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Abstract— In this paper, we suggest a new representation for
the combined translational and rotational dynamic equations of
motion of a rigid body in terms of dual quaternions. We show
that with this representation it is relatively straightforward
to extend existing attitude controllers based on quaternions
to combined position and attitude controllers based on dual
quaternions. We show this by developing setpoint nonlinear
controllers for the position and attitude of a rigid body with and
without linear and angular velocity feedback based on existing
attitude-only controllers with and without angular velocity
feedback. The combined position and attitude velocity-free
controller exploits the passivity of the rigid body dynamics and
can be used when no linear and angular velocity measurements
are available.

I. INTRODUCTION
Dual quaternions are built on, and are an extension of,

classical quaternions. They provide a compact way to repre-
sent not only the attitude but also the position of a rigid body.
They have been successfully applied to inertial navigation
[1], rigid body control [2], [3], [4], [5], [6], [7], spacecraft
formation flying [8], inverse kinematic analysis [9], computer
vision [10], [11] and animation [12]. It has been argued that
dual quaternions are the most compact and efficient way to
simultaneously express the translation and rotation of robotic
kinematic chains [13], [14]. Moreover, it has been shown
that combined position and attitude control laws based on
dual quaternions automatically take into account the natural
coupling between the rotational and translational motion [5],
[6]. Additionally, dual quaternions allow combined position
and attitude control laws to be written compactly as a single
control law.

However, the property that makes dual quaternions most
attractive and useful is that, as it will be shown, the combined
translational and rotational kinematic and dynamic equations
of motion written in terms of dual quaternions have the same
form as the translational kinematic and dynamic equations
of motion written in terms of quaternions.

In this paper, we demonstrate, and take advantage of, this
analogy between quaternions and dual quaternions to develop
a combined position and attitude setpoint controller that does
not require linear and angular velocity measurements from
an existing attitude setpoint controller that does not require
angular velocity measurements [15], [16].
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The technique proposed in this paper for developing com-
bined position and attitude controllers from existing attitude
controllers has some advantages over techniques based on
the special Euclidean group SE(3), where rotations are
represented directly by rotation matrices [17], [18], [19]. In
the latter, asymptotically stability of the combined rotational
and translational motion is proven by either defining two
different error functions for the position and attitude error
[19] or, in two steps, by first proving the asymptotical
stability of the rotational motion before the asymptotical
stability of the translational motion can be proven [17]
(note that the translational motion depends on the rotational
motion). In our approach, a single error function, the error
dual quaternion (defined by analogy to the classical rotation
error quaternion), is used to represent the combined position
and attitude error. Moreover, the asymptotic stability of the
combined rotational and translational motion is proven in
one step by using a Lyapunov function with the same form
as the Lyapunov function used to prove the asymptotic
stability of the rotational controller. On the other hand,
whereas quaternions produce two closed-loop equilibrium
points (since quaternions cover SO(3) twice [20]) both
representing the identity rotation matrix, rotation matrices
produce a minimum of four closed-loop equilibrium points
[18], [17], only one of which is the identity rotation matrix.
On the bad side, dual quaternions inherit the so-called un-
winding phenomenon from classical quaternions [21]. Known
solutions for this problem are suggested.

II. MATHEMATICAL PRELIMINARIES

A. Quaternions

The classical definition of quaternion is q = q1i + q2j +
q3k+ q4, where q1, q2, q3, q4 ∈ R and i, j, and k satisfy the
following properties [5]: i2 = j2 = k2 = −1, i = jk = −kj,
j = ki = −ik, and k = ij = −ji. An alternative, and
more convenient, representation of a quaternion is as an
ordered pair q = (q̄, q4), where q̄ = [q1 q2 q3]T ∈ R3

and q4 ∈ R are the vector part and the scalar part of
the quaternion, respectively. Hereafter, quaternions with zero
scalar part will be referred to as vector quaternions, whereas
quaternions with zero vector part will be referred to as scalar
quaternions.

The set of quaternions will be denoted by H = {q : q =
q1i + q2j + q3k + q4, q1, q2, q3, q4 ∈ R}. Likewise, the set
of vector quaternions and the set of scalar quaternions will
be denoted by Hv = {q ∈ H : q4 = 0} and Hs = {q ∈ H :
q1 = q2 = q3 = 0}, respectively.

