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Abstract

This work examines the simultaneous use of single-
gimbal Variable Speed Control Moment Gyroscopes
(VSCMGs) as spacecraft attitude control actuators and
energy storage devices. The resulting theory, initially
developed in [5], is re�ned and simpli�ed. The validity
of the theory is demonstrated via numerical simula-
tion.

1 Introduction

Space vehicle programs consistently seek to reduce
satellite bus mass to increase payload capacity and/or
reduce launch and fabrication costs. In addition, satel-
lite system performance demands continually challenge
space vehicle designers. Flywheel-based systems pro-
viding both energy storage and attitude control address
the requirement of reducing the satellite bus mass by
combining subsystem functionality. In particular, the
Air Force Research Laboratory's (AFRL)'s Flywheel
Attitude Control, Energy Transmission and Storage
(FACETS) program will combine all, or part, of the en-
ergy storage, attitude control, and power management
and distribution (PMAD) subsystems into a single sys-
tem, signi�cantly decreasing bus mass (and volume) [5].

An Integrated Power and Attitude Control System
(IPACS) such as FACETS employs ywheels as \me-
chanical batteries" to perform the attitude control and
energy storage functions. The IPACS concept elimi-
nates vehicle mass while improving system performance
and lifetime. Several attempts have been proposed in
the past for developing an IPACS system. The use of
ywheels instead of batteries to store energy on space-
craft was suggested by Roes [15] as early as 1961, when
a 17 W hr/kg composite ywheel spinning at 10K to
20K RPM on magnetic bearings was proposed. The
con�guration included two counter-rotating ywheels,
and the author did not mention the possibility of us-
ing the momentum for attitude control. This idea
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grew over the next three decades. References [2, 3, 12]
are representative of the period from 1970-1977, dur-
ing which the term IPACS was coined [2] to describe
an integrated power storage and attitude control sys-
tem; this system was envisioned that could signi�-
cantly reduce payload to orbit for shuttle-era satellite
programs. Around that time NASA, in collaboration
with the Draper Laboratory, completed various con-
cept feasibility studies and even held several working
groups in order to investigate potential implementa-
tion of IPACS [1, 4, 6, 14, 19]. Up until now, the
well-documented IPACS concept has never been im-
plemented due to high ywheel spin rates required for
an IPACS system (on the order of 40K to 80K RPM
versus less than 5K RPM for conventional Control Mo-
ment Gyroscopes (CMGs) or momentum wheel actua-
tors). At such high speeds, the actuators quickly wear
out mechanical bearings. Additional challenges include
ywheel material mass/durability and sti�ness inade-
quacies. Recently, the advent of advanced composite
materials and magnetic bearing technology enables has
enabled realistic IPACS development [5, 8, 18].

The control problem of simultaneous energy storage
and attitude control is far from trivial, even in its sim-
plest conceivable form. While decoupling the attitude
control and energy storage functions may be a work-
able solution, research in related areas suggests it may
not be the best approach [5]. It has been shown in [18]
that simultaneous momentum management and power
tracking can be accomplished with four or more wheels
in momentum wheel (MW) mode. This is done by
adjusting the wheel acceleration in the null subspace
of the required attitude control torque dynamics ma-
trix in such a way as to generate the required vehicle
power while not imparting adverse external torque on
the spacecraft. Furthermore, this method was shown
to be practical for tracking the required attitude and
power history pro�les for several types of satellites and
realistic on-orbit examples. [8, 18].

In this work, we revisit the problem of simultane-
ous attitude and power tracking for a rigid space-
craft using Variable Speed Control Moment Gyroscopes
(VSCMGs). The derivation is based on an arbitrary
number of VSCMGs and is independent of any par-
ticular VSCMG con�guration. The use of VSCMGs
instead of momentum wheels may be bene�cial in cer-



tain applications that require large slew maneuvers.
On the other hand, a MW-based IPACS system seems
to be better suited for station-keeping applications.
We derive the exact, nonlinear equation for the space-
craft/VSCMG system using minimal assumptions. The
explicit derivation presented herein enables direct ap-
plication of the theory to an actual satellite system.
The generality of the theory permits application to a
wide variety of spacecraft missions. This creates exi-
bility for future space systems contemplating an IPACS
using VSCMGs for attitude control and energy storage.

