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Abstract— We consider a Voronoi-like partitioning problem
for a team of pursuers distributed in the plane. Each element
of the partition is uniquely associated with a pursuer in the
following sense: if a moving target at a given instant of time
resides inside a particular member of the partition, then the
pursuer associated with this set can intercept this moving target
faster than any other pursuer. In our problem formulation,
the moving target does not necessarily travel along prescribed
trajectories, as it is typically assumed in the literature but,
instead, it can apply an “evading” strategy in response to the
actions of its pursuer. It is further assumed that the structure
of the evading strategy of the target is only partially knownto
the pursuers. We characterize an approximate solution to this
problem by associating it with a standard Voronoi partitioning
problem. Simulation results are presented to highlight the
theoretical developments.

I. I NTRODUCTION

We address a Voronoi-like partitioning problem for a set of
pursuers (moving generators) whose objective is to capture
moving targets in the plane. The solution of this problem
furnishes a scheme that assigns a pursuer from a given team
of pursuers to a moving target with respect to a generalized
proximity metric, namely the minimum capture time (rather
than with the Euclidean distance metric as in the standard
Voronoi diagram problem). The problem considered in this
work can be put under the umbrella of dynamic Voronoi
diagram problems, that is, Voronoi-like partitioning problems
where the generators are moving points in the plane [1]–[8].
Specifically, we consider the following partitioning problem:
Given a team ofn vehicles (pursuers), which are distributed
overn distinct locations in the plane, partition the plane into
n “capture zones,” such that each pursuer is assigned to a
unique capture zone. The rule that assigns each pursuer to
a capture zone is the following: a pursuer associated with a
particular capture zone, can capture a moving target traveling
within the same zone at a given instant of time, faster than
any other pursuer from the given set of pursuers. In our
problem formulation, we do not constraint the moving target
to follow a prescribed trajectory, as it is usually assumed
in the literature [3], [4]. Instead, the target can apply an
“evading” strategy in response to the actions of its pursuer.
The target’s strategy is a feedback control law that depends
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only on the relative position between the moving target and
its pursuer.

In the special case, when the “evading” strategy of the
target is perfectly known to the pursuers, one deals with a
problem ofpursuit-with-anticipation[9]. It turns out that in
this case, the locally optimal control strategy of each pursuer
can be derived from the solution of the classic Zermelo’s
navigation problem (ZNP for short). The partitioning prob-
lem for this pursuit-with-anticipation scenario was addressed
in our previous work in [10]. In contrast to the approach
presented in [10], in the current framework, we assume that
the pursuers have only partial knowledge of the evading strat-
egy of the target. The standing assumption of the proposed
approach is that the projection of the target’s velocity on
the relative position vector of the moving target from its
pursuer is only a function of the relative distance between
the target and its pursuer. Under the previous assumptions,it
is shown that the globally optimal control strategy for each
pursuer can be characterized in feedback form by making
use of the results presented in [11], [12]. It turns out in this
case that the feedback control law that solves the optimal
pursuit problem is completely independent of the evading
strategy of the target. Furthermore, it is demonstrated that the
minimum capture time is a monotone function of the relative
distance between the pursuer and the target, thus allowing us
to associate the solution of the partitioning problem with the
standard Voronoi diagram generated by the initial positions
of the pursuers.

The rest of the paper is organized as follows. Sections II
and III present the formulation and the feasibility of the opti-
mal pursuit problem, respectively. Subsequently, Sections V
and IV present the formulation and an approximate solution
of the dynamic partitioning problem, respectively. Section VI
gives a short comparison of the proposed scheme and the
approach followed in our previous work [10]. Simulation
results are presented in Section VII. Finally, Section VIII
concludes the paper with a summary of remarks.

