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Abstract— In the research of vehicle autonomy, including
the development of driver-assist systems (DAS), one important
design objective is the vehicle’s lateral stability during lane-
tracking. This paper adopts the well-known two-point visual
model to characterize the steering behavior of the driver, and
investigates the optimal driver model parameters that minimize
the H2-norm of the closed-loop system. A previous study has
shown that a controller based on linear multi-variable output
regulator theory (ORT) has good performance and robustness
characteristics during typical lane-tracking maneuvers. This
paper provides limits of performance by optimizing the driver
model parameters (i.e., estimating the “ideal” driver). Numer-
ical simulations illustrate the results.

I. INTRODUCTION

Driver modeling is an important part of modern, semi-
autonomous human-vehicle-road systems [1]–[3]. A robust
controller for vehicle handling stability should take into
account the diverse driver habits and handling behavior of
different drivers, and persistently provide good “intuitive”
performance. In order to characterize driver behavior, several
researchers have developed various driver models based on
different methodologies [4]–[10]. All these models are able
to achieve accurate lane-tracking.

This paper adopts the two-point visual driver model from
[11] since it is simple, easy to use, and its parameters
correspond to measurable physical variables. The two-point
driver model is derived from the concept of a two-level
steering mechanism observed in a series of psychological
experiments using human drivers [12]–[14]. Specifically, in
[12] Donges divided the driver’s steering task into a guidance
level and a stabilization level, and thereby built a two-level
steering model. The guidance level interprets the driver’s
perception and response with respect to the oncoming road,
and the stabilization level interprets the driver’s compen-
satory behavior with respect to the deviation from the path.
This idea has been widely accepted and has been further
developed by subsequent researchers, such as [11], [13]–[16].

The current paper builds on the work of [17], but focuses
on optimizing the parameters of the two-point visual driver
model having in mind two objectives: (a) the optimal driver
model that achieves the best lane-tracking performance,
which can then be used for benchmarking; and (b) the
optimal reference driver model for developing a driver-in-
loop controller (DiLC). Since previous work [17] has shown
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that a DiLC design based on ORT (DiLC-ORT) performs
better than a naı̈ve “blending controller” in terms of the
vehicle’s lateral deviation from road centerline, the current
paper only concentrates on improving the performance of the
DiLC-ORT controller.

Section II of this paper introduces the mathematical mod-
eling of each component in the human-vehicle-road system;
Section III details the optimization methods used to find the
optimal driver parameters; Section IV analyzes the results
of the optimization and the numerical simulations; Finally,
Section V summarizes the results of this study.

II. SYSTEM MODELING

The proposed human-vehicle-road system consists of four
subsystems, as shown in Figure 1: the driver model, the
steering column model, the vehicle model and the road and
perception model.
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Fig. 1. Human-vehicle-road closed-loop system.

We use the same driver model, vehicle model, steering
column model and the road and perception model as de-
scribed in [17]. The structure of the driver model is shown
in the red rectangular box in Figure 1. The transfer functions
Ga(s) and Gc(s) account for the anticipatory control and the
compensatory control actions of the driver, respectively. The
system Gnm(s) approximately describes the neuromuscular
response of the driver’s arms. The “Delay” block indicates
the driver’s processing delay in the brain, and Gk1(s) and
Gk2(s) account for the driver’s kinesthetic perception of the
steering system. The variables Tant and Tcom denote the
driver’s steering torques corresponding to the anticipatory
control and the compensatory control paths, respectively; δs
denotes the steering wheel angle; and the inputs θnear and
θfar denote the near field and the far field visual angles,
respectively (see Figure 2). Finally, Tdr denotes the driver’s
total steering torque delivered to the steering wheel. Since
the removal of the kinesthetic perception feedback is not
detrimental to the model accuracy and can be neglected [17],



this paper keeps this simplification in order to reduce the
overall system complexity during the optimization process.
The transfer functions of the blocks in Figure 1 are given
below

Ga(s) = Ka, Gc(s) = Kc
TLs+ 1

TIs+ 1
,

GL(s) = e−tps, Gnm(s) =
1

TNs+ 1
,

where Ka and Kc are static gains for the anticipatory and
compensatory control subsystems, respectively; TL and TI
(TL > TI) are lead time and lag time constants, respectively;
tp is the delay for the driver to process sensory signals
and TN is the time constant of driver’s arm neuromuscular
system. Figure 2 illustrates the geometric relations of the
driver’s visual perception, the vehicle and the road [3], [18].
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Fig. 2. Road geometries, vehicle states and driver’s visual perception.