By representing a quaternion as q = (q̄, q4), the following



basic operations on quaternions can be defined:

Addition: a+ b = (ā+ b̄, a4 + b4),

Multiplication by a scalar: λa = (λā, λa4),

Multiplication: ab=(a4b̄+ b4ā+ ā× b̄, a4b4 − ā · b̄),
Conjugation: a∗ = (−ā, a4),

Dot product: a · b = 1
2 (a∗b+ b∗a) = 1

2 (ab∗ + ba∗)

= (0̄, a4b4 + ā · b̄),
Cross product: a× b = 1

2 (ab− b∗a∗)

= (b4ā+ a4b̄+ ā× b̄, 0),

Norm: ‖a‖2 = aa∗ = a∗a = a · a = (0̄, a24 + ā · ā),

Scalar part: sc
(
a
)

= (0̄, a4) ∈ Hs,
Vector part: vec

(
a
)

= (ā, 0) ∈ Hv,

where a, b ∈ H, λ ∈ R, and 0̄ = [0 0 0]T. Under the natural
isomorphism between Hs and R, we will often identify, with
a slight abuse of notation, q4 with (0̄, q4), when this is clear
from the context.

We also define the multiplication of a 4-by-4 matrix with a
quaternion as M ∗q = (M11q̄+M12q4,M21q̄+M22q4) ∈ H,
where

M =

[
M11 M12

M21 M22

]
∈ R4×4,

q ∈ H, M11 ∈ R3×3, M12 ∈ R3×1, M21 ∈ R1×3, and M22 ∈
R. The following properties follow from these definitions:
a · (bc) = b · (ac∗) = c · (b∗a) and (M ∗ a) · b = a · (M T ∗ b)
for a, b, c ∈ H and M ∈ R4×4.

B. Rotational Kinematic Equations in terms of Quaternions
The relative orientation between the body frame and the

inertial frame can be represented by the unit quaternion q.
More precisely, if v̄I is a vector expressed in the inertial
frame, then the coordinates of that same vector in the body
frame can be calculated from q, and vice-versa, through
vB = q∗vIq and vI = qvBq∗, respectively, where vB =
(v̄B , 0) and vI = (v̄I , 0).

In quaternion algebra, the rotational kinematic equations
have the following form [1]:

q̇ = 1
2qω

B = 1
2qω

B(q∗q) = 1
2 (qωBq∗)q = 1

2ω
Iq, (1)

where ωB = (ω̄B , 0) and ωI = (ω̄I , 0), and ω̄B and ω̄I are
the angular velocity of the rotating body frame with respect
to the inertial frame expressed in the body frame and in the
inertial frame, respectively. The error between two attitudes
represented by q and qD is the unit quaternion qe = q∗D q. If
qD is constant, then the error quaternion kinematic equations
are given by

q̇e = 1
2qeω

B . (2)

C. Dual Quaternions
Dual quaternions are defined as q̂ = qr + εqd, where qr ∈

H is the real part of the dual quaternion, qd ∈ H, is the dual
part of the dual quaternion, and ε is the dual unit. The dual
unit ε is defined as ε2 = 0 and ε 6= 0.

Hereafter, dual quaternions formed from vector quater-
nions, i.e., qr, qd ∈ Hv , will be referred to as dual vector
quaternions. Likewise, dual quaternions formed from scalar

quaternions, i.e., qr, qd ∈ Hs, will be referred to as dual
scalar quaternions. In the sequel, the set of dual quaternions,
dual vector quaternions, and dual scalar quaternions will
be denoted by Hd = {q̂ : q̂ = qr + εqd, qr, qd ∈ H},
Hvd = {q̂ : q̂ = qr + εqd, qr, qd ∈ Hv}, and Hsd = {q̂ : q̂ =
qr + εqd, qr, qd ∈ Hs}, respectively. We will also define
the set of dual scalar quaternions with zero dual part as
Hrd = {q̂ : q̂ = qr + ε(0̄, 0), qr ∈ Hs}.

