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Abstract— To reduce human driving workload, many ad-
vanced driver assist systems (ADAS) have been developed using
a single, often simple, driver model to predict human-driver in-
teraction in the immediate future. However, each person drives
differently, necessitating personalized driver models based on
data obtained from actual driver actions. Yet, traditional
control-theoretic and physics-based models have difficulty in
accurately predicting driver actions. Being inspired from the
recent achievements of machine-learning (ML) methods, this
work compares several ML-based algorithms in predicting the
lateral control actions of human drivers, evaluates each method
using both simulated and real human-driving data sets, and
discusses their performance.

I. INTRODUCTION

To increase road safety advanced driver assist systems
(ADAS) have been investigated to support human drivers.
In order to properly assist drivers, ADAS need to accurately
predict the immediate actions of the drivers, necessitating
a thorough investigation of human driver control models.
However, unlike the modeling of physical systems such
as vehicles, reliable modeling of human driver behavior is
difficult.

The majority of modern control design methodologies are
model-based, i.e., in order to design a control system for a
vehicle, one needs first a good vehicle model that, depending
on the complexity of the task, ranges from a simple one
(e.g., point-mass model) to something more complex (e.g.,
rolling rigid vehicle model) [1]. The identification of the
model parameters requires system-identification techniques
such as Kalman filters. Modeling and system identification
of human driver actions is, on the other hand, lacking similar
well-established identification techniques. Although several
physics-based models, such as the two-point visual driver
control model (TPVDCM) [2]–[4], have been proposed over
the years, it is challenging to accurately predict the human
driver control actions using traditional modeling methods.
Recently, machine-learning (ML) algorithms have succeeded
in many challenging pattern-recognition and inference tasks.
In this paper, we employ ML techniques to compare the
prediction accuracy of the lateral control actions of human
drivers in the immediate future.

Using ML algorithms to identify the intentions and actions
of human drivers has been investigated for decades. In the
late ‘90s, Pentland and Liu employed a hidden Markov model
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(HMM) to predict driver intentions [5]. Since then, HMMs
have been the most popular methods to identify the inten-
tions of human drivers. Recently, researchers have actively
employed several other algorithms. Aoude et al. [6], for
instance, developed a support-vector-machine (SVM)-based
and an HMM-based algorithms to identify the intentions of
human drivers at intersections. In addition, Chandrasiri et al.
[7] classified driving skills using k-nearest neighbors (kNN)
and an SVM. The work in [8], [9] proposed ways to decrease
the computational cost for vehicle motion prediction in traffic
using machine learning techniques. These works are all based
on classification algorithms.

This paper compares the performance of regression al-
gorithms. Learning control inputs from human demonstra-
tions, called learning from demonstration (LfD), has been
actively researched in the robotics community [10]. In the
case of vehicle control, Armand et al. [11] employed a
Gaussian Process (GP) regression method to model human-
driver braking control, while Miyajima et al. [12] employed
Gaussian Mixture Models (GMMs) to model longitudinal
control action of human drivers.

While, to our knowledge, this work is the first attempt to
compare data-driven lateral driving control models, several
researchers conducted comparative studies of LfD perfor-
mance of other tasks. Lefèvre et al. [13], for instance,
compared longitudinal control models and found that sim-
ple parametric models are enough for short-term horizons,
but non-parametric models outperform parametric ones for
tasks with long-term prediction horizons. Also, Wei et al.
[14] compared the performance between receding horizon
controller (RHC)-based model and artificial neural network
(ANN)-based model for the driver behavior prediction tasks
with data obtained from professional drivers.

Similarly to LfD, learned driver models can be employed
to improve the performance of ADAS. Lefèvre et al. [15]
developed an ADAS with a driver model, the parameters
of which was tuned based on the history of the driver’s
control actions. Di Cairano et al. [16] developed an algorithm
that predicts human longitudinal control actions based on a
Markov chain, and then the algorithm computes the optimal
control input from ADAS using a model predictive controller
to achieve a more energy-efficient operation for hybrid
electric vehicles.