II. FORMULATION OF THE OPTIMAL PURSUIT PROBLEM

Consider a team ofn pursuers located at timet = 0 at n
distinct points in the plane, denoted byP := {x̄iP ∈ R

2, i ∈
I}, whereI := {1, . . . , n}. It is assumed that the kinematics
of the ith pursuer starting at point̄xiP ∈ P are given by

ẋiP = uiP , xiP(0) = x̄iP , (1)

where xiP := (xiP , y
i
P) ∈ R

2 and x̄iP := (x̄iP , ȳ
i
P) ∈ R

2

denote the position vectors of theith pursuer at timet andt =



0, respectively, anduiP is the control input (velocity vector)
of the ith pursuer. We assume thatuiP ∈ UP , whereUP

consists of all piece-wise continuous functions taking values
in the setUP = {z ∈ R

2 : |z| ≤ ūP}, whereūP is a positive
constant (maximum allowable speed of the pursuers). The
goal of each pursuer, which is initially located at a point in
P , is to capture a moving target detected in its vicinity. It
is assumed that the kinematics of such a moving target are
described by

ẋT = uT , xT (0) = x̄T , (2)

where xT := (xT , yT ) ∈ R
2 and x̄T := (x̄T , ȳT ) ∈ R

2

denote the target’s position vectors at timet and t = 0,
respectively, anduT is the control input (velocity vector)
of the target. It is further assumed that the moving target
can employ an evading strategy in response to the pursuer’s
actions. In particular,uT is a feedback control law, which
depends on the relative position of the target from theith

pursuer, that is,uT = uT (xT − xiP ).

Assumption 1:There exists a Lipschitz continuous func-
tion f : R+ 7→ R such that the evading strategyuT of the
target satisfies the following condition

〈uT , xT − xiP 〉 = f(|xT − xiP |). (3)

The interpretation of Assumption 1 is as follows: The pro-
jection of the velocity vector of the moving target on the
relative position vector of the moving target from theith

pursuer depends only on the relative distance between the
target and its pursuer. Furthermore, in this work, we do not
explicitly assume that the maximum allowable speed of the
target is strictly less than̄uP . In order, however, to avoid
situations where the maneuvering target can always escape
capture if it is faster than its pursuer, it is assumed that the
structure of the evading strategy of the target is partially
known to each pursuer. Specifically, we assume that

f(z) ≤ f̄(z), for all z ≥ 0, (4)

where f̄(·) is a continuous function, which is known to all
of the pursuers. The function̄f provides a bound on the rate
at which the target can move away from its pursuer. As it
will be shown in the sequel, condition (4) will allow us to
approximate thewinning setof the ith pursuer, that is, the
set of initial positions of a moving target from which theith

pursuer can capture the target in finite time.

To this end, letxT (·;uT , x̄T ) and xiP(·;u
i
P , x̄

i
P) denote

the trajectories of the target and theith pursuer generated by
uT and uiP and originating fromx̄T and x̄iP , respectively.
The objective of each pursuer is to determine an admissi-
ble pursuit strategy that minimizes the timeTf such that
|xT (t;uT , x̄T ) − xiP(t;u

i
P , x̄

i
P)| > ǫc for all t < Tf (time

of first capture), for a sufficiently smallǫc > 0, whereǫc is
the capturability radiusof the pursuit problem.

To this end, let us consider the state transformationyi :=
xT − xiP . Equation (1) can then be written in the following
compact form

ẏi = ui + uT (y
i), yi(0) = ȳi := x̄T − x̄iP , (5)

where ui := −uiP . Thus, the optimal pursuit strategy of
the ith pursuer follows from the solution of the following
minimum-time problem.

Problem 1 (ith MTP): Let the system described by equa-
tion (5), and letuT satisfy Assumption 1. Determine the
control inputui ∈ UP such that

i) The trajectoryyi∗ : [0, Tf ] 7→ R
2 generated by the

control ui∗ satisfies the boundary conditions

yi∗(0) = ȳi, |yi∗(Tf)| ≤ ǫc. (6)

ii) The controlui∗ minimizes, along the trajectoryyi∗, the
cost functionalJ(ui) := Tf = Tf(ȳ

i).