The basic operations on dual quaternions are defined as
follows [6], [8]:

Addition: â+ b̂ = (ar + br) + ε(ad + bd),

Multiplication by a scalar: λâ = (λar) + ε(λad),

Multiplication: âb̂ = (arbr) + ε(arbd + adbr),

Conjugation: â∗ = a∗r + εa∗d,

Swap: âs = ad + εar,

Dot product: â · b̂= 1
2 (â∗b̂+ b̂∗â)= 1

2 (âb̂∗ + b̂â∗)=ar · br
+ ε(ad · br + ar · bd) ∈ Hsd,

Cross product: â× b̂ = 1
2 (âb̂− b̂∗â∗) = ar × br

+ ε(ad × br + ar × bd) ∈ Hvd,
Dual norm: ‖â‖2d = ââ∗ = â∗â = â · â

= (ar · ar) + ε(2ar · ad) ∈ Hsd,
Scalar part: sc

(
â
)

= sc
(
ar
)

+ ε sc
(
ad
)
∈ Hsd,

Vector part: vec
(
â
)

= vec
(
ar
)

+ ε vec
(
ad
)
∈ Hvd,

where â, b̂ ∈ H and λ ∈ R. Note that âb̂ 6= b̂â, in general.
We define the following dual quaternion norm1 ‖â‖2 =

â ◦ â, where ◦ is the dual quaternion circle product, defined
as â ◦ b̂ = ar · br + ad · bd, for all â, b̂ ∈ Hd. Under the
isomorphism between Hrd and R, we will often identify, with
a slight abuse of notation, q4 with (0̄, q4) + ε(0̄, 0).

We also define the multiplication of a 8-by-8 matrix with
a dual quaternion as

M?q̂ = (M11∗qr+M12∗qd)+ε(M21∗qr+M22∗qd), (3)

where

M =

[
M11 M12

M21 M22

]
, M11,M12,M21,M22 ∈ R4×4.

The following properties follow directly from the previous
definitions:

â ◦ (b̂ĉ) = b̂s ◦ (âsĉ∗) = ĉs ◦ (b̂∗âs), â, b̂, ĉ ∈ Hd, (4)

â ◦(b̂× ĉ) = b̂s ◦(ĉ× âs) = ĉs ◦(âs × b̂), â, b̂, ĉ ∈ Hvd, (5)
â× â = 0, â ∈ Hvd, (6)

(M ? â) ◦ b̂ = â ◦ (M T ? b̂), â, b̂ ∈ Hd, M ∈ R8×8. (7)

D. Unit Dual Quaternions for Attitude and Position Repre-
sentation

A compact way to represent the relationship between the
body frame and the inertial frame when they are related by a
rotation quaternion q and a translation vector t̄B (expressed
in the body frame) is to use the dual quaternion [1] q̂ =
qr + εqd = q+ ε 12 t

Iq = q+ ε 12qt
B , where tB = (t̄B , 0) and

tI = (t̄I , 0).

1Similar norms have been defined in [22], [8].



Lemma 1. The dual quaternion q̂ = q+ ε 12 t
Iq = q+ ε 12qt

B

is a unit dual quaternion, i.e., q̂ · q̂ = q̂q̂∗ = q̂∗q̂ = 12.

Proof. Note that q̂ · q̂ = qr + εqd = qrq
∗
r + ε(qrq

∗
d + qdq

∗
r ) =

1+ε(2qr ·qd) and that qr ·qd = 0 since qr ·qd = q · ( 1
2 t
Iq) =

1
2 t
I · (qq∗) = 1

2 t
I · 1 = 0.

The set of unit dual quaternions will be denoted as Hud =
{q̂ ∈ Hd : q̂ · q̂ = 1}.
E. Error Dual Quaternions and Attitude and Position Con-
trol

Assume that the desired orientation of the body (which
might be a function of time) is given with respect to the
inertial frame by the unit quaternion qD. Now assume also
that the desired position of the center of mass of the body
with respect to the inertial frame (which might also be a
function of time) is given by the translation vector t̄D. Then,
we define the desired dual quaternion as q̂D = qD +ε 12 t

I
DqD =

qD + ε 12qDt
D
D, where tD

D = (t̄D
D, 0) and t̄D

D are the coordinates
of the desired translation vector t̄D expressed in the desired
frame.