II. DRIVER STEERING TORQUE PREDICTION

A. Feature Vector
This work follows the modeling framework of the

TPVDCM [2] (see Fig. 1). The system has five subsystems:



the road geometry, the perception subsystem, the driver, the
steering column, and the vehicle dynamics subsystem. The
perception subsystem converts road curvature ρ, side-slip
angle β, yaw rate r, to two angles called θnear and θfar

that the driver subsystem processes, in order to compute the
steering torque Tdr. Because the measurement of the angles
θnear and θfar is difficult, this work combines the perception
subsystem with the driver subsystem, which we call the
“human driver” subsystem, as shown inside the dashed box
in Fig. 1. The inputs to the human driver subsystem are ρ,
β,r and the steering-wheel angle δs. The output is Tdr.

To incorporate the sequential changes of the inputs for the
last `∆t seconds, where ` ∈ N+ and ∆t ∈ R is the sampling
interval, we define the following feature vector z(tk) ∈ Rd:

z(tk) = [ρ(tk), β(tk), r(tk), δs(tk), . . .

Tdr(tk−1), ρ(tk−1), β(tk−1), . . . , δs(tk−`)]
>, (1)

where k ∈ N+ is the index for the time steps. Note that we
assume that the input variables at the current time step are
available, eliminating the modeling error of the other parts of
the system and enabling direct comparison of the estimation
performance of Tdr. The problem we wish to solve is to
estimate the nonlinear function f such that

Tdr(tk) = f(z(tk)). (2)
We set the time discretization as ∆t = 1/` sec. Thus, the
vector z(tk) includes the input variables over the previous
one second and the steering torque output at the previous
∆t, 2∆t, . . . , `∆t(= 1) seconds.

Steering ColumnVehicle Dynamics

Road Geometry DriverPerception

Human Driver

Fig. 1: The framework of the two-point visual control model.

B. Piecewise Linear Models
As a benchmark for evaluating the performance of ML

methods, we use two simple models, which disregard much
of the information in z(tk) and are expected to show a sound
prediction performance if the steering command is smooth
and ∆t is sufficiently small. Otherwise, we cannot expect a
good performance from this model, and the ML methods are
expected to outperform these two naive methods.

1) Piecewise Constant Model (PCM): PCM assumes that
the driver torque at the current time step is the same as the
driver’s torque at the previous time step, that is,

TPCM
dr (tk) = Tdr(tk−1). (3)

2) Piecewise Linear Model (PLM): PLM employs the
time derivative of Tdr and predicts the driver’s torque at the
current time step as follows:

TPLM
dr (tk) = Tdr(tk−1) +

dTdr

dt

∣∣∣∣
tk−1

∆t, (4)

where we approximate the time derivative of Tdr at t = tk−1

as dTdr

dt

∣∣
tk−1
≈ (Tdr(tk−1)− Tdr(tk−2))/∆t.

C. Gaussian Process Regression (GP)
This subsection briefly explains the GP. For a more de-

tailed discussion, we refer the reader to [17]. A GP is a non-

parametric kernel-based method represented as a collection
of random variables, any finite number of which have a joint
Gaussian distribution.

The training of a GP assumes that the observation has an
independent, identically distributed (i.i.d.) Gaussian noise ε

Tdr = f(z) + ε, ε ∼ N (0, σ2
n), (5)

and assumes that ND data points D = {z(tκ), Tdr(tκ)}ND
κ=1

have been observed. For simplicity, in this section we omit
the argument tκ, and we let z be z(tκ) and z′ be z(tκ′),
where κ, κ′ ∈ {1, . . . , ND}. Note that κ is the index for the
training data set.

A GP is specified by its mean and covariance: f(z) ∼
GP (µ(z), k(z, z′)). Here, for simplicity, we describe the
training and prediction of a zero-mean GP that is,
GP(0, k(z, z′)). For the kernel, we employ the exponential
kernel covariance function, defined as

k(z, z′|σ`, σf ) = σ2
f exp

(
−r(z, z

′)

σ`

)
, (6)

where σ` is the characteristic length scale, σf is the signal
standard deviation, and r(z, z′) is the Euclidean distance
between z and z′. The prior covariance matrix of the obser-
vations with noise is KTdr

(Z,Z) = K(Z,Z) + σ2
nI, where

Z = [z(t1), . . . , z(tND
)], and [K(Z,Z)]κ,κ′ = k(z, z′). The

hyper-parameters θ = (σ`, σf , σn) ∈ Θ, are tuned during
the process of training as θ∗ = argmax

θ∈Θ
Pr(Y |Z, θ), where

Pr(Y |Z, θ) = N (0,KTdr
(Z,Z)). In order to compute θ∗,

we take the logarithm of the conditional distribution, and
this function is maximized with respect to θ.