2 Theoretical Developments

2.1 Notation
Matrices will be presented in bold as in A, vectors will
be presented with an arrow as in ~x, and vector com-
ponents with respect to a particular basis (essentially
used as n� 1 column matrices) will be denoted in ital-
ics as in x. The derivative of a vector ~x with respect
to the inertial reference frame will be denoted by

Nd

dt
(~x) � _~x

For convenience, in representing vector cross products,
we de�ne the skew symmetric operator ~x 2 R

3�3 , for
x 2 R

3 , which abbreviates the cross product between
a vector x and a vector y as in ~x � ~y = ~xy where ~x is
given by

~x =

"
0 �x3 x2
x3 0 �x1
�x2 x1 0

#

The 
 operator represents the Kronecker product of
two matrices. For any two matrices A 2 R

n�m and
B 2 R

p�q the matrix A 
 B is the Rmp�nq matrix
given by

A
 B =

2
664

a11B a12B � � � a1nB
a21B a22B � � � a2nB
...

...
...

am1B am2B � � � amnB

3
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2.2 Assumptions and De�nitions
We make several key assumptions throughout the
derivation of the system model. These assumptions
will be identi�ed individually in the text as they be-
come appropriate. For the development of the equa-
tions of motion, we consider a system consisting of
a rigid spacecraft with body �xed reference frame, B,
which includes an array of n rigid VSCMGs with ref-
erence frames �xed to each of the VSCMG gimbals,
G1;G2; : : : ;Gn. Figure 1 (taken from [17]) illustrates
the G frame for one VSCMG. As shown in Fig. 1, the
frames attached to the n VSCMGs, Gj , j = 1; :::; n,
are characterized by an orthogonal set of unit vectors,
ĝsj , ĝtj , and ĝgj , j = 1; :::; n, where the subscripts s,
t, and g denote the spin, transverse and gimbal axes,
respectively, satisfying the relation

ĝgj � ĝsj = ĝtj ; j = 1; : : : ; n

Figure 1: Variable Speed Control Moment Gyro (from
[17]).

The matrix LBGj 2 R3�3 is the rotation matrix trans-
forming vectors expressed as components in reference
frame Gj to frame B and conversely, LGjB = LTBGj is
the rotation matrix from B to Gj . Conveniently, the
matrix LBGj 2 R3�3 can be de�ned as

LBGj = [ĝsj ĝtj ĝgj ] (1)

Next, let 
 2 R
n be the column vector that contains

the wheel rotational speeds of the n VSCMGs, 
j , j =
1; : : : ; n, and let  2 R

n be the column vector that
contains the gimbal angles of the n VSCMGs, j , j =

1; : : : ; n. Then, _
 2 R
n , _ 2 R

n , and � 2 R
n are

de�ned similarly.

To simplify the presentation of the results, we �rst de-
�ne Gs 2 R3�n as a matrix whose columns are the unit
vectors of the n VSCMGs in the spin axis direction, so
that

Gs = [ĝs1 � � � ĝsn]

and we de�ne Gt and Gg similarly for the transverse
and gimbal axis unit vectors, respectively. We also de-
�ne the matrix Gsd 2 R3n�n such that

Gsd = diagfĝs1; ĝs2; : : : ; ĝsng

and similarly for Gtd and Ggd.

Next, it will be convenient to de�ne several matrices
involving the inertia properties of the VSCMGs. The
inertia values of each VSCMG is decomposed into the
contributions of the wheel and the gimbal structure
using the scalar variables IWsj

, IWtj
, IWgj

, IGsj
, IGtj

,
and IGgj

, j = 1; : : : ; n, where the subscripts W and
G denote the wheel and gimbal structure contributions



along the s, t, and g axes, respectively. We assume
that all VSCMGs are perfectly balanced and aligned
so that the unit vectors ĝsj , ĝtj , and ĝgj , j = 1; : : : ; n,
represent principle directions for the VSCMG reference
frames.