It is assumed that the vehicle is cornering with a certain
lateral deviation from the road centerline. Let ψ denote the
vehicle’s yaw angle, let ψt denote the angle between the
tangent to the road centerline and the XI axis, let ∆y denote
the length of the line segment AB, and let Rref denote the
radius of the road’s inner boundary. The near and far distance
visual perception angles can be approximated as [3], [11],
[12], [17]–[19]

θnear ≈
∆y

`s
, θfar ≈

Ls

Rref
+ ∆ψ ≈ Lsρref + ∆ψ, (1)

where ρref = 1/Rref is the road curvature, and ∆ψ = ψt −
ψ is the angle difference between the tangent of the road
centerline and the vehicle’s heading direction.

The model of the overall vehicle-driver-perception system
is summarized by

ẋ = Ax+Bu, (2)
y = Cx, (3)

where x = (ωs, δs, β, r, φ,∆y, xd1, xd2, Tdr)
T, u = ρref and

y = ∆y.

In case Tcon 6= 0 there is an additional input to the
system, and one can redefine the augmented input as u =
(Tcon, ρref)

T. The values of the parameters in (2)-(3) used in
our problem are given in Table I.

TABLE I
SYSTEM PARAMETERS.

m 1653 kg Vx 15 m/sec
`f 1.402 m `r 1.646 m
Ls 15 m Iz 2765 kgm2

Js 0.11 kgm2 Cf 42000 N/rad
Cr 81000 N/rad bs 0.57 Nm/rad/sec
Kaln 359.1 Nm/rad gs 16 –

III. PARAMETER OPTIMIZATION
This section formulates the optimization problems for two

different design objectives: (a) the optimal driver parameters
that achieve the smallest lane tracking error; and (b) the
optimal driver parameters based on which a controller can be
designed such that the vehicle’s tracking error is the smallest.

For notational simplicity, let p1 = Ka, p2 = Kc, p3 = TL,
p4 = TI, p5 = TN, p6 = tp and let p7 = `s. Considering the
physical limits of the human driver, each model parameter
lies within some given compact interval, pi ∈ [pi, pi], i =
1, 2, . . . , 7. Let p = (p1, p2, . . . , p7) ∈ R7, and let P =
[p1, p1]× [p2, p2]×· · ·× [p7, p7] ⊂ R7. The partial derivative
of a matrix-valued function Z : Rm → Rn×n with respect
to the vector x ∈ Rm takes the following form

∂Z(x)

∂x
,

[
∂Z(x)

∂x1
,
∂Z(x)

∂x2
, . . . ,

∂Z(x)

∂xm−1
,
∂Z(x)

∂xm

]
,

where xk denotes the kth element of the vector x, where[
∂Z(x)

∂xk

]
ij

=
∂Zij(x)

∂xk

and where Zij(x) is the (i, j) entry of Z(x), with k =
1, 2, . . . ,m and i, j = 1, 2, . . . , n.

A. Optimal Driver Parameters
First, note that system (2)-(3) is strictly proper. We need

to keep the state matrix A(p) in (2) Hurwitz by choosing
an appropriate driver parameter vector p ∈ P . Furthermore,
the H2-norm of the system from u = ρref to y = ∆y (when
Tcon = 0) can be computed from [20]

‖G(s, p)‖22 = tr[CWc(p)C
T], (4)

where G(s, p) = C(sI−A(p))−1B(p), with A(p), B(p), C
as in (2)-(3). Wc(p) satisfies the Lyapunov equation

Wc(p)A
T(p) +A(p)Wc(p) +B(p)BT(p) = 0. (5)

Assuming the pair (A(p), B(p)) is controllable for all p ∈ P ,
it follows that Wc(p) > 0 for all p ∈ P . We want to solve
the following optimization problem

min
p∈P

tr[CWc(p)C
T], (6a)

s.t. Wc(p)A
T(p) +A(p)Wc(p) +B(p)BT(p) = 0, (6b)