Problem 1 can be interpreted as a problem of steering
an integrator from̄yi to a ball of radiusǫc centered at the
origin, in the presence of a spatially-varying driftuT (yi) in
minimum-time. If the functionuT is perfectly known to the
pursuers, then Problem 1 can be reduced to a special case
of Zermelo’s navigation problem. Here we employ, however,
a different approach that will allow us to characterize the
unique, global solution of Problem 1 in closed form, which
does not follow directly from the solution of the ZNP. The
following proposition gives the solution of Problem 1.

Proposition 1: If Problem 1 is feasible, then its solution
is unique, and it is given in feedback form as follows

ui∗ = −ūP
yi∗
|yi∗|

. (7)

Proof: Let |yi|2 = 〈yi, yi〉 and suppose thatyi is
a trajectory generated from some admissible controlui on
[0, Tf ]. Then

d

dt
|yi|2 =

d

dt
〈yi, yi〉 = 2〈yi, ui + uiT (y

i)〉. (8)

In light of Assumption 1, and equations (5) and (8), it follows
that, for all t ∈ [0, Tf ],

η̇i =
f(ηi)

ηi
+ vi, ηi(0) = η̄i := |ȳi|, (9)

whereηi := |yi| andvi is a new scalar control input given
by

vi :=
〈ui, yi〉

ηi
. (10)

First, we show thatηi(t) = |yi(t)| > 0 for all t ∈ [0, Tf ].
Indeed, let us assume that|ȳi| > ǫc (if |ȳi| ≤ ǫc, then theith

MTP admits a trivial solution andTf = 0). By continuity, if
ηi(t1) = 0 for somet1 > 0, then there existst2 < t1 such
that ηi(t2) = ǫc. By definition,Tf = inf{τ : ηi(τ) = ǫc}.
It follows that Tf ≤ t2 < t1, and henceηi(t) ≥ ǫc > 0,
for all t ∈ [0, Tf ]. It follows that the rhs of equation (9) is
well-defined, andη̇i(t) exists for allt ∈ [0, Tf ].

By virtue of the Cauchy-Schwartz inequality, it follows
from (10) that|vi| ≤ ūP . Therefore, Problem 1 reduces to the
problem of determining a scalar controlvi∗ with |vi∗| ≤ ūP
that will steer the scalar system described by equation (9)
to the interval[0, ǫc] in minimum time. In [11], it is shown



that the solution of this scalar min-time problem is given by
vi∗ = −ūP . Therefore, (10) implies that

〈ui∗, y
i
∗〉 = −ūPη

i
∗, (11)

which implies thatui∗ is a vector of length̄uP parallel to the
unit vector−yi∗/|y

i
∗|, thus completing the proof.

Proposition 1 implies, in particular, that the solution of
the optimal control Problem 1 is independent of the evading
strategy of the target,uT . However, as we shall see next, the
characterization of the winning set of theith pursuer depends
on the evading strategy of the target, hence onf as well.

III. T HE WINNING SETS OF THEPURSUERS

Next, we examine the feasibility of Problem 1 for a given
ȳi ∈ R

2. This will allow us to characterize the winning set
of the ith pursuer, that is, the set of the initial positions of
the target from which it can be captured by theith pursuer in
finite time. In other words, the winning set of theith pursuer
is given by

Wf (x̄
i
P ) := {x ∈ R

2 : Tf(x− x̄iP) <∞}, (12)

where Tf(x − x̄iP) is the time of capture of the target by
the ith pursuer, when the target resides initially atx. First,
note that if |ȳi| ≤ ǫc, then capture occurs trivially att = 0.
Hence, the set{y ∈ R

2 : |y| ≤ ǫc} is necessarily a subset of
the winning set for each pursuer, regardless of the dynamics
of the pursuer or the target. Next, we compute the winning
set for the non-trivial case|ȳi| > ǫc.

