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Abstract— We consider a Voronoi-like partitioning problem
for a team of pursuers distributed in the plane. Each element
of the partition is uniquely associated with a pursuer in the
following sense: if a moving target at a given instant of time
resides inside a particular member of the partition, then the
pursuer associated with this set can intercept this movingarget
faster than any other pursuer. In our problem formulation,
the moving target does not necessarily travel along presdred
trajectories, as it is typically assumed in the literature hut,
instead, it can apply an “evading” strategy in response to te
actions of its pursuer. It is further assumed that the strucure
of the evading strategy of the target is only partially knownto
the pursuers. We characterize an approximate solution to tts
problem by associating it with a standard Voronoi partitioning
problem. Simulation results are presented to highlight the
theoretical developments.

only on the relative position between the moving target and
its pursuer.

In the special case, when the “evading” strategy of the
target is perfectly known to the pursuers, one deals with a
problem ofpursuit-with-anticipation9]. It turns out that in
this case, the locally optimal control strategy of each pers
can be derived from the solution of the classic Zermelo's
navigation problem (ZNP for short). The partitioning prob-
lem for this pursuit-with-anticipation scenario was addet
in our previous work in [10]. In contrast to the approach
presented in [10], in the current framework, we assume that
the pursuers have only partial knowledge of the evading-stra
egy of the target. The standing assumption of the proposed

approach is that the projection of the target’s velocity on
the relative position vector of the moving target from its
pursuer is only a function of the relative distance between
the target and its pursuer. Under the previous assumpiions,
We address a Voronoi-like partitioning problem for a set ofs shown that the globally optimal control strategy for each
pursuers (moving generators) whose objective is to captugRrsuer can be characterized in feedback form by making
moving targets in the plane. The solution of this problemyse of the results presented in [11], [12]. It turns out irs thi
furnishes a scheme that assigns a pursuer from a given tegge that the feedback control law that solves the optimal
of pursuers to a moving target with respect to a generalizgflirsuit problem is completely independent of the evading
proximity metric, namely the minimum capture time (rathektrategy of the target. Furthermore, it is demonstratettiiea
than with the Euclidean distance metric as in the standagfinimum capture time is a monotone function of the relative
Voronoi diagram problem). The problem considered in thigistance between the pursuer and the target, thus allovéing u
work can be put under the umbrella of dynamic Voronofg associate the solution of the partitioning problem wita t
diagram problems, that is, Voronoi-like partitioning pteins  standard Voronoi diagram generated by the initial position
where the generators are moving points in the plane [1]-[8}¢ the pursuers.
Specifically, we consider the following partitioning preb: The rest of the paper is organized as follows. Sections I

Given a team of. vehicles (pursuers), which are distributed dim tthe f lati d the feasibility of thei
overn distinct locations in the plane, partition the plane intd" present the formulation and the teasioiiity o 1op

n “capture zones,” such that each pursuer is assigned ton}flI pursuit problem, respeqtlvely. Subsequen?ly, SestMn.
afd IV present the formulation and an approximate solution
Q

unique capture zone. The rule that assigns each pursuer . . . .
d P 9 b the dynamic partitioning problem, respectively. Sectid

a capture zone is the following: a pursuer associated with hort . f th 4 sch d th
particular capture zone, can capture a moving target irayel gives a short comparison of the proposed scheme and the
a%pproach followed in our previous work [10]. Simulation

within the same zone at a given instant of time, faster th . ; X :
any other pursuer from the given set of pursuers. In OJPsults are presented in Section VII. Finally, Section VIII
problem formulation, we do not constraint the moving targe‘l‘fOnCIUdeS the paper with a summary of remarks.

to follow a prescribed trajectory, as it is usually assumed;
in the literature [3], [4]. Instead, the target can apply an
“evading” strategy in response to the actions of its pursuer Consider a team of pursuers located at time= 0 atn
The target’s strategy is a feedback control law that dependsstinct points in the plane, denoted By:= {xi, € R?,i €
7}, whereZ := {1,...,n}. Itis assumed that the kinematics
of the i pursuer starting at poirk,, € P are given by
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0, respectively, and.%, is the control input (velocity vector) where u’ := —u’,. Thus, the optimal pursuit strategy of
of the ™ pursuer. We assume that, € Up, whereldp the i"™ pursuer follows from the solution of the following
consists of all piece-wise continuous functions takingigal minimum-time problem.

