) we estimate rper 
to be several scale heights above the planetary radius, 
and we compute VIc from & .] We assume that 
the clearance altitude is given by Ah, = /,,_ (where 
1 des,gn is the design length given in Table I). Next we 
substitute these characteristic design values into eqn 
(47) and solve for a,,,,“. Naturally the resulting value 
will be non-zero which means that the clearance 
requirement (Ah > Ah,) will no longer be satisfied. 
Thus we must correct our estimate of the tether 
length, I, by the following expression 

(mo+‘mt)‘AVcosa 
21 ml” 1 * (46) 

We can now equate relations (39) and (46) to solve 
for a,,,: 

f(c,,” 1 = T(aemry I- T(amin) = 0 (47) 

Table 2 shows the results of eqn (47) in parentheses. 
These are in surprisingly close agreement with the 
optimal force solutions. 

3.3. Minimum mass analysis 

In order to analyze the tether mass problem, the 
dimensions of the tether, diameter d and length I, 

I = Ah,/cos(a,,,) (52) 

In the next step we substitute the new value of I into 
eqn (47) to find a new a,,,. After a few iterations 
(which can be performed on a hand calculator) we 
converge to a solution which provides an amin that 
satisfies the minimum force condition (47) and the 
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Table 3. Analytic prediction for optimal tether mass 

Vertical dumbbell solution (qn = 0) Inclined solution (am,” > 0) 

Body m, (kg) 

Venus 31.0 

T (N) 

5670 

1 (km) 

10.8 

m, (kg) 

26.9 

T(N) 

4500 

1 (km) 

12.6 

amln (degrees) 

31.0 
Earth 38.0 8450 9.0 32.8 6070 10.8 33.7 
MUX 112.0 15500 14.5 67.4 6570 20.6 45.2 
Jupiter IS.0 1010 36. I 28.5 I560 37. I 13.5 
Saturn 42.0 1550 54.4 45.6 1790 57.9 20.0 
Uranus 63.0 1720 72.7 72.9 I840 78.7 22.5 
Neptune 29.0 795 72.7 40.8 1070 75.7 16.1 
Titan 426.0 10100 84.2 298.0 5330 112.0 41 .o 

altitude clearance (52). However, this solution still 
assumes the original design mass mdaign (from 
Table 1) which is no longer correct because the length 
and the strength requirement have changed. We can 
compute a new estimate of the tether mass from 

Y = (~/L&n) [T(a,i”)/TdesignlI?ldcsign (53) 

where “design” refers to the values in Table 1. 
Substituting the new estimate of m, into eqn (47), and 
repeating the above procedure, we converge to new 
values for I and a,,,. If the values change signifi- 
cantly, we can repeat the process with a more refined 
estimate of m, from (53). 

The results of the iterative procedure are presented 
in Table 3 under the heading “inclined solution”, 
where we used the precise value for rPCr in Table 1 
(which was obtained from simulation). For con- 
venient comparison we also present the analytical 
results from the vertical dumbbell solution. The 
predictions of Table 3 from the analytic approach are 
quite interesting. According to the table, the optimal 
mass maneuver for Venus, Earth, Mars and Titan is 
an inclined maneuver, while the vertical dumbbell 
maneuver is expected to be optimal for Jupiter, 
Saturn, Uranus and Neptune. In the cases of Venus, 
Saturn, Earth and Uranus the differences between the 
two candidate maneuvers are probably too small to 
be decisive, and await numerical optimization for the 
final judgement. On the other hand, the case of 
Jupiter clearly indicates a vertical dumbbell maneuver 
while the case of Mars clearly favors the inclined 
maneuver. 
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Fig. 10. Orientation angle (optimum mass trajectory). 
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Fig. 11. End point positions and eccentricity (optimum 
mass trajectory). 