Proposition 2: Let ǫc > 0. Then Problem 1 is feasible for
the ith pursuer for all|ȳi| > ǫc if and only if

f(z) < ūPz, for all ǫc ≤ z ≤ |ȳi|. (13)

Proof: Proposition 1 implies that the closed loop
dynamics of (5) can be written in terms ofηi = |yi| as
follows

η̇i =
f(ηi)

ηi
− ūP , ηi(0) = η̄i. (14)

Condition (13) implies that

η̇i =
f(ηi)

ηi
− ūP < 0, for all ǫc ≤ ηi ≤ |ȳi|. (15)

From (15) it follows that the set{z : 0 < z ≤ ǫc} is
an attractive invariant set for (14) for all initial conditions
ηi(0) > ǫc. Furthermore,̇ηi < 0 for ηi = ǫc. It follows that
there existsT = T (ǫc), such thatηi(t) ≤ ǫc for t ≥ T (ǫc),
thus showing feasibility of the Problem 1.

Conversely, suppose there existsη̃i = |ỹ|, whereỹ ∈ R
2,

such thatǫc ≤ η̃i ≤ |ȳi| and

f(η̃i) ≥ ūP η̃
i. (16)

Notice that the setS := {z : z ≥ η̃i} is invariant for (14)
sincef(z)/z − ūP ≥ 0 for all z ∈ bdS. Sinceηi(0) ∈ S,
it follows that ηi(t) ≥ η̃i, for all t ≥ 0, which implies that
the Problem 1 is not feasible forǫc < η̃i. If, on the other
hand,ǫc = η̃i then eitherf(ǫc) > ūPǫc or f(ǫc) = ūPǫc.

In the first case, any trajectory starting fromηi(0) > ǫc
can never reach the set{z : 0 ≤ z ≤ ǫc}. In the second
case,ηi = ǫc is an equilibrium solution for (14). Since the
right hand side of (14) is Lipschitz continuous atηi = ǫc,
this equilibrium can only be reached asymptotically [13]. In
both cases, Problem 1 is infeasible.

Henceforth, we refer to (13) as thecapturability condition
of Problem 1. In order to characterize the winning set of the
ith pursuer, let

η̄f := inf{z ∈ [ǫc,∞) : f(z) ≥ ūPz}. (17)

Note thatη̄f ≥ ǫc. If f(z) < ūPz for all z ∈ [ǫc,∞), we
take η̄f := ∞, and henceWf (x̄

i
P ) = R

2. If f(z) ≥ ūPz
for all z ∈ [ǫc,∞), then η̄f = ǫc, and henceWf (x̄

i
P ) =

{x ∈ R
2 : |x̄iP − x| ≤ ǫc}. Finally, if ǫc < η̄f < ∞,

then it follows readily from (17) thatf(z) < ūPz for all
ǫc ≤ z < η̄f and hence, in light of Proposition 2,Wf (x̄

i
P ) :=

{x ∈ R
2 : |x̄iP − x| < η̄f}. For all cases the winning set of

the ith pursuer can be defined compactly as

Wf (x̄
i
P) := {x : |x̄iP−x| < η̄f}∪{x : |x̄iP−x| ≤ ǫc}. (18)

Note, however, that theith pursuer does not know exactly its
winning set, since it has only partial knowledge off , and
consequently of̄ηf as well. As a result, each pursuer can
only compute an approximation of its actual winning set. To
this end, let

η̄f̄ := inf{z ∈ [ǫc,∞) : f̄(z) ≥ ūPz}. (19)

In light of (4), it follows that η̄f̄ ≤ η̄f . Let

Wf̄ (x̄
i
P) := {x : |x̄iP −x| < η̄f̄}∪{x : |x̄iP −x| ≤ ǫc}. (20)

Clearly, Wf̄ (x̄
i
P) ⊆ Wf (x̄

i
P ). Hence,Wf̄ (x̄

i
P ) is a conser-

vative approximation of the winning setWf (x̄
i
P). Note that,

contrary toWf (x̄
i
P), the ith pursuer has perfect knowledge

of Wf̄ (x̄
i
P ). Furthermore, the closeness of the approximation

of the winning set of theith pursuer withWf̄ (x̄
i
P) depends

on the differencēηf − η̄f̄ .