Next, we de�ne the inertia matrices

IGj
= diagfIGsj

; IGtj
; IGgj

g

IGs
= [IGs1

IGs2
� � � IGsn

]

IGsd
= diagfIGs

g

IGsm
= IGsd


 I3 (2)

where IGj
2 R

3 , IGs
2 R

1�n , IGsd
2 R

n�n , and

IGsm
2 R

3n�3n . Similarly, we can de�ne matrices for
the other gimbal structure inertias: IGt

2 R1�n , IGg
2

R
1�n , IGtd

2 R
n�n , IGgd

2 R
n�n , IGtm

2 R
n�n ,

and IGgm
2 R

n�n ; as well as for the wheel inertias:

IWj
2 R

3 , IWs
2 R

1�n , IWt
2 R

1�n , IWg
2 R

1�n ,
IWsd

2 R
n�n , IWtd

2 R
n�n , IWgd

2 R
n�n , IWsm

2
R
3n�3n , IWtm

2 R
3n�3n , and IWgm

2 R
3n�3n ; and

that I3 is the 3� 3 identity matrix.

At times it is convenient to combine the inertia con-
tributions of the wheel and gimbal structure, so we
de�ne J j 2 R

3�3 , Js 2 R
1�n , Jsm 2 R

3n�3n , and
Jsb 2 R3�3n such that

J j = IGj
+ IWj

Js = IGs
+ IWs

Jsm = IGsm
+ IWsm

Jsb = Js 
 I3

and similarly for J t 2 R
1�n , Jg 2 R

1�n , J tm 2
R
3n�3n , Jgm 2 R

3n�3n , J tb 2 R
3�3n , and Jgb 2

R
3�3n .

Finally, we de�ne matrices
d 2 Rn�n and !d 2 R3n�n

such that

!d = diagf!; !; : : : ; !g = In 
 ! (3)


d = diagf
1;
2; : : : ;
ng (4)

where the spacecraft body angular velocity vector ! 2
R
3 is repeated n times in the de�nition of !d.

2.3 Dynamics
In this section we present the spacecraft dynamic sys-
tem model extending the results of Oh and Vadali [13]
to the case of VSCMGs. The equations of motion are
derived using Euler's equation [11]

~� sys=O =
Nd

dt

�
~hsys=O

�
(5)

where ~hsys=O is the total angular momentum of the
spacecraft and the VSCMG cluster about the combined
system center of mass (point O), given by

~hsys=O = ~hP=P
�

+ ~hP
�=O + ~hW=W�

+~hW
�=O + ~hG=G

�

+ ~hG
�=O (6)

and ~� sys=O is the sum of all external torques on the

spacecraft expressed in B. ~hP=P
�

is the angular mo-
mentum of the spacecraft bus (without the VSCMGs
installed) about its own center of mass P�. Similarly,
~hG=G

�

is the sum of the n-VSCMG gimbal structure
angular momenta about each gimbal structure's cen-

ter of mass, G�
j , and

~hW=W�

is the sum of n-VSCMG
wheel angular momenta about each wheel's center of
mass, W �

j , respectively. For the remainder of this pa-
per, we assume that the points G�

j and W �
j coincide

for each VSCMG. Additionally, ~hP
�=O is the angular

momentum of the center of mass of the satellite bus
(located at P�) with respect to point O, ~hW

�=O is the
sum total of each wheel's center of mass angular mo-
mentum (located at point G�

j ) with respect to point O,

and ~hG
�=O is the sum total of each gimbal structure's

center of mass angular momentum (located at point
G�
j ) with respect to point O.

Let � be ~� sys=O expressed in B. Then, the system
dynamic equations of motion may be expressed as [13]

� = IT _! + ~!IT! +B� +Ds _ +E _
 + F
 (7)

where ! is the angular velocity vector of the spacecraft
body with respect to frame N expressed in frame B, �
is as de�ned above, and IT is the total inertia matrix
given by

IT = Isc +
NX
j=1

LBGjJ jL
T
BGj (8)

where Isc is the spacecraft bus inertia about its own
center of mass, P�, plus the inertia of its center of mass
about point O, and the total point mass inertias of the
n� VSCMGs (i.e. the sum of each wheel's center of
mass inertia about the total system center of mass,
point O, as well as the sum of each gimbal structure's
center of mass inertia about point O). This can be
expressed as:

Isc = I
P=P� + IP

�=O + IG
�=O + IW

�=O (9)

Note that the summation term in (8) is the time vary-
ing portion of the total inertia that changes as the
VSCMGs move on the spacecraft. In addition, the co-
eÆcient matrices in (7) are given by

B = Gg (IGgd + IWgd) (10)

Ds(!;
; ) = D1 +D2 +D3 (11)

E() = Gs IWsd (12)

F (!; ) = ~!Gs IWsd (13)

where

D1(!;
; ) =
�
GtG

T
sd IWsm

�GsG
T
td IWtm

�
!d

+Gt IWsd

d (14)

D2(!) = ~!GgJgd (15)

D3(!; ) = [(GtG
T
sdIGsm

�GsG
T
tdIGtm

)

�(GtG
T
sdJ tm �GsG

T
tdJsm)]!d (16)



2.4 Kinematics
We represent the spacecraft orientation using the
quaternion corresponding to the transformation from
the inertial reference frame, N , to the vehicle body

frame, B, as �
�
= [�0 �1 �2 �3]

T . If we de�ne the ma-
trix Q(�) as

Q (�)
�
=

2
64
��1 ��2 ��3
�0 ��3 �2
�3 �0 ��1
��2 �1 �0

3
75 (17)

then the spacecraft's kinematic di�erential equation is:

_�
�
=

1

2
Q (�)! (18)

Equations (7) and (18) together form the spacecraft's
equations of motion.

2.5 Attitude Tracking
In this section we develop a control law for attitude
tracking using VSCMGs. We begin by deriving a Lya-
punov based steering control law as developed in [13]
and then formulate the power tracking control in a
somewhat analogous manner to that done for MWs in
[8, 18].

To this end, we de�ne a positive de�nite Lyapunov
function in terms of the attitude errors �e = � � �r
and !e = ! � !r as follows

V = k(� � �r)
T (� � �r) +

1
2
(! � !r)

T IT (! � !r)
(19)

where �r and !r are the desired vehicle reference at-
titude and reference angular velocity, respectively, and
k > 0. The derivative of the Lyapunov function can be
expressed as

_V = � (! � !r)
T
h
kQT (�)�r + IT _!r � IT _!

� 1
2
_IT! + 1

2
_IT!r

i
(20)

It is evident that _V can be made non-positive if we set

K (! � !r) =
h
kQT (�)�r + IT _!r � IT _!

+ 1
2
_IT (! � !r)

i
(21)

where K is a positive de�nite gain matrix. Since _V
is non-negative de�nite, the resulting system is Lya-
punov stable. It can be shown that _V is zero if and
only if ! = !r and � = �r. By LaSalle's theorem,
one can show that the system trajectories are stabi-
lized about the desired reference attitude. In addition,
due to the radial unboundedness of V , the resulting
system is actually globally asymptotically stable in the
attitude and angular velocity error space.

Next, notice that the term 1
2
_IT (!�!r) is a linear func-

tion of _. Hence, we can decompose this term as follows

R _ = 1
2
_IT (! � !r) (22)

where the term R is given by

R = 1
2
(Jsb � J tb)

�
GsdG

T
td +GtdG

T
sd

�
(!rd � !d)

(23)

If we de�ne a matrix D such that D = Ds +R then
we can combine (7), (20), (21), and (23) to yield the
condition

B� +E _
 +D _ + F
 =

K(! � !r)� kQT (�)�r � IT _!r � ~!IT! + �d (24)

where �d represents a disturbance torque on the vehicle.

2.6 Required Torque for Attitude Tracking
Next, we de�ne the required torque vector �r 2 R

3 as

�r =K(! � !r)� kQT (�)�r � IT _!r � ~!IT! (25)

then (24) can be written as

B� +E _
 + F
 +D _ = �r + �d (26)

which expresses the torque required for tracking in
terms of the physical parameters (or states) of the sys-
tem.