When predicting Tdr, because the joint distribution of the
observed target values and function values at test locations
under the above prior is[

Tdr

T test
dr

]
∼ N

(
0,

[
KTdr

(Z,Z) K(Z,Ztest)
K(Ztest, Z) K(Ztest, Ztest)

])
,

(7)
we obtain the following conditional probability distribution
of the function values at the test locations

Pr(T test
dr |Ztest,D) ∼ N (µT test

dr
,CovT test

dr
), (8)

where
µT test

dr
= K(Ztest, Z)K−1

Tdr
(Z,Z)Y, (9)

CovT test
dr

= K(Ztest, Ztest)−
K(Ztest, Z)KTdr

(Z,Z)−1K(Z,Ztest), (10)
and Y = [Tdr(t1), . . . , Tdr(tND

)]>. Thus, given a new
feature vector z(tk), the predicted driver torque by GP is

TGP
dr (tk) = K(z(tk), Z)KTdr

(Z,Z)−1Y. (11)

D. Gaussian Mixture Regression (GMR)

GMR is a multivariate nonlinear function regression
method based on GMMs. To simplify the notation, we
again omit tk in this subsection. We assume that the joint
distribution Pr(z, Tdr) can be represented in the form of a
GMM with NG Gaussian functions:

Pr(z, Tdr) =

NG∑
i=1

πiN (z, Tdr;µi,Σi), (12)

where πi is the initial probability for (z, Tdr) to lie in the
ith Gaussian. In addition, µi and Σi are the mean and the



covariance matrix of the ith Gaussian, defined as

µi =

[
µzi
µTdr
i

]
, Σi =

[
Σzzi ΣzTdr

i

ΣTdrz
i ΣTdrTdr

i

]
. (13)

The number of Gaussians NG be tuned based on the Akaike
and Bayesian information criteria (AIC [18] and BIC [19]).
We can then compute the conditional probability Pr(Tdr|z, i)
as

Pr(Tdr|z, i) = µTdr
i + ΣTdrz

i (Σzzi )−1(z − µzzi ). (14)
Thus, the estimate of the driver’s torque Tdr =∑NG

i=1 hi(z)Pr(Tdr|z, i) through a GMR is

TGMR
dr =

NG∑
i=1

hi(z)
[
µTdr
i + ΣTdrz

i (Σzzi )−1(z − µzzi )
]
, (15)

where hi(z) ∈ [0, 1] is the probability of an observed input
to belong to the ith Gaussian hi(z) = N (z;µzi ,Σ

zz
i ) and

normalized such that
∑NG

i=1 hi(z) = 1.

E. Hidden Markov Model Gaussian Mixture Regression
(HMM-GMR)

The HMM-GMR [20] combines a GMR with an HMM.
The combination of these two methods enables the algorithm
to consider both the spatial and sequential information of
z(tk) by incorporating transitions between Gaussians from
the recursive computation of the weights in Eq. (15) as

hi(z(tk)) =

(∑NG

j=1 hj(z(tk−1))aji

)
ĥi(z(tk))∑NG

l=1

[(∑NG

j=1 hj(z(tk−1))ajl

)
ĥl(z(tk))

] ,
(16)

where ĥi(z(tk)) = N (z(tk);µzi ,Σ
z
i ), and aji is the transi-

tion probability from the jth Gaussian to the ith Gaussian. To
train the transition probability aji, we employ an expectation
maximization algorithm. The resulting prediction of HMM-
GMR is

T HMM-GMR
dr (tk) =

NG∑
i=1

hi(z)
[
µTdr
i + ΣTdrz

i (Σzzi )−1(z − µzzi )
]
,

(17)
where z, as before, denotes z(tk).