IV. T HE DYNAMIC VORONOI PARTITIONING PROBLEM

Next, we formulate a dynamic Voronoi-like partitioning
problem based on the minimum time-to-go of theith MTP,
which will allow us to assign a pursuer starting from a point
in P to a moving target traveling in the plane. The space we
wish to partition, denoted henceforth asW , is the union of
all Wη̄f (x̄

i
P), wherei ∈ I.

Problem 2: Given a collection ofn pursuers, initially
located at distinct points inP , and the cost function

ci(x, x̄iP ) := Tf(x− x̄iP), (21)

whereTf is the minimum time from the solution of Prob-
lem 1, determine a partitionV = {V i : i ∈ I} of V such
that

i) W =
⋃
i∈I Vi

ii) for all x ∈ V i, c(x̄iP , x) <∞



iii) c(x̄iP , x) ≤ c(x̄jP , x) for i, j ∈ I with j 6= i.

Henceforth, we shall refer to the solution of Problem 2 as
the Optimal Pursuit Dynamic Voronoi Diagram (OP-DVD).
The setV i, constitutes a Voronoi cell (Dirichlet domain) of
the OP-DVD. We say that theith and jth pursuers, where
i, j ∈ I, are neighbors if and only if the setV i ∩ Vj

is neither non-empty nor a singleton. Because the evading
strategy of any moving target is not perfectly known, we
can only provide approximate solutions to Problem 2, as it
is discussed next.

V. CONSTRUCTION OF ANAPPROXIMATE OP-DVD

In order to construct an approximate OP-DVD, we will
first investigate whether the minimum time-to-go of Prob-
lem 1 belongs to a class of generalized metrics that are
associated with Voronoi-like partitions, for which efficient
computational techniques exist in the literature [1].

To this end, observe that direct integration of equation (14)
yields

Tf(ȳ
i) :=






0, if 0 ≤ |ȳi| ≤ ǫc,∫ |ȳi|

ǫc

µ dµ

ūPµ− f(µ)
, if ǫc < |ȳi| < η̄f ,

∞, otherwise.

(22)

The following result will be useful in the subsequent
analysis

Proposition 3: Let η̄f > ǫc. Given two pointsξ, ψ ∈ R
2,

with |ξ|, |ψ| ∈ (ǫc, η̄f ), the minimum-time of Problem 1
satisfies

ǫc < |ξ| < |ψ| < η̄f ⇔ 0 < Tf(ξ) < Tf(ψ) <∞, (23)

and, furthermore,

ǫc < |ξ| = |ψ| < η̄f ⇔ 0 < Tf(ξ) = Tf(ψ) <∞. (24)

Proof: First, notice that the minimum-time of Prob-
lem 1 satisfies

Tf(ψ)− Tf(ξ) =

∫ |ψ|

|ξ|

φ(µ) dµ, φ(µ) :=
µ

ūPµ− f(µ)
.

The functionφ : (ǫc, η̄f ) 7→ R is continuous and strictly
positive on (ǫc, η̄f ). From the mean value theorem for
Riemann integrals [14], it follows that there existsǫc < |ξ| ≤
ζ ≤ |ψ| < η̄f such that

Tf(ψ) − Tf(ξ) =

∫ |ψ|

|ξ|

φ(µ) dµ = φ(ζ)(|ψ| − |ξ|). (25)

Since φ(ζ) > 0 for all ǫc < ζ < η̄f , the result follows
readily.

Corollary 1: Let η̄f > ǫc and letξ, ψ be two given points
in R

2. Then the minimum-time of Problem 1 satisfies

|ξ| ≤ |ψ| ⇒ Tf(ξ) ≤ Tf(ψ). (26)

Proof: The statement of the corollary for the case
when ǫc < |ξ| ≤ |ψ| < η̄f has already been proved in

Proposition 3. The proof for the other cases, namely, when
|ξ| ≤ ǫc < |ψ| < η̄f , or |ξ| ≤ |ψ| ≤ ǫc, or ǫc < |ξ| < η̄f ≤
|ψ|, and η̄f ≤ |ξ| ≤ |ψ| follows trivially from (22).

Next, we present the solution of Problem 2.