in the setp = {z € R? : |z| < up}, whereup is apositive  propiam 1 (" MTP): Let the system described by equa-

constant (maximum allowable speed of the pursuers). Tq%n (5), and letu; satisfy Assumption 1. Determine the
goal of each pursuer, which is initially located at a point irbontrol inputu’ € Up such that

P, is to capture a moving target detected in its vicinity. It _
is assumed that the kinematics of such a moving target arei) The trajectoryy’ : [0,7%] — R? generated by the

described by control u? satisfies the boundary conditions

xr =ur, x7(0)=Xr, (2) yo(0) =¥, |yi(T¥)| < e (6)
wherexy = (z7,y7) € R* andxy := (Z7,97) € R® i) The controlu’ minimizes, along the trajectory, the
denote the target’s position vectors at timeandt¢ = 0, cost functional/(u’) := T; = T¢(v*).

respectively, and.s is the control input (velocity vector) . .
of the target. It is further assumed that the moving target ch;blemt 1 fcan_ti)(?[ mtetr)plrlet(?d a(tjs a probltem gf tstt(;erlng
can employ an evading strategy in response to the pursue?’g n egr?hor romy” to af a Ot'r?l use. _cende_re ? he
actions. In particularys is a feedback control law, which origin, in the presence of a spatially-varying dui(y") in

depends on the relative position of the target from tHe minimume-time. If the functionu is perfectly known to the

ursuer, that isyr = ur(xr — x5). S
P T 7T = Xp) of Zermelo’s navigation problem. Here we employ, however,

~ Assumption 1:There exists a Lipschitz continuous func-a different approach that will allow us to characterize the

tion f: Ry — R such that the evading strategy- of the  unique, global solution of Problem 1 in closed form, which

target satisfies the following condition does not follow directly from the solution of the ZNP. The
(ur,x7 —xo) = f(|x7 — X)) (3) following proposition gives the solution of Problem 1.

The interpretation of Assumption 1 is as follows: The pro- Proposition 1: If Problem 1 is feasible, then its solution
jection of the velocity vector of the moving target on thelS Unique, and it is given in feedback form as follows
relative position vector of the moving target from tii@ ; oy

pursuer depends only on the relative distance between the u, = —UPW- (7)
target and its pursuer. Furthermore, in this work, we do not ] 2 P * i
explicitly assume that the maximum allowable speed of the _P00f Let [y’ = {y’,y") and suppose thay" is
target is strictly less thamp. In order, however, to avoid a trajectory generated from some admissible conifobn

situations where the maneuvering target can always esca[BeTf]' Then

capture if it is faster than its pursuer, it is assumed that th d, ;o d,; P P

structure of the evading strategy of the target is partially V= gy =200 v +ury)). (8)

known to each pursuer. Specifically, we assume that In light of Assumption 1, and equations (5) and (8), it follow
f(z) < f(z), forallz>0, (4) that, forallt € [0, T3],

where f(-) is a continuous function, which is known to all i = m vl i0) =7 = || (9)

of the pursuers. The functiofi provides a bound on the rate 7 ’ ’

at which the target can move away from its pursuer. As U\/hereni .— |y’ and ' is a new scalar control input given
will be shown in the sequel, condition (4) will allow us to by

approximate thavinning setof the i pursuer, that is, the _ (uf, y?)

set of initial positions of a moving target from which e V' = (10)

pursuer can capture the target in finite time.

) - . o First, we show thaty’(t) = |y*(¢)| > 0 for all ¢t € [0, T}].

To this end, letxy (-; u, x7) and xjp (s up, Xp) denote yeeq et ys assu?nt(a )th|af||y>(e)c| (if |yi| < ee, then[thez‘t]h
the trajectories of the target and tie pursuer generated by i1 2 qmits a trivial solution and; = 0). By continuity, if
ur andu}, and originating fromxy and X%, respectively. i(t1) = 0 for somet; > 0, then there exists, < t, sdch
The objective of each pursuer is to determine an admis%alt 7i(ts) = €. By definit’ion Ti = inf{r : i(7) = €}
ble pursuit strategy that minimizes the tinf¢ such that It follows thatCTf Sty < by, :';md henceﬂt) > e >CO’
per (8 ug . X7) = Xp(tiup, Xp)| > € forall t < Ty (time g0 gy [0, T7]. It follows that the rhs of equation (9) is
of first capturg, for a sufficiently smalk. > 0, wheree, is well-defined, andy(t) exists for all¢ € [0, Ti].