As usual, if we assume that the gimbal accelerations are
small, then we can rearrange the required torque equa-
tion in terms of gimbal rate and wheel acceleration,
which represents the parameters typically controlled by
commercial CMGs and MWs, respectively. The result-
ing steering law (known as the velocity steering law) is
thus

E _
 +D _ = �r � F
 (27)

2.7 Gimbal Acceleration Control
The main advantage of a single-gimbal CMG is its
torque ampli�cation property [10]. In order to take
advantage of this property, we need to provide a ve-
locity command _ to the CMG (and keep � small). In
fact, most standard CMG actuators are controlled via
gimbal rate and not gimbal acceleration. Solving for �
directly from (26) will require large gimbal acceleration
commands and hence, large gimbal motor torques. Al-
ternatively, we can choose a velocity command _ from
(27) and then implement this velocity steering law via
an outer control loop that will keep the actual _ close
to the desired gimbal rates. This yields the following
equation for the gimbal acceleration command (assum-
ing the desired gimbal acceleration, �d, is negligible):

� = � ( _d � _) ; � > 0 (28)

2.8 Power Tracking
The kinetic energy Tj of the jth actuator is given by

TWj =
1
2

2j IWsj

(29)

The total energy is just the sum of each of the individ-

ual actuator energies TW =
NP
j=1

TWj . Taking the �rst

derivative of the energy yields the power generated by
the wheels

PW = 
T IWsd
_
 (30)



2.9 Simultaneous Attitude and Power Tracking
The available control inputs are the rate of change of
the wheel speeds and the angular velocity of the gim-
bals (for the case of the gimbal velocity steering law).
Hence,

_
 = umw and _ = ucmg (31)

where umw 2 R
n and ucmg 2 R

n are the control in-
puts in the \momentum wheel" and \CMG" modes,
respectively. Let the combined control input u =
[uTmw uTcmg]

T . Then after some algebraic manipulation
we can write�

C11 C12

C21 C22

�
u =

�
Fpv
Pfv

�
(32)

where C11 = E;C12 = D;C21 = 
T IWsd
and C22 =

0N . Furthermore,

Fpv = �r � F
 and Pfv = PW (33)

where Fpv is as de�ned in (27) and Pfv is de�ned in
(30).

De�ning C1 � [C11 C12] and C2 � [C21 C22], the
equation for Fpv from (32) can be written as

C1u = Fpv (34)

The general solution to (34) is given by

u = Cy
1Pfv + un (35)

where the symbol y denotes the suitable generalized
inverse, and C1un = 0 (i.e., un is in the null space
of C1, N (C1)). Now we can substitute (35) into the
equation for Pfv from (32) so that

C2u = C2(C
y
1Fpv + un) = Pfv (36)

and

C2un = Pm (37)

where Pm = Pfv � C2C
y
1Fpv . Since un 2 N (C1), we

can �nd a vector � such that

un = PN� (38)

where PN = In � C
y
1C1 is the orthogonal projection

onto N (C1). Then, from (37) and (38), and making
use of the fact that PN is a projection matrix, we see
that we can choose un such that

un = PNC
T
2 (C2PNC

T
2 )

�1Pm (39)

This completes the solution for u of (35) for combined
attitude and power tracking.

In summary, given the reference attitude to track, �r
and !r, the required power PW and the state of the
system �; !;
 and , one calculates the required atti-
tude tracking torque �r from (25) and the correspond-
ing control inputs umw and ucgm from (35) and (39). If
a gimbal acceleration steering law is required (to com-
mand the gimbal motors), then equation (28) must be
used to \back-step" the velocity command ucmg = _d
to an acceleration command. Interestingly, the for-
mulated power equation does not change regardless of
these steering laws as _ and � do not appear in the
power equation.