Theorem 1:Let V := {V i, i ∈ I} be the standard
Voronoi partition generated by the setP , and assume that
η̄f > ǫc. The solution of Problem 2 is given by

V i = V i ∩Wf (x̄
i
P ), i ∈ I, (27)

whereWf (x̄
i
P ) is the winning set of theith pursuer, given

by (18).

Proof: Let x ∈ V i ∩Wf (x̄
i
P). In particular,x ∈ V i if

and only if |x− x̄iP | ≤ |x− x̄
j
P |, for all j 6= i, which implies,

in light of Corollary 1, thatTf(x− x̄iP) ≤ Tf(x− x̄
j
P ) for all

i 6= j. Furthermore, ifx ∈ Wf (x̄
i
P ) thenTf(x − x̄iP) < ∞.

It follows that x ∈ V i and henceV i ∩Wf (x̄
i
P ) ⊆ V i for all

i ∈ I.

Next, assumex ∈ V i. By the definition ofV i, it follows
that Tf(x − x̄iP) < ∞ andTf(x − x̄iP ) ≤ Tf(x − x̄

j
P), for all

j 6= i. If 0 < Tf(x − x̄iP ) ≤ Tf(x − x̄
j
P ) < ∞, it follows

from Proposition 3 that|x − x̄iP | ≤ |x − x̄
j
P |, for all j 6= i.

In addition, it follows readily thatTf(x− x̄iP ) ≤ Tf(x− x̄
j
P )

implies that|x − x̄iP | ≤ |x − x̄
j
P |, for all j 6= i and x ∈ V i,

whenTf(x− x̄
j
P) = 0 andTf(x− x̄

j
P ) = ∞ as well. Thusx ∈

V i. Furthermore, sinceTf(x− x̄iP) <∞, thenx ∈ Wf (x̄
i
P ).

Hencex ∈ V i ∩Wf (x̄
i
P) andV i ⊆ V i ∩Wf (x̄

i
P ) for i ∈ I.

Theorem 1 suggests that theith element of the partition
that solves Problem 2 is the intersection of the winning set of
the ith pursuer with the cell of the standard Voronoi diagram
generated by the setP that is associated with the generator
x̄iP . Note that the OP-DVD encodes the proximity relations
between a target and the pursuers with respect to time of
capture, for all pursuers inP .

The following proposition deals with the neighboring
relations between the set of pursuers inV .

Proposition 4: Let V := {V i : i ∈ I} be the standard
Voronoi partition generated by the setP and let i, j ∈ I
with i 6= j. Then theith pursuer is a neighbor of thejth

pursuer in the OP-DVD if and only if

i) The generators̄xiP and x̄
j
P correspond to two neigh-

boring nodes of the dual Delaunay graph ofV .
ii) |x̄iP − x̄

j
P | ≤ 2η̄f .

Proof: The proof follows immediately from Theorem 1
and the definition of̄ηf , and it is thus omitted.

Theorem 1 provides an efficient way for the construction
of the exact OP-DVD provided, however, that the sets
Wη̄f (x̄

i
P), wherei ∈ I, are perfectly known. The following

corollary, which follows readily from Theorem 1, furnishes
an approximate solution to Problem 2.

Corollary 2: Let V := {V i : i ∈ I} be the standard
Voronoi partition generated by the setP . An approximate



solution of Problem 2 is given by

Ṽ := {Ṽ i, i ∈ I}, Ṽ i = V i ∩Wη̄f̄
(x̄iP ), i ∈ I. (28)

One important question that arises in the context of the
previous discussion is whether the approximate OP-DVD
can provide us with reliable information regarding the actual
proximity relations among the pursuers inP (this informa-
tion is encoded in the exact OP-DVD).

Proposition 5: Let V := {V i : i ∈ I} be the standard
Voronoi partition generated by the setP . The ith pursuer is
a neighbor of thejth pursuer if

i) the generators̄xiP and x̄jP correspond to two neighbor-
ing nodes of the dual Delaunay graph ofV

ii) |x̄iP − x̄
j
P | ≤ 2η̄f̄ .