the capturability radiusof the pursuit problem.
By virtue of the Cauchy-Schwartz inequality, it follows

from (10) thatjv?| < @p. Therefore, Problem 1 reduces to the
problem of determining a scalar contral with |v| < @p

that will steer the scalar system described by equation (9)
vo=u'+ur(y’), y(0)=y :=xr-%x5  (5) tothe intervall0,e.] in minimum time. In [11], it is shown

To this end, let us consider the state transformagion=
x7 — x&. Equation (1) can then be written in the following
compact form

pursuers, then Problem 1 can be reduced to a special case



that the solution of this scalar min-time problem is given byn the first case, any trajectory starting from(0) > e,
vl = —up. Therefore, (10) implies that can never reach the s¢z : 0 < z < ¢.}. In the second
casen’ = e. is an equilibrium solution for (14). Since the

(ul,yi) = —upny, (11) right hand side of (14) is Lipschitz continuous it = e,
which implies thai® is a vector of lengthip parallel to the this equilibrium can only b_e reaghed asymptotically [138]. |
unit vector—y’ /|y’|, thus completing the proof. m both cases, Problem 1 is infeasible. u

Proposition 1 implies, in particular, that the solution of Henceforth, we refer to (13) as tlsapturability condition
the optimal control Problem 1 is independent of the evadingf Problem 1. In order to characterize the winning set of the
strategy of the target;+. However, as we shall see next, thei™ pursuer, let
characterization of the winning set of tifé pursuer depends

on the evading strategy of the target, hencefoas well. (17)

iy == inf{z € [e;,00) : f(z) > upz}.

IIl. THE WINNING SETS OF THEPURSUERS

Next, we examine the feasibility of Problem 1 for a give
y* € R2. This will allow us to characterize the winning se
of the i" pursuer, that is, the set of the initial positions o

the target from which it can be captured by tfepursuer in
finite time. In other words, the winning set of tif€ pursuer
is given by

Wy (%h) = {x € R? : Tr(x — X5) < oo}, (12)

where T¢(x — x%) is the time of capture of the target by

the i pursuer, when the target resides initially>atFirst,
note that if|y‘| < e, then capture occurs trivially dt= 0.

Hence, the sefy € R? : |y| < .} is necessarily a subset of
the winning set for each pursuer, regardless of the dynami
of the pursuer or the target. Next, we compute the winning

set for the non-trivial casg’| > e..

Proposition 2: Lete. > 0. Then Problem 1 is feasible for

the i" pursuer for allly’| > ¢, if and only if

f(z) < upz, forall e <z<|y| (13)

?{X € R? :

fthen it follows readily from (17) thaff(z) < apz for all

Note thatij; > e.. If f(z) < apz for all z € [e., 00), we
take 77y := oo, and henceV;(x,) = R% If f(z) > upz
for all z € [e.,00), thenij; = €., and henceVy(xi) =
Ixt, — x| < e.}. Finally, if e, < 7y < oo,

€. < z < 7y and hence, in light of Proposition BV (x5 ) :=
{x e R?: [x — x| < ijs}. For all cases the winning set of
the i™ pursuer can be defined compactly as

Wy (X)) 1= {x: [xh—x| < 7 }U{x: |¥b—x| <e.}. (18)

Note, however, that thé" pursuer does not know exactly its
winning set, since it has only partial knowledge ff and
consequently ofj; as well. As a result, each pursuer can
only compute an approximation of its actual winning set. To
g%js end, let

Ny = inf{z € [e, 00) : f(z) > apz}.

In light of (4), it follows thatn; < 7jy. Let

(19)

Wf()’(é;) = {x: [xb—x| < npyu{x: % —x| < €.} (20)

Clearly, W;(x5) € Wy(x%). Hence,Wy(x%) is a conser-

Proof: Proposition 1 implies that the closed |00pvative approximation of the winning s&v;(x%). Note that,

dynamics of (5) can be written in terms qf = |y!| as

follows £r)
i = n’Z —ap, 7'(0) =7 (14)
Condition (13) implies that
Nt = f(ﬁ) —ap <0, forall e <n'<|y]. (15)
/]71

From (15) it follows that the sefz : 0 < z < €.} is
an attractive invariant set for (14) for all initial conditis
n%(0) > e.. Furthermorey® < 0 for n* = e.. It follows that
there existsI’ = T'(e..), such thaty!(t) < e. for t > T(e.),
thus showing feasibility of the Problem 1.