By direct analogy to the quaternion case, the error dual
quaternion [8], [5] between the desired dual quaternion and
the current dual quaternion is defined as q̂e = q̂∗D q̂ =
qe + ε 12qe(t

B − tBD ). Hence, the error dual quaternion q̂e
represents the rotation (qe) and the translation (t̄ − t̄D)
necessary to align the desired frame with the body frame.
Since q̂e·q̂e=(q̂∗D q̂)(q̂

∗
D q̂)

∗=q̂∗D q̂q̂
∗q̂D=q̂∗D q̂D=1 the dual error

quaternion q̂e = q̂∗D q̂ is a unit dual quaternion.

F. Rigid Body Kinematics in terms of Dual Quaternions

The combined translational and rotational kinematic equa-
tions of a rigid body expressed in terms of dual quaternions
are [1]

˙̂q = 1
2 ω̂

I q̂ = 1
2 q̂q̂

∗ω̂I q̂ = 1
2 q̂ω̂

B , (8)

where ω̂I = ωI + ε(vI + tI × ωI) and ω̂B = ωB + εvB

are the so-called dual velocity of the body expressed in
inertial coordinates and body coordinates, respectively, vB =
(v̄B , 0), and v̄B are the body coordinates of the velocity
vector of the body’s center of mass with respect to the inertial
frame. If ˙̂qD = 0, then it can be shown that the kinematic
equations in terms of error dual quaternions are

˙̂qe = 1
2 q̂eω̂

B . (9)

Note that (8) and (9) have the same form as (1) and (2),
respectively.

III. RIGID BODY DYNAMICS IN TERMS OF DUAL
QUATERNIONS

Whereas much as been published about dual quaternions
and rigid body kinematics [2], [6], [3], [1], the formulation
of rigid body dynamics in terms of dual quaternions has been
seldom addressed. In [5] and [7], the rigid body dynamics are
written component-wise in terms of the real and dual parts of
˙̂ωB and not as an operation on dual objects (as expression (8)
for the rigid body kinematics). In [4] the rigid body dynamics
are written in terms of the second derivative of the dual

2Note that 1 here represents the dual number (0̄, 1) + ε(0̄, 0).

quaternion (¨̂q). Although this formulation is mathematically
correct, in most cases ω̄B and v̄B are directly measured by
on-board sensors, and it is thus easier to implement feedback
control laws based on ω̂B rather than on ˙̂q.

In [8], the authors write the combined rotational and trans-
lational dynamics using the dual inertia operator defined in
[22] as M̂B = m d

dεI4 + εIB , where m is the mass of the
body,

IB =

[
ĪB 03×1

01×3 1

]
, (10)

and ĪB ∈ R3×3 is the mass moment of inertia of the body
about its center of mass written in the body frame. The
operator d

dε is defined by d
dε â = d

dε (ar + εad) = ad and(
d
dε

)2
= 0, where â = ar + εad is a dual object. In this

work, we replace the dual inertia operator by, what we call,
the dual inertia matrix. We define the dual inertia matrix as
the following 8-by-8 symmetric matrix:

MB =

mI3 03×1 03×3 03×1

01×3 1 01×3 0
03×3 03×1 ĪB 03×1

01×3 0 01×3 1

 . (11)

We can then write the rigid body dynamics as

MB ? ( ˙̂ωB)
s

= f̂B − ω̂B × (MB ? (ω̂B)
s
). (12)

Note that like in [8], [22], we assume that the mass and iner-
tia matrix are constant. In (12), f̂B are the body coordinates
of the total external dual force applied to the body about its
center of mass, f̂B = fB + ετB , fB = (f̄B , 0), f̄B are the
body coordinates of the total external force vector applied to
the body, τB = (τ̄B , 0), and τ̄B are the body coordinates of
the total external moment vector applied to the body about
the center of mass of the body.