Proof: The proof follows readily from Proposition 4
and the definition of̄ηf̄ and η̄f .

VI. T HE SOLUTION OF THE iTH MTP AND ITS RELATION

TO THE ZERMELO’ S NAVIGATION PROBLEM

In this section, we highlight the advantages of the scheme
for addressing Problem 2 presented in Section V, by com-
paring it with the approach introduced in our previous work
[10]. Specifically, in [10], we assumed that the evading
strategyuT was perfectly known to the pursuers (pursuit-
with-anticipation), thus reducing theith MTP to the Zer-
melo’s navigation problem (ZNP). The extremal control
ui∗ of the ZNP has necessarily the following structure:
ui∗ = ūP(cos θ

i
∗, sin θ

i
∗), where θi∗ satisfies the following

differential equation, known as thenavigation formula(for
more details see for example [15, pp. 239-247, pp. 370-373])

θ̇i∗ = (µ1 − ν2) cos θ
i
∗ sin θ

i
∗ + ν1 sin

2 θi∗ − µ2 cos
2 θi∗, (29)

whereµ := 〈(1, 0), uT 〉, ν := 〈(0, 1), uT 〉, andµ1, µ2, ν1, ν2
denote partial spatial derivatives. It follows that the optimal
control ui∗ is determined up to a single parameter, namely
θ̄i = θ∗(0) ∈ [0, 2π); we subsequently writeui∗(t; θ̄

i).
One key observation here is that the solution of the ZNP
depends explicitly onuT and its partial derivatives through
the navigation formula (29), in contrast to the solution of the
ith MTP which is independent ofuT under Assumption 1.
Furthermore, the controlui∗ solving the ZNP is not express-
ible, in general, in closed form, given that (5) along with (29)
form a coupled system of three nonlinear equations, which
does not admit, in general, an analytic solution.

Additionally, the navigation formula (29) does not nec-
essarily furnish a global optimal solution to the ZNP. In
particular, the pursuit strategyui∗(t; θ̄

i) may either be: 1)
maximizing (locally or globally) the time of capture, 2)
minimizing (locally or globally) the time of capture or 3)
be an abnormal control law (that is, an extremal law that
corresponds to an abnormal extremal curve of the ZNP [16]).
The following proposition provides a sufficient condition for
determining whether an extremal controlui∗ maximizes or
minimizes locally the time of capture of the moving target
or it is an abnormal control law [15]–[17].

Proposition 6: Let yi∗(τ) be the extremal curve generated
by ui∗(τ ; θ̄

i), for τ ∈ [0, t]. If the functional

I[yi∗, u
i
∗] := ūP + 〈uT (y

i
∗), u

i
∗〉, (30)

satisfiesI[yi∗, u
i
∗] > 0 (< 0) for all τ ∈ [0, t], then the control

ui∗(τ ; θ̄
i) minimizes (maximizes) locally or globally the final

time of Problem 1. Furthermore, ifI[yi∗, u
i
∗] = 0 for all τ ∈

[0, t], thenui∗ is an abnormal control law of Problem 1.

The main caveat here is that Proposition 6 does not allow one
to characterize the global minimizing extremals of the ZNP,
whereas the optimality (local or global) of any abnormal
extremals is still inconclusive. Therefore, in general, there
does not exist a straightforward method to conclude global
optimality of the solution of ZNP without either resorting to
exhaustive numerical techniques or restricting our attention
to particular classes of drift terms, as those examined in detail
in [10].

VII. S IMULATION RESULTS

In this section, we present simulation results to illustrate
the previous developments. We consider a scenario where
the maneuvering target is faster than theith pursuer, but the
winning set of theith pursuer is non-empty as a result of the
information pattern employed in Section II. In particular,it is
assumed that the target has a constant speed and its evading
strategy is given by

uT (y
i) =





αyi + ρ(yi)Syi, for ǫc ≤ |yi| ≤
M

α
,

M
yi

|yi|
, for |yi| >

M

α
,

(31)

whereM and α are some positive constants withM >
max{ūP , α}, S is a nonzero skew symmetric matrix inR2×2,
andρ(yi) :=

√
M2 − α2|yi|2/|Syi|. Note that

f(yi) := 〈uT , y
i〉 =





α|yi|2, for ǫc ≤ |yi| ≤
M

α
,

M |yi| for |yi| >
M

α
,

(32)

satisfies Assumption 1.