Wc(p) > 0. (6c)



We use a gradient descent algorithm to find the minimum
value of the constrained nonlinear problem (6). To this end,
let J(p) = tr[CWc(p)C

T]. The partial derivative of J(p)
with respect to the vector p is computed as follows

∂J(p)

∂p
= C

∂Wc(p)

∂p
(Im ⊗ CT), (7)

where Wc(p) satisfies the equation in (5), and m is the length
of the vector p. Note that the solution of (5) can be written
as [20]

Wc(p) = −vec1
−1
(
[A(p)⊕A(p)]−1vec1[B(p)BT(p)]

)
, (8)

where vec1 : Rn×m → Rnm is the vectorization operator.
The matrix A(p)⊕A(p) is always invertible for all p ∈ P if
the matrix A(p) is Hurwitz. By taking the partial derivative
of (8) with respect to the parameter vector p, one obtains

∂Wc(p)

∂p
= vec1

−1

(
vec2

(
M
∂[A(p)⊕A(p)]

∂p

(
Im⊗

[A(p)⊕A(p)]−1

)(
Im ⊗ vec1[B(p)BT(p)]

)
−Mvec−1

2

vec1

(
∂B(p)

∂p

(
Im ⊗BT(p)

)
+B(p)

∂BT(p)

∂p

)))
, (9)

where M = [A(p)⊕A(p)]−1, and vec2 : Rn2×m → Rn2m is
the vectorization operator. The partial derivative of A(p) ⊕
A(p) with respect to p in (9) is given by

∂[A(p)⊕A(p)]

∂p
=
∂[A(p)⊗ In]

∂p
+
∂[In ⊗A(p)]

∂p

=
∂A(p)

∂p
⊗ In +

(
In ⊗

∂A(p)

∂p

)
Ψm,n, (10)

where Ψm,n has the form

Ψm,n =


Im ⊗ e1 ⊗ In
Im ⊗ e2 ⊗ In

...
Im ⊗ en ⊗ In

 ,
where ek denotes the n-dimensional unit row vector, having
only the kth element equal to 1 and other elements are 0.

B. Reference Driver Parameters for Controller Design

This section focuses on determining the best reference
driver parameter vector pr and the corresponding best DiLC-
ORT controller, simultaneously.

1) Extended Closed-Loop System: Assume a fixed set of
reference driver parameter vector pr ∈ P . A DiLC-ORT
controller can therefore be designed based on pr following
the approach of [21], with the aim of eliminating the tracking
error at the near field visual point, namely,

lim
t→∞

∆y(t) = 0. (11)

The control input Tcon of the DiLC-ORT controller is a linear
combination of a feedback term and a feedforward term,

Tcon = F1(pr)x+ F2(pr)ρref . (12)

Letting Ba(pr) = [Ba1, Ba2(pr)], the matrix F1(pr) is cho-
sen such that the matrix Aa(pr)+Ba1F1(pr) is Hurwitz. Then
F2(pr) is determined by solving the following equations, for

some matrices Γ(pr) and Π(pr)

F2(pr) = Γ(pr)− F1(pr)Π(pr), (13a)
Aa(pr)Π(pr) +Ba1Γ(pr) +Ba2(pr) = 0, (13b)
CaΠ(pr) = 0. (13c)

Recall that Aa(pr) + Ba1F1(pr) Hurwitz implies that there
exists a positive definite matrix P (pr) > 0, such that

[Aa(pr)+Ba1F1(pr)]P (pr)+P (pr)[Aa(pr)+Ba1F1(pr)]T < 0.
(14)

Let S(pr) = F1(pr)P (pr). We then rewrite (14) as follows

Aa(pr)P (pr) + P (pr)AT
a(pr) +Ba1S(pr) + ST(pr)BT

a1 < 0.