Our formulation based on the dual inertia matrix has
two advantages over the formulation used in [8]. First,
the inverse of MB is simply (MB)−1, i.e., the matrix
inverse of MB . This is not the case with the inverse of
the dual inertia operator. Note that the inverse of M̂B is
defined in [8] as (M̂B)−1 = (IB)−1 d

dε + ε 1
mI4. Second, the

multiplication of a 8-by-8 matrix with a dual quaternion is a
more general operation than the multiplication of operator d

dε
with a dual quaternion. In particular, multiplication (3) will
allow us to operate on general Linear Time-Invariant (LTI)
systems whose input, output, and state are dual quaternions,
something which is not straightforward with the use of the
d
dε operator.

IV. POSITION AND ATTITUDE SETPOINT
CONTROL WITH ERROR DUAL QUATERNION

AND DUAL VELOCITY FEEDBACK
In [5] and [7], regulation and tracking laws are suggested

based on the feedback of the dual velocity and of the
logarithm of the error dual quaternion. However, the control
law is not written in terms of the dual force (f̂B), but
in terms of a dual quaternion defined component-wise in
terms of its real and dual parts as a function of f̄ and τ̄ .
More similar to our approach, the authors of [8] design
a tracking law for a leader-follower spacecraft formation
written in terms of the dual force. They propose an adaptive



Terminal Sliding Mode (TSM) control law based on the
special operator d

dε . Below, we propose an alternative control
law in terms of the dual force. The proposed control law
does not involve the special operator d

dε and can be readily
extended to a control law that does not need (dual) velocity
feedback, thus extending the results of [15], [16] for the case
of combined translational and rotational motion.

Theorem 1. Consider the rigid body kinematic and dynamic
equations (9) and (12). If the input dual force is defined by
the feedback control law

f̂B = −kpvec
(
q̂∗e(q̂se − ε)

)
− kd(ω̂B)

s
, kp, kd > 0, (13)

then q̂e → ±1 (i.e., qe → ±1 and tB−tBD → 0) and ω̂B → 0
(i.e., ωB → 0 and vB → 0) as t → +∞ for any initial
condition.

Proof. First, note that q̂e = ±1 and ω̂B = 0 are, in fact, the
equilibrium conditions for the closed-loop system formed by
(12), (9), and (13). Then, consider the following candidate
Lyapunov function for the equilibrium point q̂e = +1 and
ω̂B = 0 (or equivalently, (ω̂B)

s
= 0) motivated by Eq. (7)

of Ref. [15]:

V (q̂e, ω̂
B) = kp(q̂e−1)◦ (q̂e−1)+ 1

2 (ω̂B)
s◦ (MB ? (ω̂B)

s
).

It can be easily shown that V is a valid candidate Lyapunov
function since V (q̂e = 1, ω̂B = 0) = 0 and V (q̂e, ω̂

B) > 0
for (q̂e, ω̂

B) ∈ Hud ×Hvd\{1, 0}. The time derivative of V is
equal to V̇ (q̂e, ω̂

B) = kp2(q̂e−1)◦ ˙̂qe+(ω̂B)
s◦(MB?( ˙̂ωB)

s
).

Then, by plugging in (12) and using (5) and (6), it follows
that

V̇ (q̂e, ω̂
B) = kp (ω̂B)

s◦(q̂∗e((q̂e)
s−ε))+(ω̂B)

s◦f̂B

= (ω̂B)
s◦
(
kpvec

(
q̂∗e((q̂e)

s−ε)
))

+(ω̂B)
s◦f̂B

= (ω̂B)
s◦(kpvec

(
q̂∗e((q̂e)

s−ε)
)
+f̂B). (14)

Introducing the feedback control law (13), we get
V̇ (q̂e, ω̂

B) = −kd (ω̂B)
s◦ (ω̂B)

s ≤ 0, for (q̂e, ω̂
B) ∈

Hud × Hvd\{1, 0}. Since V is continuously differentiable,
radially unbounded, positive definite, and V̇ ≤ 0 over the
entire state space, by using LaSalle’s invariance principle,
all trajectories must converge to the largest invariant set M
inside {(q̂e, ω̂B) : V̇ = 0} = {(q̂e, ω̂B) : ω̂B = 0}. In this
invariant set, we have that vec

(
q̂∗e((q̂e)

s− ε)
)

= 0 from (12)
and (13). This can be rewritten as

q̂∗e((q̂e)
s−ε)=

(
q∗e+ 1

2ε(t
B−tBD )∗q∗e

)(
1
2qe(t

B−tBD )+ε(qe−1)
)

= 1
2 (tB − tBD ) + ε

(
1− q∗e + 1

4‖(tB − tBD )‖2
)
.