The intuition behind the evading strategy (31) is as fol-
lows: Let e1(yi) := yi/|yi| be the unit vector along the
line connecting the target and theith pursuer (“line-of-sight”
direction), and lete2(yi) be the unit vector orthogonal to
e1(y

i) (“tangential” direction). The strategy of the target is to
allocate its velocity vector, which has a constant magnitude
M > uP , along the directionse1(yi) and e2(y

i) so that
it moves with constant speedM along the line-of-sight
direction when it is sufficiently far away from the pursuer,
and it uses an increasingly larger tangential component as its
distance from the pursuer decreases, in an effort to maneuver
away or confuse its pursuer.

Assume for this example that the setP consists of ten
locations, and let̄f be defined asf modulo the replacement
of α by ᾱ, where ᾱ is a positive scalar withα ≤ ᾱ <
M . In this case, the capturability condition (13) reduces to



ηi(0) < ūP/α, which implies that̄ηf = ūP/α < M/α and
η̄f̄ = ūP/ᾱ < M/ᾱ. Furthermore, it is easy to show that for
ǫc < |ȳi| < η̄f the minimum-time to capture for Problem 1
is given by

Tf(ȳ
i) = −

1

α
ln

(
ūP − α|ȳi|

ūP − αǫc

)
. (33)

Figure 1(a) illustrates the exact OP-DVD along with the level
sets ofTf(ȳi) for α = 0.7, ǫc = 0.05 and ūP = 1.2. An
approximation of the OP-DVD for̄α = 0.95 is illustrated in
Fig. 1(b).

Next, we examine the discrepancies between the neigh-
boring relations among the pursuers of the exact and the
approximate OP-DVDs. In light of Proposition 5, given
i, j ∈ I with i 6= j, the ith and j th pursuers are neigh-
bors provided that the generatorsx̄iP , x̄

j
P ∈ P correspond

to two neighboring nodes of the dual Delaunay graph of
the standard Voronoi diagram generated by the setP and
|x̄iP − x̄

j
P | < 2η̄f̄ = 2ūP/ᾱ. For this particular example, we

can explicitly compute a lower bound of∆η̄ := η̄f − η̄f̄
as a function of the error∆α := ᾱ − α. Specifically,
∆η̄ = ūP/α − ūP/ᾱ = ūP∆α/ᾱα, which implies that
∆η̄ ≥ ūP∆α/ᾱ

2. It follows readily from Propositions 4
and 5 that if |x̄iP − x̄

j
P | < 2η̄f̄ + 2ūP∆α/ᾱ

2 ≤ 2η̄f , then
the ith andj th pursuers are neighbors of the exact OP-DVD
although they may not be neighbors of the approximate OP-
DVD. Consequently, the accuracy of the knowledge about
the neighboring relations between the pursuers of the exact
OP-DVD is contingent upon the smallness of the error∆α.
The situation is illustrated in Fig. 1, where the approximate
OP-DVD conceals the fact that the1st and the10th, and
the 7th and the8th are neighboring pursuers of the exact
OP-DVD.
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(a) Minimum-time wave fronts for
Problem 1.
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Fig. 1. The exact and an approximate solution of Problem 2 for a
team of ten pursuers.

VIII. C ONCLUSION

In this article, we have formulated a new dynamic parti-
tioning problem that deals with the characterization of the
sets of initial conditions from which a pursuer, from a given
team of pursuers, can capture a moving target faster than
any other pursuer from the same team. It is assumed that the
target can employ a feedback “evading” strategy in response

to the pursuers’ actions, which is only partially known to
the pursuers. We have presented an efficient scheme for the
construction of an approximate solution of this partitioning
problem by associating it with a standard Voronoi diagram.
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