Since the inclined case of Mars provokes some 
interest, we will first consider searching for its mini- 
mum mass by the numerical optimization techniques 
discussed earlier. In these computations we assume 
that Ah, = 14.5 km and e, = 0.9999. The resulting 
optimum tether system has a length of 20.7 km (an 
increase) and a diameter of 1.51 mm. These par- 
ameters represent a tether mass of only 66.4 kg, a 
saving of almost 41% over the tether system in Table 
1 and 74% over propellant mass. We note that the 
close agreement of the optimal result with the ana- 
lytic result presented in Table 3 is rather remarkable. 
In addition, the resulting inclined maneuver (Figs 
10-12) presents some clear advantages over the verti- 
cal dumbbell maneuver. First, the spin rates before 
and after the maneuver are much smaller, eliminating 
the need for large fuel expenditures to generate spin 
rate. The fly-through attitude of about 45” maintains 

0 100 200 300 400 500 
Tie (s) 

Fig. 12. Tether forces on the probe (optimum mass 
trajectory). 
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Values 

AY(km/s) 

Table 4. Aerocapture results for solar system exploration (optimal mass) 

Venus Earth Mars Jupiter Saturn Uranus 

0.35 0.39 0.67 0.27 0.41 0.50 

Neptune Titan 

0.34 1.31 

Propellant mass (kg) 126 142 256 96 149 185 122 
Tether mass (kg) 25.9 30.5 66.4 18.8 44.1 67.2 32.6 

Savings (%) 79% 79% 74% 80% 70% 64% 13% 
Savings (kg) 99.1 112 190 11.2 I05 118 89 

Length (km) 12.4 IO.5 20.7 36.1 54.4 72.7 72.8 
Diameter (mm) I .22 1.43 I.51 0.607 0.757 0.809 0.563 
Probe area (m*) 999 818 605 2370 1910 1810 2670 

Maximum force (N) 4180 
Minimum tl (degrees) 27.1 
Maneuver type? I 

Orbiter h,,,(km) 145 103 
Probe h,,,(km) 135 94 

5820 6420 
28.4 45 

I 

0.46 
V 

I850 
0.27 
V 

95 495 848 1496 1246 540 
80 459 794 1423 II73 456 

1050 1630 
0.18 
V 

899 
0.75 
V 

559 
282 

50% 
271 

112 
1.33 
747 

5030 
41 

tl =inclined, V = vertical. 

significant (drag) tension on the tether throughout the 
maneuver (see Fig. IO) which should prevent it from 
bending despite the fact that the changes in tether 
dimensions create a system that (slightly) violates the 
center matching and aeromatching conditions. It is 
interesting to note that, even though it was never 
introduced as a requirement, spin matching is a 
feature of the optimum trajectory, as indicated by the 
equal tensions before and after fly through. 

Table 4 presents the optimal mass for aerobraking 
tethers for solar system exploration. Again the orbiter 
and probe masses are assumed to be 1000 kg each, the 
tether is constructed of Hercules AS4 graphite and 
the capture orbit relative to the planet is assumed to 
have an eccentricity of 0.9999. phese are conditions 
(4)-(6) of the earlier tether design]. In addition we 
retain the probe areas of Table 1 and set Ah, equal to 
the tether lengths in Table I, which are given (to close 
approximation) by 

Ah, z 1.8H (54) 

The results of Table 4 show surprising agreement 
with the analytical predictions of Table 3. The ana- 
lytical approach provides similar values for mass and 
length to the optimal solution and, furthermore, 
correctly determines whether the optimal maneuver is 
vertical or inclined. 

One word of caution should be mentioned about 
checking the convergence of the numerical algorithm 
for the optimization problem. In all the available 
constrained optimization algorithms in the literature, 
the identification of the optimum solution is very 
important, from the points of view of stopping the 
iterative process and using the solution with confi- 
dence[l3]. Generally speaking, one has two ways of 
checking for, at least, a local minimum. The first is by 
comparison with neighboring extremals (by per- 
turbing the design vector near the candidate opti- 
mum, for example). Any such extremal should give a 
larger value of the final cost, or else, a lower value of 
the cost should be obtained only at the expense of 
violating one (or more) of the constraints. The second 
is by testing the Kuhn-Tucker conditions[l4]. The 
first condition was checked for all the previous cases 

(the Kuhn-Tucker conditions were checked period- 
ically) and were found to be satisfied (within a 
numerical error), providing at least a local minimum. 
The question of whether global minima can be found 
remains open at this stage. However, preliminary 
results presented in [20] provide a strong case that the 
minima given in Table 4 are, in fact, global. 

4. CONCLUSIONS 

The analytic approach presented here is remark- 
ably accurate in predicting which of the two aero- 
braking strategies (vertical or inclined) will provide a 
lower tether mass. It is not yet known if the resulting 
solution is a global minimum. However, both maneu- 
vers provide significant mass savings over propellant, 
suggesting a new option in the development of mis- 

sions to the atmosphere-bearing planets. 
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