Table 1: Simulation Parameters

Symbol Value Units

N 4 unitless

� 54.75 deg

!(0) [0 0 0 ] rad/sec

�(0) [0.5 0.5 0.5 0.5] unitless

(0) [�
4
-�
4
-�
4

�
4
] rad

_(0) [0 0 0 0] rad


(0) [15000 13000 7000 5000 ] rpm

Wsj0 40 unitless

Wgj0 1 unitless

IWj diagf0.70, 0.20, 0.20g Kg m2

IGj diagf0.10 0.10 ,0.10g Kg m2

Isc diagf15053, 6510, 11122g Kg m2

K diagf700, 700, 700g Kg m2/sec

k 35 Kg m2/sec

� 1e-4 unitless

� 1 unitless

3 Numerical Simulation

Next, we use a numerical simulation to demonstrate
the validity of the control algorithm presented in the
previous section. Similarly to references [13, 17], we
use a standard four VSCMG pyramid con�guration.
In this con�guration the VSCMGs are installed so that
the four gimbal axes form a pyramid with respect to
the body. The pyramid con�guration has been im-
plemented here in order to facilitate comparisons with
the related literature even though the theory applies
generically to the n actuator case. Table 1 contains
the parameters used for the simulation. These param-
eters closely parallel those used in [13], [16], and [17].
The reference tracking maneuver is the one described
in [18].

In Table 1 the parameter � represents the pyramid an-
gle of each VSCMG that is measured from the vehi-
cle's b1 � b2 plane to the VSCMG's gimbal axis. The

weighted generalized inverse Cy
1 used in this work is

given as [17]

C
y
1 =WC1

T
�
C1WC1

T
��1

(40)

whereW is a diagonal MW/CMG mode weighting ma-
trix W = diagfWs;Wgg, where W s and W g are the
momentum wheel and CMG weighting matrices, re-
spectively, given by W s = diagfWs1;Ws2;Ws3;Ws4g
and similarly for W g . The matrix W g represents the
weights for the CMG mode (to capitalize on the torque
ampli�cation property) and is chosen to be constant
throughout a maneuver. The weight matrixW s is the
MW mode matrix that comes into play near a CMG
singularity. The elements of W s are given by

Wsj = Wsj0 exp
��Æ ; j = 1; : : : ; 4 (41)



where the constant parameters � and Wsj0 are chosen
by the control system designer to obtain the desired
performance. The variable Æ describes the proximity
to a CMG singularity [7, 13, 16, 17]1. The expression
for Æ used here is di�erent than in [17] and is de�ned
as the minimum singular value of C1. This is a more
accurate way to describe the singularity of the matrix
C1 [9].

In the numerical simulation, the goal is to track a ref-
erence attitude and power pro�le. The given reference
attitude trajectory used in this numerical example cor-
responds to a near-polar orbital satellite that has to
meet speci�c sun and ground tracking requirements. It
is similar to the example used in [18].

Figure 2 contains a plot of the vehicle attitude error
time history. Figure 3 contains the vehicle angular ve-
locity error time history. Figure 4 shows the actual and
commanded power time histories. In this �gure, two
lines are shown but one is on top of the other, indicat-
ing very accurate tracking of the desired power pro�le.
Furthermore, Figs. 5 and 6 show the VSCMG gimbal
angle and wheel spin-rate time histories, respectively.
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Figure 2: Vehicle Attitude Error Time History.

These results show that the vehicle attitude tracks the
desired attitude. At the same time, the power pro�le
is followed while not a�ecting the vehicle attitude, as
desired.

4 Conclusions

In this paper we have developed a methodology for
combined attitude control and energy storage using
VSCMGs. The resulting control scheme simultane-
ously provides attitude control torque and energy stor-
age torque while not imparting adverse torques on
the satellite. Furthermore, we have investigated this
methodology through numerical simulations. Future
work will implement this control methodology on a

1The CMG singularity is de�ned as a con�guration where the
matrix C1 is not full row rank.
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Figure 3: Vehicle Angular Velocity Error Time History.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−4500

−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

500
Required Versus Actual Power Output History

Time(sec)

P
ow

er
 (

W
at

ts
)

Pw
rqd

Pw
act

Figure 4: Actual and Commanded Power Pro�le.

more realistic space vehicle simulation model to be used
for controller design, hardware-in-the-loop testing, and
vehicle plant modeling. This will allow low cost atti-
tude control and energy storage system design prior to
implementing it on a real satellite. Finally, the cul-
mination of this work will be a ground demonstration
of ywheel hardware on a 3 degree-of-freedom space-
craft simulator at AFRL to validate combined attitude
control and energy storage functionality.
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