Conversely, suppose there exigts= |y|, wherey € R?,
such thate. < 7% < |y?| and

f@') = upif'. (16)

Notice that the sef := {z : z > 7'} is invariant for (14)
since f(z)/z — up > 0 for all z € bdS. Sincen’(0) € S,
it follows thatni(t) > ¢, for all t > 0, which implies that
the Problem 1 is not feasible fer. < . If, on the other
hand,e. = 7' then eitherf(e.) > tupe. OF f(e.) = Upe,.

contrary toW; (%), the i pursuer has perfect knowledge
of Wg(x5). Furthermore, the closeness of the approximation
of the winning set of the™ pursuer witth(ié,) depends
on the differencej; — 77

IV. THE DYNAMIC VORONOIPARTITIONING PROBLEM

Next, we formulate a dynamic Voronoi-like partitioning
problem based on the minimum time-to-go of e MTP,
which will allow us to assign a pursuer starting from a point
in P to a moving target traveling in the plane. The space we
wish to partition, denoted henceforth ¥, is the union of
all Wy, (x5,), wherei € 7.

Problem 2: Given a collection ofn pursuers, initially
located at distinct points if?, and the cost function

' (x,%5) = Ti(x — xb), (21)

where Tt is the minimum time from the solution of Prob-
lem 1, determine a partitio’ = {V' : i € Z} of V such
that

D) W=Uiez Vi
i) forall x € V", ¢(xX%,%) < 00



i) c(xh,x) < c(xp,x) for 4,5 € I with j # i. Proposition 3. The proof for the other cases, namely, when

Henceforth, we shall refer to the solution of Problem 2 at| < ¢ < ] < 7ip, Or [€] <[] < e, Oree < €] <y <
the Optimal Pursuit Dynamic Voronoi Diagram (OP-DVD). ¥], andyy < [€] < [¢] follows trivially from (22). u
The setV?, constitutes a Voronoi cell (Dirichlet domain) of Next, we present the solution of Problem 2.
the OP-DVD. We say that the" and j** pursuers, where  peoem 1:iet V= {Vii € I} be the standard
L) € Z, are neighbors if a}nd only if the set* N1/ _Voronoi partition generated by the sgt and assume that
is neither non-empty nor a singleton. Because the evadi > ¢,. The solution of Problem 2 is given by
strategy of any moving target is not perfectly known, we
can only provide approximate solutions to Problem 2, as it Vi=VinWy(xh), €T, (27)
is discussed next.

where Wy (x5,) is the winning set of the'" pursuer, given
V. CONSTRUCTION OF ANAPPROXIMATE OP-DVD by (18).

In order to construct an approximate OP-DVD, we will  Proof: Letx & VinW;(xp). In particular,x € V* if
first investigate whether the minimum time-to-go of Prob@nd only if [x—xp| < |x—x5|, for all j # i, which implies,
lem 1 belongs to a class of generalized metrics that af@ light of Corollary 1, thatTi(x —xp) < Ty(x — x3) for all
associated with Voronoi-like partitions, for which effinte ¢ 7 J- Furthermore, it € W (xp) thenTi(x — xp) < oo,

computational techniques exist in the literature [1]. It follows thatx € V' and hence/" N Wy(xp) C V* for all
S
To this end, observe that direct integration of equatior) (14 , o o
yields Next, assumex € V*. By the definition of)”, it follows
_ ‘ that T;(x — x,) < oo andT(x — X%) < Tr(x — xJ), for all
0, if o<y <e, j A0 0 < Tr(x — %) < Tr(x — %) < oo, it follows

Y pdp _ P from Proposition 3 thatx — X&| < |x — x|, for all j # .
Ti(y') = / T —foy e <Wl<ar, (22) 11 addition, it follows readily thatls(x — xb) < Tr(x - %)
OOC’ otherwise implies that|x — x| < |x — R;)|, for all j # i andx € V",
whenT;(x—x5) = 0 andT¢(x— X)) = oo as well. Thusc €

The following result will be useful in the subsequentV’. Furthermore, sinc@(x —x%) < oo, thenx € Wy(X5).
analysis Hencex € V' N Wy (x%) andV' C V' N Wy (x%) fori € Z.