F. Artificial Neural Network (ANN)

ANNs are nonlinear function regression methods. While
currently many deep networks are actively proposed, this
work employs a simple ANN that has one hidden layer with
Nh nodes to prevent overfitting. At each hidden unit i ∈
{1, . . . , Nh}, the input vector z(tk) is multiplied by a weight
vector W i

h ∈ Rd such that hi = W i>
h z(tk) + bih, where

bih ∈ R is a bias-term. The signal hi is then fed into a
nonlinear transfer function φ : R → [−1, 1]. In this work,
we employ a hyperbolic tangent function: φ(hi) = 2/(1 +
exp(−2hi)) − 1. The output of the hidden nodes φ(h) =
[φ(h1), . . . , φ(hNh)]> ∈ RNh , is fed into the output layer,
and its output

TANN
dr (tk) = W>o φ(h) + bo, (18)

where Wo ∈ RNh and bo ∈ R, is the predicted Tdr by this
ANN. The training of the ANN deals with finding the best
parameters Wh,Wo, bh, and bo, such that the output in Eq.
(18) best fits the training and validation data set.

Fig. 2: The graphical model of driver behavior prediction.

III. EXPERIMENTS

In this section we describe the experiments conducted to
compare the performance of these algorithms. In the first
experiment (Exp I), we employ a driver control model to
generate a synthetic human-driver control data set, apply the
algorithms in Section II, and evaluate their performance. The
purpose of Exp I was to evaluate the performance without
having the effect of inconsistency inherent in human driving
skills, which always exists with real data, especially from
non-professional human drivers. Unlike mathematical human
driver control models, human drivers do not always respond
in the same manner to the same stimuli. By employing a
human driver control model, we can eliminate this uncer-
tainty of human driving skills and isolate and evaluate the
regression performance of each algorithm. In the second
experiment (Exp II), we employ a real human-driving data
set that is collected using a driving simulator. By conducting
this experiment, we compare the performance when driving-
behavior variation exists in the data set so that we can
evaluate the robustness to driving-behavior variations.

A. Performance Measure

As the performance measure, we employ the root mean
squared error (RMSE)

RMSE(T ···dr ) =

√√√√ 1

NDT

NDT∑
k=1

(Tdr(tk)− T ···dr (tk))2, (19)

where Tdr is the true value of the driver torque, T ···dr is the
predicted value by each algorithm in Section II, and NDT is
the number of test data points.

We compare the performance only over short-term pre-
diction horizons. Long-term predictions employ modeled
dynamics and perform an iterative computation of the future
state and the driver’s steering torque as depicted in the graph-
ical model in Fig. 2. The function f , which the algorithms
try to identify, corresponds to the perpendicular arrows from
z to Tdr. The horizontal arrows between z correspond to
the vehicle dynamics, steering column, and road geometry
models. Also, the slant arrows from Tdr to z shows that Tdr

at the previous time step is incorporated into an entry of z
at the next time step (see Eq. (1)). To predict the future
driving torque at tk+1, we need to first estimate Tdr(tk)
from z(tk) using the methods outlined in Section II. We
then propagate the information in z(tk) based on a vehicle
dynamics model and road geometry, and obtain the estimated
value of z(tk+1). Having obtained the estimated value of
z(tk+1), we can estimate Tdr(tk+1).



(a) (b)
Fig. 3: (a) The road geometry. (b) A screenshot from CarSim.

B. Synthetic Data

In Exp I, we employ data generated using CarSim R© with
a hybrid sensorimotor TPVDCM [4]. The model we employ
accounts for the anticipatory control of human drivers with a
model predictive controller. We try to reproduce the actions
of this “human control” using the methods in Section II.

1) Data Set: The road circuit we use is one of the pre-
installed CarSim R© road circuits (see Fig. 3 (a)). The length
of one lap is around 2 km. Each data set consists of one
clockwise lap and one counter-clockwise lap. The vehicle
speed is fixed at 50 km/h, which is high for the radii of the
corners of the road circuit, so that we can investigate both
the comfort and non-comfort zones of the driver.

2) Data Preprocessing: Before applying the regression
algorithms in Section II, we normalize all inputs to achieve
mean zero and standard deviation one. Then, to reduce noise,
we apply a first-order lowpass filter with a cutting frequency
at ωs = 2.5 rad/s and employ a local weighted linear least
squares to a second degree polynomial. In addition, we
resample the data set with ∆t = 0.2 sec, setting ` = 5
and d = 29 in Eq. (1).