The DiLC-ORT controller designed from (13) can then
be designed by solving the following set of linear matrix
inequalities (LMIs)

Aa(pr)P (pr) +Ba1S(pr) + P (pr)AT
a(pr) + ST(pr)BT

a1 < 0,

(15a)[
−I Aa(pr)Π(pr) +Ba1Γ(pr) +Ba2(pr)
∗ −ε

]
< 0, (15b)[

−I CaΠ(pr)
∗ −ε

]
< 0, (15c)

P (pr) > 0, (15d)

where ε > 0 is a small infinitesimal number. After solving
(15), one computes F1(pr) from

F1(pr) = S(pr)P−1(pr),

and then computes F2(pr) from (13a). The extended system
with the DiLC-ORT controller and a general driver in the
loop, can then be represented as follows,

ẋ = Ā(p, pr)x+ B̄(p, pr)u, (16)
y = C̄(p, pr)x, (17)

where the state x ∈ R9, the input u ∈ R and the output
y ∈ R are the same as in the system (2)-(3). The system
matrices in (16)-(17) are given as

Ā(p, pr) = Aa(p) +Ba1F1(pr), (18a)
B̄(p, pr) = Ba2(p) +Ba1F2(pr), (18b)
C̄(p, pr) = Ca. (18c)

2) Optimal Reference Driver Parameters: Following the
same method as in Section III.A, the H2-norm from u to y for
the extended system (16)-(17) can be determined. Since the
DiLC-ORT controller is designed based on the parameters
of the reference driver pr, the performance of the controller
will change when a different driver is operating the vehicle
(i.e., p 6= pr). Thus, there may exist an optimal reference
driver pr∗ ∈ P based on which the DiLC-ORT controller
can achieve better overall performance across all p ∈ P .
To this end, let us define an alternative parameter vector
ν(p) = [ν1(p), ν2(p), . . . , ν9(p)]T ∈ R9 via ν1 = 1/p4, ν2 =
1/p6, ν3 = 1/p5, ν4 = p1/p5, ν5 = p2p3/(p4p6p7), ν6 =
p2/(p4p7), ν7 = p7, ν8 = p2p3/(p7p

2
4), ν9 = p1/p6. Note

that the new parameters ν1(p), ν2(p), . . . , ν9(p) enter the



system matrices (2)-(3) linearly. Note also that ν8 = ν1ν5/ν2
and ν9 = ν2ν4/ν3.

Let ν17 = [ν1, ν2, . . . , ν7]T ∈ R7 be the new independent
parameter vector, and let pi ∈ P for i = 1, 2, . . . , N
be given, where N is the number of the driver parameter
models of interest. Denote by νi17 = ν17(pi) for i =
1, 2, . . . , N the values of the new independent parameters
evaluated at the driver parameters of interest, and let N =
co{ν117, ν217, . . . , νN17}. Define the set Pc = {p ∈ P :
ν17(p) ∈ N} and let ν8, ν9 and ν8, ν9 denote the lower and
upper bounds of ν8, ν9 over Pc, respectively. Finally, let z1 =
[ν17, ν8, ν9]T, z2 = [ν17, ν8, ν9]T, z3 = [ν17, ν8, ν9]T, z4 =
[ν17, ν8, ν9]T. Note that z1, z2, z3, z4 depend on p since ν17
depends on p. Furthermore, note that, by construction, ν17 ∈
N whenever p ∈ Pc.

Let now Gi(s, pr) = C̄(pi, pr)(sI−Ā(pi, pr))−1 B̄(pi, pr)
be the transfer function of the extended system (16)-(17)
evaluated at the corresponding pi with pr considered as
a parameter to be determined. Furthermore, let θk ∈ R9

for k = 1, 2, . . . , 4N be defined by θ(j−1)N+i = zj(p
i)

where j = 1, 2, 3, 4 and i = 1, 2, . . . , N . We formulate the
following optimization problem

min
pr∈P

N∑
i=1

wi‖Gi(s, pr)‖22, (19a)

ĀT(θk, pr)Q(pr) +Q(pr)Ā(θk, pr) < 0, Q(pr) > 0,
(19b)

N∑
i=1

wi = 1, wi ≥ 0, (19c)

where k = 1, 2, . . . , 4N , and wi are appropriate weights. We
have the following theorem.

Theorem 3.1: The ORT controller resulting from (19)
ensures the stability of the closed-loop system (16)-(17) for
all p ∈ Pc.