Retrieving only the vector part of the previous equa-
tion yields vec

(
q̂∗e((q̂e)

s − ε)
)

= vec
(
1
2 (tB − tBD )

)
+

εvec
(
1 − q∗e + 1

4‖(tB − tBD )‖2
)
=vec

(
1
2 (tB−tBD )

)
+ε vec

(
−

q∗e
)
= 1

2 (tB−tBD )+εvec
(
qe
)
. Hence, in M, we have that

vec
(
q̂∗e((q̂e)

s − ε)
)

= 1
2 (tB − tBD ) + ε vec

(
qe
)

= 0, which
is satisfied if and only if tB − tBD = 0 and vec

(
qe
)

= 0. The
latter condition is equivalent to qe = ±1, which, along with
the previous condition tB − tBD = 0, finally yields q̂e = ±1.
It follows that M = {(q̂e, ω̂B) : q̂e = ±1, ω̂B = 0}. Hence,
q̂e → ±1 (i.e., qe → ±1 and tB−tBD → 0) and ω̂B → 0 (i.e.,
ωB → 0 and vB → 0) as t→ +∞ for any initial condition.

Remark 1. The proof of Theorem 1 shows that q̂e converges
to either +1 or q̂e = −1. As a matter of fact, all solutions
converge to q̂e = +1 except for the solution starting at q̂e =
−1, in which case the system remains in q̂e = −1. Note,
however, that q̂e = +1 and q̂e = −1 represent the same
physical relative orientation and position between frames so
either equilibrium is acceptable. This creates the annoyance
however that for initial conditions close to q̂e = −1, a large
rotation (larger than 180 degrees) will be performed, despite
the fact that a shorter rotation (less than 180 degrees) to the
equilibrium exists. This is a well-known issue when dealing
with quaternions to describe the attitude [21], [24] and can be
easily solved by switching the gain in (13) in order to follow
the “short” path to the equilibrium. For details, see [6], [21],
[24].

V. POSITION AND ATTITUDE CONTROL
WITHOUT DUAL VELOCITY FEEDBACK

The feedback law given in Section IV for position and at-
titude setpoint control assumes that the error dual quaternion
(q̂e) and the dual velocity (ω̂B) are known. Theorem 2 below
shows that position and attitude setpoint control can also be
performed without linear and angular velocity measurements.
This result follows naturally from the passivity properties
[16], [15] of the systems represented inside the dashed and
dotted boxes in Figure 1, which are proven in Proposition 1
and Proposition 2.

Proposition 1. Consider the system (12)-(9) with the feed-
back control f̂B = −kpvec

(
q̂∗e((q̂e)

s−ε)
)
+û, where kp > 0.

Then the map û 7→ (ω̂B)
s is passive.

Proof. By using (14), it follows that
∫ T
0

(ω̂B)
s◦ ûdt =∫ T

0
(ω̂B)

s◦(kpvec
(
q̂∗e((q̂e)

s−ε)
)
+f̂B) dt=

∫ T
0
V̇ (q̂e, ω̂

B) dt =
V (q̂e(T ), ω̂B(T )) − V (q̂e(0), ω̂B(0)) ≥ −V (q̂e(0), ω̂B(0)),
for all T ≥ 0. Since the integral

∫ T
0

(ω̂B)
s◦ ûdt is bounded

from below for all T ≥ 0, the map from û to (ω̂B)
s is

passive [25].

Proposition 2. Let the feedback system (12)-(9) have the
feedback control of Proposition 1 and let û = 2vec

(
q̂∗e v̂

s
)
.

Then the map v̂ 7→ ˙̂qe is passive.