To evaluate the performance of the methods, we divided
the data set into four sub-data sets A,B,C, and D, and
performed a four-fold cross validation. For instance, in sub-
data set A, we employ the first 3/4 of data as the training
data set and the last quarter as the test data set.

3) Results: Figure 4 shows the RMSE of each method. In
Exp I, we used the GMR and HMM-GMR with NG = 21
and the ANN with Nh = 2. The PWC exhibits the largest
RMSE in all the data sets, while PWL demonstrates slightly
smaller values. The RMSE of the GP is almost 1/3 of that of
the PWC and PWL. The performance of GMR is competitive
with that of the GP. Since it takes into account both the
spatial and sequential information of z, the HMM-GMR, not
surprisingly, outperforms the GMR. Finally, the performance
of the ANN is comparable with that of the HMM-GMR.

C. Human Driving Data

In Exp II, in order to verify the performance of each
method against real human-driving data, we employed actual
human-driver data set collected using a driving simulator and
compared the performance of all the methods. The human
driver subject has eight-year driving experience. The data
was pre-processed in the same way as for the simulated
human driving data set described in Section III-B.2.

1) Georgia Tech Driving Simulator (GTDS): We collected
data using the simulator shown in Fig. 5. With the GTDS we

RMSE

A B C D Average
0

0.05

0.1

0.15

0.2 PWC
PWL
GP
GMR
HMM-GMR
ANN

Fig. 4: The RMSE of each method for Exp I.

duplicated exactly the same road circuit employed for Exp
I and eliminated the difference between simulation and ex-
periment road geometry, thus enabling direct comparison of
prediction performance against synthetic and actual driving
data.

(a)

Screen (Unity3D)

Inertial Information

Driver

Steering Column
Vehicle Dynamics
            (CarSim®)

(b)
Fig. 5: (a) GTDS. (b) Structure of the simulator.

Figure 5(b) illustrates the interaction between a human
driver and the components of the simulator. Each component
is connected via the Robot Operating System (ROS) [21],
while CarSim R© computes the vehicle dynamics. The high-
fidelity vehicle model of CarSim R© enables the reproduction
of realistic vehicle behaviors in a simulation environment.
In Exp II, similarly to Exp I, the vehicle speed is fixed at
50 km/h. Thus, the control output from the human driver
is only Tdr, which is then fed into the steering wheel.
The output of the steering wheel is δs. The simulator
employs a high-end gaming steering wheel with force-
feedback functionality, and the driver can feel the alignment
torque from the steering wheel. This force-feedback makes
the simulation environment more realistic. To visualize the
information computed by CarSim R©, we use Unity3D, a
game-development platform. The simulated view from the
driver’s seat was projected on a 8 ft x 6 ft screen. Based on
the view of the screen, the human driver steers the vehicle
(see Fig. 5(a)). Figure 6 depicts the obtained driving torque
data.

2) Results: Figure 7 depicts the RMSE for each method.
We employed the GMR and HMM-GMR with NG = 23
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Fig. 6: Driving torque.

in this experiment and the ANN with Nh = 2. The RMSE
of PWC and PWL show almost the same performance as in
Exp I. In contrast, GP, which exhibited superior performance
than PWC and PWL in Exp I, shows almost equivalent
performance to PWC and PWL in this experiment. In ad-
dition, the performance of GMR is worse than that of PWC
and PWL. The HMM-GMR error is even larger than the
GMR error with sub-data set B. These results are contrary
to our expectation, because these methods, i.e, GP, GMR, and
HMM-GMR, incorporate the information of state variables
(i.e.,β, r, δs, and ρ), they were expected to outperform both
PWC and PWL. By contrast, and similarly to the case in Exp
I, the ANN exhibits a superior performance than the other
methods. In order to investigate this counter-intuitive result,
we conducted another experiment (Exp III).

Fig. 7: The RMSE of each method for Exp II.

3) Performance Evaluation using a Data Generated with a
TPVDCM: In order to investigate the inconsistency between
the results in synthetic data (Exp I) and real-driving data
(Exp II) of GMR and HMM-GMR, we conducted Exp III,
in which we evaluated the performance based on the output
of a sensorimotor TPVDCM, the parameters of which were
identified based on the real human driving data employed
in Exp II. We smoothed the data to eliminate nonlinearities
and applied a dual EKF [22] to identify the parameters of
the sensorimotor TPVDCM, thus enabling the evaluation of
the prediction performance against the actual driving data
without driving skill inconsistency. Figure 8 depicts the
steering torque data used in Exp III.