Proposition 3: Let 7j; > .. Given two points, ¢ € R?, u

with |€], || € (e, 7), the minimum-time of Problem 1  Theorem 1 suggests that th& element of the partition
satisfies that solves Problem 2 is the intersection of the winning et o
i the i™ pursuer with the cell of the standard Voronoi diagram
ce < [g] <[] <y = 0 <Tr(€) <Tr(¥)) < o0, (23) generated by the s@? that is associated with the generator
and, furthermore, x%. Note that the OP-DVD encodes the proximity relations
B between a target and the pursuers with respect to time of
€ <[l =¥ <np & 0<T7(€) = Ti(y) <oo. (24)

capture, for all pursuers i®.
Proof: First, notice that the minimum-time of Prob-

The followin roposition deals with the neighborin
lem 1 satisfies g prop g g

" relations between the set of pursuersgin
Te () — Tr(€) = () dp,  (p) == _r Proposition 4: Let V := {V*® : i € Z} be the standard

€] upp — f(p) Voronoi partition generated by the st and leti,j € 7
The functioné : (., 7;) — R is continuous and strictly With i # j. Then thei" pursuer is a neighbor of thg"
positive on (c.,7j;). From the mean value theorem forPursuer in the OP-DVD if and only if
Riemann integrals [14], it follows that there exists< |£| <
¢ < |¢| < 7 such that

|
Ti(y) — T(§) = ¢(p) dp = o(Q)([¢] = [€]). (25)

€] Proof: The proof follows immediately from Theorem 1
and the definition ofj¢, and it is thus omitted. [ |

i) The generators’, and >‘<§; correspond to two neigh-
boring nodes of the dual Delaunay graphlof
i) [Xp —Xp| < 20y

Since ¢(¢) > 0 for all e, < ¢ < 7y, the result follows
readily. ] Theorem 1 provides an efficient way for the construction
of the exact OP-DVD provided, however, that the sets
Wi, (x5), wherei € Z, are perfectly known. The following
corollary, which follows readily from Theorem 1, furnishes
€] < Y] = T (&) < T (¥). (26) an approximate solution to Problem 2.

Proof: The statement of the corollary for the case Corollary 2: Let V := {V’ : i € Z} be the standard
whene. < [£| < |[¢| < 7y has already been proved inVoronoi partition generated by the st An approximate

Corollary 1: Let7; > €. and let¢, ¢ be two given points
in R2. Then the minimum-time of Problem 1 satisfies



solution of Problem 2 is given by Proposition 6: Let yi(7) be the extremal curve generated
Vi={V, i€}, V' =V NWy(xp), i€ (28) by u’(r;6?), for 7' E. [0,1]. If the funcpongl
One important question that arises in the context of the Iy, ui] o= up + (ur(yl), ul), (30)
previous discussion is whether the approximate OP'DV@atisfiesl[yL ui] > 0 (< 0) for all = € [0, ¢], then the control

*

can _prc_>vide us with reliable information regar(_jin.g the attu ui (7; ") minimizes (maximizes) locally or globally the final
proximity relations among the pursuers’ (this informa-  time of Problem 1. Furthermore, ify?,ui] =0 for all 7 €

tion is encoded in the exact OP-DVD). [0,#], thenu® is an abnormal control law of Problem 1.

Proposition 5:Let V' := {V" : i € T} be the standard The main caveat here is that Proposition 6 does not allow one
Voronoi partition generated by the sBt Thei" pursuer is 1o characterize the global minimizing extremals of the ZNP,
a neighbor of thej*" pursuer if whereas the optimality (local or global) of any abnormal

i) the generators, andx’, correspond to two neighbor- extremals is still inconclusive. Therefore, in generagréh

ing nodes of the dual Delaunay graph16f dogs not exist a stra|.ghtforward method to conclude_ global

i) X, — x| < 2077 optimality of the solution of ZNP without either resorting t

exhaustive numerical techniques or restricting our atient

Proof: .T_h.e proof fOHOYVS readily from Proposition 4 to particular classes of drift terms, as those examinedtailde
and the definition of)z and1;. o, [10].