Proof: From (19b) it follows that the closed-loop
system is stable for all θ ∈ Θ , co{θ1, θ2, . . . , θk} and
notice that Θ = N × [ν8, ν8] × [ν9, ν9]. The result follows
from the fact that p ∈ Pc implies that ν17(p) ∈ N and the
fact that ν8(p) ∈ [ν8, ν8] and ν9(p) ∈ [ν9, ν9] for all p ∈ Pc.

In particular, assuming pr is a feasible solution that
satisfies the inequalities (19b) it follows that

ĀT(ηi(p), p
r)Q(pr) +Q(pr)Ā(ηi(p), p

r) < 0, (20a)
Q(pr) > 0, (20b)

for all i = 1, 2, . . . , N , where ηi(p) , [νi17, ν8(p), ν9(p)] and
p ∈ Pc. Furthermore, note that ηi(p) ∈ Si, where

Si ,
{ 4∑

j=1

λjθ
(j−1)N+i

∣∣∣∣ λj ≥ 0,

4∑
j=1

λj = 1

}
, i = 1, . . . , N.

Since ν = [ν17, ν8, ν9] enters the matrices A(ν), B(ν)
(and hence also the matrices Ā(ν, pr) and B̄(ν, pr)) linearly,
it suffices to show that, given pr ∈ P , the following
inequalities hold for all ν17 ∈ N and for all ν8 ∈ [ν8, ν8]
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Fig. 3. Illustration of the polyhedron geometry for the case of i = 1, 2, 3, 4,
j = 1, 2, 3, 4.

and ν9(p) ∈ [ν9, ν9]

ĀT(ν, pr)Q(pr) +Q(pr)Ā(ν, pr) < 0, (21a)
Q(pr) > 0, (21b)

which follows directly from (20a)-(20b) since ν17 lies in the
polyhedron N .

TABLE II
DRIVER MODEL PARAMETERS (UB=UPPER BOUNDS, LB=LOWER

BOUNDS, D1=DRIVER1).

D1 D2 D3 D4 D5 UB LB
Ka 22 30 45 70 69.96 70 10
Kc 14 20 27 50 49.93 50 5
TL [s] 1.6 2.4 3.5 3.03 2.29 5 0
TI [s] 0.35 0.2 0.1 0.02 0.27 0.5 0
TN [s] 0.12 0.12 0.12 0.01 0.12 0.2 0.01
tp [s] 0.1 0.06 0.04 0.01 0.30 0.3 0.01
`s [m ] 5 5 5 3 15 15 3

IV. RESULTS AND ANALYSIS

Four sample drivers with different driving skills were
chosen. Table II shows the parameters of these drivers.
Driver1, Driver2 and Driver3 characterize the steering actions
of a novice driver, a mid-skilled driver and a skilled driver,
respectively. Driver4 is defined by employing the optimiza-
tion results from Section III.A.

This section shows the results from the driver parame-
ter optimization and provides a comparative analysis. The
vehicle model used in all simulations is configured with
Carsim 8.0 [22] and is initialized with a constant speed of
15 [m/sec](54 [km/h]). The length and the width of the road
are configured as 1000 [m] and 8 [m], respectively. The road
curvature is obtained through a sensor provided by Carsim.

A. Optimal Driver Model Parameters

We choose the parameters of Driver1 as the initial driver
parameters, and perform the optimization following the steps
outlined in equations (4)-(10). Table II provides the upper
and lower bounds of each parameter and shows the optimal
driver parameters (Driver4).



Except for the lead time constant TL, all optimal param-
eters are close to their respective boundaries. These results
indicate that the optimal driver spares no effort in the an-
ticipatory/compensatory control paths, with negligibly small
time delay. Figure 4 comparatively depicts the simulation
results from all four drivers. In this figure, one sees that
Driver3 behaves better than Driver1 and Driver2 because
the parameters of Driver3 correspond to a higher driving
skill; Also, as expected, Driver4 corresponding to the optimal
parameters has the overall best performance. These results
are validated using the H2-norm of the closed-loop system.
Table III shows the H2-norms of the systems with different
drivers, and shows that the smaller H2-norm, the smaller the
tracking error.
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Fig. 4. Comparison of tracking errors for all four drivers.

TABLE III
H2-NORMS REGARDING TO VARIOUS DRIVERS (D1=DRIVER1).