Figure 9 depicts the regression performance of all algo-
rithms. We observe a significant performance improvement
of GMR and HMM-GMR. In addition, both GMR and

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Fig. 8: The output of trained driver control model.

HMM-GMR exhibited superior performance than the ANN.
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Fig. 9: The RMSE of each method for Exp III.

IV. DISCUSSION

This section discusses the results of Section III. The
PWC and PWL are the simplest models and do not use the
input variables, i.e, β, r, δs, and ρ, but still exhibited sound
performance in Exp I and II. We would like to emphasize,
however, that, since they ignore the information in z other
than Tdr, they are expected to show inferior performance to
other methods in long-term prediction tasks.

Among the tested ML algorithms, GP showed the largest
RMSE. In addition, the large computational cost due to the
inverse operation in Eq. (11), the need to choose the kernel
function to employ, and the number of hyper-parameters
to tune, make GP a less than ideal choice for predicting
the driver’s torque. By contrast, the HMM-GMR exhibited
almost an equivalent performance to the ANN in Exp I. This
result is similar to the case of longitudinal control of human
drivers [13]. Also, the HMM-GMR and ANN are competitive
in terms of the implementation-complexity. In order to train
GMR and HMM-GMR, we need to specify the number of
Gaussians, while, in order to train an ANN, we need to
choose the number of hidden layers and nodes. Thus, from
the performance and implementation complexity perspective,
with the data set from Exp I, we regard the HMM-GMR and
ANN as competitive.

In Exp II, however, while HMM-GMR exhibited worse
performance than PWC and PWL, especially in the sub-
data set B, the ANN always showed superior performance
than those. We hypothesize that this difference is due to
the robustness of each method to the control variations



of human drivers. Since human-driver control models are
mathematical abstractions, their response is always the same
if the input is the same. By contrast, human driver behavior
does not necessarily follow this abstraction, especially when
the situation is outside the comfort zone of the driver. This
hypothesis is supported by experiment, Exp III, in which
a sensorimotor TPVDCM was identified using the given
data and was used to regenerate “real” human driving data,
which has no control variations. In Exp III, we observed that
GMR and HMM-GMR exhibited a significant performance
improvement, which implies that GMR and HMM-GMR can
exhibit a good performance if the human subject is a skilled
driver who exhibits little control variations. The result also
implies that, since ANN showed consistent performance from
Exp I to III, in addition to skilled human-driver behavior [14],
ANN can accurately predict novice human-driver behavior.

We conjecture that this stable performance of the ANN is
due to its simple structure, which may prevent overfitting to
the training data set. In terms of performance stability, PWC,
PWL, GP, and ANN exhibited constant performance. ANN
exhibited less RMSE than the other methods because PWC
and PWL neglect many components of the feature vector,
and the i.i.d. Gaussian assumption of GP is strict for our
data set. In terms of RMSE values, GMR, HMM-GMR, were
outperformed by ANN in Exp II. One possible reason for this
is that the EM algorithm used to train GMR started from a
bad initial point and got trapped at a bad local optimum.

From the experiments in Section III, we may conclude
that an ANN with one hidden layer and two nodes is a
good choice to model the lateral control action of human
drivers. It should be noted, however, that we do not claim
that human driver control actions can be modeled with a
simple ANN. Driving consists of multiple difficult tasks such
as scene understanding and decision making. In this work,
we focused our attention only on the specific task of path
following. What we claim is that, for path following tasks,
a simple ANN exhibits an acceptable performance.

V. SUMMARY

This paper addressed the problem of predicting lateral
control actions of human drivers using ML methods. While
we briefly proposed a method to perform long-term predic-
tions, we compared the short-term prediction performance
using two experiments. The first experiment employed a
synthetic data set, while the second experiment used a real
human-driving data set collected using a high fidelity driving
simulator. From these experiments, we observed that the
ANN exhibits the smallest RMSE and the highest robustness
to the driving control variations. Future work will investigate
personalized ADAS for vehicle lateral control by taking
advantage of the predictive power of these driver control
models.
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