VI. THE SOLUTION OF THE¢™ MTP AND ITS RELATION

, VIl. SIMULATION RESULTS
TO THE ZERMELO' S NAVIGATION PROBLEM

In thi . highliaht the advant fth h In this section, we present simulation results to illugtrat
n this section, we hightig € advantages ot the schemge previous developments. We consider a scenario where

for addressing Problem 2 presented in Section V, by COMpe maneuvering target is faster than iRepursuer, but the

paring it with the approach introduced in our previous WorI§Ninning set of thei pursuer is non-empty as a result of the

g?ﬁk&;jﬁe(nf::\:/:!yb;feﬁ% k:gwﬁsfou:?]id pLhrzLeﬂrwse (SL/?SL:Egnformation pattern employed in Section Il. In particuiars
ur f d that the target h tant d and its evadi
with-anticipation), thus reducing thé" MTP to the Zer- assumec that e farget nas a constant speed and 1is evading

o trategy is given b
melo’s navigation problem (ZNP). The extremal controF gy 1s gV y

ui of the ZNP has necessarily the following structure: ay’ + p(y!)Sy', for e, < |y’| < ﬂ’

ut = up(cosh,sinh:), where §. satisfies the following ur(y') = ; - - %4 (31)
differential equation, known as theavigation formula(for My—., for |y'| > —,

more details see for example [15, pp. 239-247, pp. 370-373]) ly*| o

where M and o are some positive constants withl >
max{ip,a}, S is a nonzero skew symmetric matrixit 2,
wherey := ((1,0),ur), v := ((0,1),ur), @andu, 2, v1, 2 andp(y?) := /M2 — a2]y’|2/|Sy!|. Note that
denote partial spatial derivatives. It follows that theimat

00 = (1 — 1) cos B sin 0% + vy sin? 67 — iy cos? 6%, (29)

control u;, is determined up to a single parameter, namely _ aly’|?, for e. < |yf| < —,
6 = 6,(0) € [0,2n); we subsequently writar (£;07).  f(y') := (ur,y") = _ oy B3
One key observation here is that the solution of the ZNP M|y*| for |y*| > -

depends explicitly oni7 and its partial derivatives through
the navigation formula (29), in contrast to the solutionha# t
i" MTP which is independent of; under Assumption 1.  The intuition behind the evading strategy (31) is as fol-
Furthermore, the contral’ solving the ZNP is not express- lows: Let e;(y’) := y'/|y’| be the unit vector along the
ible, in general, in closed form, given that (5) along wit®)2 line connecting the target and ti# pursuer (“line-of-sight”
form a coupled system of three nonlinear equations, whiatirection), and letex(y*) be the unit vector orthogonal to
does not admit, in general, an analytic solution. e1(y') (“tangential” direction). The strategy of the target is to

Additionally, the navigation formula (29) does not nec_aIIoc:ate its velocity vector, which has a constant magmitud
M > up, along the directions;(y*) and ex(y*) so that

essarily furnish a global optimal solution to the ZNP. In X 4 _
particular, the pursuit strategy’ (¢;6") may either be: 1) 't_ moves with (_:o_nstant_ _speeM along the line-of-sight
maximizing (locally or globally) the time of capture, 2) dlrec_t|0n When_ it is sqfﬁmently far away from the pursuer,
minimizing (locally or globally) the time of capture or 3) a_nd it uses an increasingly Iargertang_entlal componensas i
be an abnormal control law (that is, an extremal law thacélstance from the.pursuerdecreases, in an effort to maneuve
corresponds to an abnormal extremal curve of the ZNP [16]:51_vvay or confuse its pursuer.

The following proposition provides a sufficient conditiaor f Assume for this example that the sPBt consists of ten
determining whether an extremal contrg) maximizes or locations, and leff be defined ag modulo the replacement
minimizes locally the time of capture of the moving targebf « by &, wherea is a positive scalar withh < a <

or it is an abnormal control law [15]-[17]. M. In this case, the capturability condition (13) reduces to

satisfies Assumption 1.



n'(0) < up/c, which implies thatj; = ip/a < M/a and to the pursuers’ actions, which is only partially known to
nf = up/a < M/a. Furthermore, it is easy to show that forthe pursuers. We have presented an efficient scheme for the
e < |y¥| < 77 the minimum-time to capture for Problem 1 construction of an approximate solution of this partitiugi

is given by problem by associating it with a standard Voronoi diagram.
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Figure 1(a) illustrates the exact OP-DVD along with the IeveFoundation

sets of T;(y?) for a = 0.7, e = 0.05 andiip = 1.2. An
approximation of the OP-DVD fof = 0.95 is illustrated in

Fig. 1(b).
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VIII. CONCLUSION

In this article, we have formulated a new dynamic parti-
tioning problem that deals with the characterization of the
sets of initial conditions from which a pursuer, from a given
team of pursuers, can capture a moving target faster than
any other pursuer from the same team. It is assumed that the
target can employ a feedback “evading” strategy in response