Proof. Note that
∫ T
0

˙̂qe ◦ v̂ dt =
∫ T
0

( 1
2 q̂eω̂

B)◦v̂ dt =∫ T
0

(ω̂B)
s◦( 1

2 q̂
∗
e v̂

s) dt =
∫ T
0

(ω̂B)
s◦( 1

2vec
(
q̂∗e v̂

s)
)

dt =
1
4

∫ T
0

(ω̂B)
s◦ûdt, and hence, by Proposition 1, the map from

v̂ to ˙̂qe is passive.

The previous propositions implies that a stabilizing con-
troller can then be designed by ensuring that it creates a
passive (or strictly passive) map from ˙̂qe to ẑ (see Figure 1).
This observation is formalized by the next theorem.

Theorem 2. Consider the rigid body kinematic and dynamic
equations (12) and (9). Let the input dual force be defined
by the feedback control law

f̂B = −kpvec
(
q̂∗e((q̂e)

s−ε)
)
−2 vec

(
q̂∗e ẑ

s
)
, kp > 0, (15)

where ẑ is the output of the following LTI system ˙̂xp =
A?x̂p+B?q̂e, ẑ = (CA)?x̂p+(CB)? q̂e, where (A,B,C)
is a minimal realization of a strictly positive real transfer



Fig. 1. Feedback interconnection.

matrix Csp(s) with B a full rank matrix. Then, q̂e → ±1,
ω̂B → 0, and x̂sp = ˙̂xp → 0 as t → +∞ for any initial
condition.

Proof. First, rewrite the LTI system as follows

˙̂xsp = A ? x̂sp +B ? ˙̂qe, ẑ = C ? x̂sp, (16)

Notice that the closed-loop system is the negative feedback
interconnection between the strictly positive real system
Csp(s) and the system inside the dashed box in Figure 1.
Furthermore, note that q̂e = ±1, ω̂B = 0, and x̂sp = 0 is the
equilibrium condition for the closed-loop system formed by
(12), (9), (16), and (15). Consider the candidate Lyapunov
function motivated by Eq. 19 of Ref. [15], V (q̂e, ω̂

B , x̂sp) =
kp(q̂e−1)◦(q̂e−1)+ 1

2 (ω̂B)
s◦(MB?(ω̂B)

s
)+2x̂sp◦(P ?x̂sp),

for the equilibrium point q̂e = 1, ω̂B = 0, and x̂sp = 0,
where P > 0 satisfies ATP+PA = −Q, PB = CT, and Q >
0. By the Kalman-Yakubovich-Popov (KYP) conditions [25],
there always exist matrices P and Q satisfying these condi-
tions. The time derivative of V is equal to V̇ (q̂e, ω̂

B , x̂sp) =

kp(q̂e−1)◦(q̂eω̂B) + (ω̂B)
s◦(MB?( ˙̂ωB)

s
) + 4 ˙̂xsp◦(P?x̂sp).

By plugging in (12), (16), and (15), and applying (4), (5),
and the KYP conditions, and after some tedious algebraic
manipulations, it follows that

V̇ (q̂e, ω̂
B , x̂sp) = (ω̂B)

s◦ (kpq̂
∗
e((q̂e)

s − ε) + f̂B)− 2x̂sp

◦ (Q ? x̂sp) + 4 ˙̂qe ◦ (C ? x̂sp) = (ω̂B)
s◦ (kpq̂

∗
e((q̂e)

s − ε)
+ f̂B)− 2 x̂sp ◦ (Q ? x̂sp) + 4( 1

2 q̂eω̂
B) ◦ ẑ = (ω̂B)

s

◦ (kpq̂
∗
e((q̂e)

s − ε) + f̂B + 2 q̂∗e ẑ
s)− 2 x̂sp ◦ (Q ? x̂sp)

= (ω̂B)
s◦ (kpq̂

∗
e((q̂e)

s − ε)− kpvec
(
q̂∗e((q̂e)

s − ε)
)