D1 D2 D3 D4
H2 275.83 145.18 108.90 33.78

B. Optimal Reference Driver Parameters

In this section we perform the iterative optimization algo-
rithm following the procedure outlined in Section III.B. We
only show the results from the balancing case, namely, when
wi = 0.25 for i = 1, 2, 3, 4. For the sake of convenience, in
the following we refer to the optimal reference driver model
as Driver5. Table II shows the optimal parameters of the
reference driver model (D5).

To validate the optimization results, we select five ref-
erence driver models with the parameters from five distinct
drivers, and design the corresponding DiLC-ORT controllers.
For the sake of convenience, we call these controllers ORT1,
ORT2, · · · ORT5, according to the reference driver model
used in the design of each individual controller. For each of
the five DiLC-ORT controllers, we place Driver1, Driver2,
Driver3 and Driver4 into the loop and then calculate the H2-
norm of the closed-loop system. All the results are shown in
Table IV. By comparing the results in Table III and the results
in the second column of Table IV, one sees that, as expected,
the H2-norms of the systems with controller ORT1 are
much smaller than that of the systems having no controller.

Figure 5 superimposes four curves from the simulations with
the ORT1 and the various drivers comparing to the unassisted
cases in Figure 4. These curves show that controller ORT1
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Fig. 5. Tracking errors of the systems with or without ORT controller.

improves the driver’s performance significantly.
Next, we compare the performance of different controllers.

The first row of Table IV shows the results when the vehicle
is controlled by Driver1 and one of the five controllers,
among which only ORT1 is designed based on the parameters
of Driver1. In this case, controller ORT1 is expected to
have the best performance since the reference driver model
of ORT1 is consistent with the driver model in the loop.
However, the H2-norm of this parameter-matched system
(regarded as Driver1-ORT1) is larger than that of the system
with ORT2, ORT3, ORT4 and ORT5. This result implies that
the optimal reference driver model for controller design is
different from the driver model in the loop. To better under-
stand this, recall that we design the DiLC-ORT controller by
solving the LMIs in (15a)-(15d) and obtain a set of feasible
solutions for F1(pr) and F2(pr). Such DiLC-ORT controller
does not take into account of the H2 performance and there-
fore, its H2 performance could be further improved by tuning
pr. Specifically, Figure 6 illustrates the simulation results
of all the parameter-matched cases and compares controller
ORT5 with the other controllers. According to the curves in
Figure 6, controller ORT5 has better performance than any
parameter-matched controller. To explain this result, recall
that we have used certain assumptions and approximations
in the system modeling, which, inevitably, introduce errors
into the system, and further influences the accuracy of the
controller design. As a consequence, the correct driver model

TABLE IV
H2-NORMS OF DIFFERENT COMBINATIONS OF THE DRIVERS AND THE

CONTROLLERS (D1=DRIVER1).

H2 ORT1 ORT2 ORT3 ORT4 ORT5
D1 17.49 17.32 17.15 17.12 12.95
D2 17.48 17.30 17.13 17.12 12.95
D3 17.47 17.25 17.09 17.11 12.95
D4 17.45 17.04 16.90 16.87 12.94
Jc 305.26 296.76 291.23 290.91 167.57
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in the loop may not provide the optimal reference for the
controller.

According to the results in the last row of Table IV, con-
troller ORT5 has the overall smallest value of the weighted
objective function.

V. CONCLUSIONS

In this paper we adopt the two-point visual model to
characterize driver behavior, and further improve the design
of driver-in-the-loop controller (DiLC) by optimizing the
driver parameters. Somewhat surprisingly, the optimization
results show that the parameters of the driver model in
the loop are not necessarily the best reference to design
a DiLC-ORT controller. As a consequence, a methodology
to design the optimal reference driver model is proposed.
Both the tracking errors shown in the simulations and the
H2-norms of the corresponding closed-loop systems show
that the controller based on the optimal reference driver
parameters can improve driving performance significantly.

Future work will focus on better characterizing the bound-
aries of the driver model parameters. Although recommended
values exist in the literature [23]–[26], more evidence is
needed before adopting these values for optimization-based
DAS designs. Also, alternative DAS control designs, beyond
ORT (i.e., MPC) may be considered.
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