+ 2q̂∗e ẑ
s

− 2vec
(
q̂∗e ẑ

s
)
)−2x̂sp◦(Q ? x̂sp)=−2 x̂sp◦(Q ? x̂sp) ≤ 0,

for (q̂e, ω̂
B , x̂sp) ∈ Hud × Hvd × Hd\{1, 0, 0}. By LaSalle’s

invariance principle, all trajectories converge to the largest
invariant set M inside {(q̂e, ω̂B , x̂sp) : V̇ = 0} =
{(q̂e, ω̂B , x̂sp) : x̂sp = 0}. In M we have that x̂sp ≡
0 ⇒ ˙̂xsp ≡ 0, which implies that B ? ˙̂qe ≡ 0. Since B is
full rank, this implies that ˙̂qe ≡ 0. From ˙̂qe = 1

2 q̂eω̂
B ⇔

ω̂B = 2q̂∗e
˙̂qe, we get that ω̂B ≡ 0, and thus, ˙̂ωB ≡ 0.

Hence, from (12), it follows that f̂B ≡ 0. On the other
hand, x̂sp ≡ 0 leads to ẑ ≡ 0. Finally, since f̂B ≡ ẑ ≡ 0,
(15) yields vec

(
q̂∗e((q̂e)

s − ε)
)
≡ 0, which is equivalent to

q̂e ≡ ±1. Therefore, M = {(q̂e, ω̂B , x̂sp) : q̂e ≡ ±1, ω̂B ≡
0, x̂sp ≡ 0}. Hence, (q̂e, ω̂

B , x̂sp) → (±1, 0, 0) for any
initial condition.

VI. SIMULATION RESULTS

To compare the performance of control law (15) (without
dual velocity feedback) against the performance of control
law (13) (with dual velocity feedback), a simple example is
considered here. A rigid body with mass moment of inertia

ĪB =

 1 0.1 0.15
0.1 0.63 0.05
0.15 0.05 0.85

 Kg.m2

and mass m = 1 Kg is positioned at t̄I=[x y z]T=[2 2 1]T m
and has initial attitude equal to qe = [qe1 qe2 qe3 qe4]T =
[0.4618 0.1917 0.7999 0.3320]T. The body’s initial linear
and angular velocity are equal to v̄B = [u v w]T = [0.1 −
0.2 0.3]T m/s and ω̄B = [p q r]T = [−0.1 0.2 − 0.3]T rad/s,
respectively. The control objective is to bring the center of
mass of the body to the origin of the inertial frame (i.e,
t̄ID = 0) and to align the body axes with the inertial axes
(i.e., qD = 1). The control gains are chosen to be kp = 0.2
(both in (13) and (15)) and kd = 0.4 (in (13)). For simplicity,
A and B are chosen as −kfI8 and kfI8, respectively. For
this choice of A and B and, by defining Q = −kd(B−TA+
(B−1A)T) [15], the KYP conditions yield P = kdB

−T and
C = kdI8. Moreover, Q and P will always be symmetric
positive definite matrices for this choice of A and B.

The position and attitude of the body with controller
(13) (with dual velocity feedback) and with controller (15)
(without dual velocity feedback) with kf = 0.5 and kf = 10
are compared in Figure 2. In all three cases, qe → 1 and
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Fig. 2. Attitude and position.

t̄I → t̄ID as t → ∞, as expected. Figure 2 also shows that
by increasing kf , the attitude transient response without dual
velocity feedback can be made more similar to the attitude
transient response with dual velocity feedback. Figure 3
shows the velocity and angular velocity of the body for the
same three cases studied in Figure 2. As expected, ω̄B → 0
and v̄B → 0 as t→∞. Moreover, increasing kf as the same
effect as in Figure 2. Finally, Figure 4 shows the control
force, f̄B and the control torque, τ̄B applied to the body for
the same three cases.
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Fig. 3. Velocity and angular velocity.
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Fig. 4. Control force and torque.

VII. CONCLUSION

A velocity-free setpoint controller for the position and
orientation of a rigid body is presented in this paper. It can
be used in the case of a sensor malfunction or in vehicles
not equipped with linear and angular velocity sensors. Also,
and more importantly, this paper shows how it is relatively
straightforward to extend attitude controllers based on quater-
nions into combined position and attitude controllers based
on dual quaternions. Future work includes extending these
results to the tracking case.
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