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Abstract
The stability of linear time-delay systems is investi-

gated via the robustness analysis of a related delay-free
comparison system with an uncertain real parameter.
By exploiting its phase properties, the delay element
is removed from the system via a parameter-dependent
Pad�e approximation. We then present a simple yet rig-
orous condition for delay-dependent stability of the orig-
inal time-delay system. The novelty of this result is that
it explicitly provides an a priori upper bound of how
conservative this condition can be, and this bound de-
pends only on the order of Pad�e approximation and can
be reduced to any desired degree. Furthermore, the de-
lay margin provided by this condition can be computed
explicitly without incurring any additional conservatism
for the single delay case. This condition can also be
checked with some (typically small) additional conser-
vatism by reducing it to �nite-dimensional linear matrix
inequalities (LMIs). Finally, several numerical examples
demonstrate that this simpli�ed LMI criterion can be
signi�cantly less conservative than those existing in the
literature.

Keywords. Time-delay systems; stability; Pad�e
approximation.

1 Introduction
The analysis of time-delay systems has attracted

much interest over a half century, especially in the last
decade. The recent book [5] contains an extensive col-
lection of papers dealing with both delay-dependent and
delay-independent stability conditions. Much interest in
the literature has focused on searching for su�cient con-
ditions which are numerically tractable but are not too
conservative. Many such conditions involve, either ex-
plicitly or implicitly, covering the delay elements with
some (convex) sets so as to obtain numerically tractable
stability conditions [15]. Furthermore, the conservatism
of the analysis can be reduced by choosing appropriate
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covering sets, based on delay elements' properties. This
insight has been used in [16] to develop several less con-
servative LMI conditions for delay-dependent stability.

In this paper, this insight will be further exploited.
The delay element is eliminated from the system by
covering it using a parameter-dependent Pad�e approx-
imation. The obtained comparison system is a delay-
free system with a real parametric uncertainty. A sim-
ple delay-dependent su�cient stability condition, is then
presented. Two approaches are then presented to avoid
a parameter sweep. One approach provides an explicit
formula to compute the delay margin provided by this
condition without incurring any additional conservatism
for the single delay case. The other approach is to reduce
this condition with some (typically small) conservatism
to �nite-dimensional LMIs.

The traditional manner in using Pad�e approxima-
tions, such as [14], is to simply replace delay element
e��s with the approximation, by assuming small delays
and some dynamical properties (such as bandwidth) of
the system, because the Pad�e approximations are accu-
rate only when j�sj is su�ciently small. This does not
guarantee, in general, the stability of the original sys-
tems. However, the approach of this paper can be used
for any system with �nite time-invariant delays. More-
over, the conditions derived here rigorously guarantee
the stability of the time-delay system.

The contribution of this paper is that it presents a
stability criterion whose degree of conservatism is guar-
anteed to be no more than an a priori upper bound.
This upper bound depends only on the order of Pad�e
approximation. The conservatism of the criterion can
be reduced to any desired degree by increasing the order
of the Pad�e approximation. To the best of the authors'
knowledge, this is the �rst result for analysis of time-
delay systems that guarantees a desired accuracy.

Notation. Let <n�m (Cn�m) be the set of all real
(complex) n�m matrices, In be n� n identity matrix,
and W T be the transpose of real matrix W: X > 0
indicates that X is a symmetric and positive de�nite
matrix: For matrices M = (mij) 2 <n1�n1 and N 2
<n2�n2 ; the Kronecker product is de�ned by M 
N :=
(mijN) and the Kronecker sum is de�ned by M �N :=
M 
 In2 + In1 
N: �+max(M) is the maximum positive
real eigenvalue of M and �+max(M) = 0+ when M does
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Figure 1: An interconnection system.

not have any positive real eigenvalues.

2 Preliminaries
Consider the linear time-delay system

_x(t) = Ax(t) +Adx(t� �) (1)

where � 2 [0; �� ] and �A := A + Ad is Hurwitz. Let
Ad = HF where H 2 <n�q; F 2 <q�n have full rank.
In the sequel, 	(s; �) := det(sIn � A � Ade

��s) is the
characteristic function associated with the system (1).

De�nition 1 The actual delay margin ��� for the sys-
tem (1) is de�ned by

��� := sup
��>0

f�� j(1) is asymptotcially stable 8� 2 [0; �� ]g:

The system (1) is said to be delay-dependent if ��� <
1; and delay-independent otherwise.

The delay-independent stability of time-delay sys-
tems has been studied extensively in the literature,
see [2, 12, 9], etc. Herein, we investigate the delay-
dependent stability of (1).

De�nition 2 Suppose P is a condition that ensures that
(1) is asymptotically stable for all � 2 [0; �� ]: If (1) is
delay-dependent with actual delay margin ���, then the
degree of conservatism (d.o.c.) of P is de�ned by

d:o:c: :=
��� � ���

P

���

where ���
P

:= sup
��>0

f�� jP is trueg is said to be the delay

margin provided by P:

De�nition 3 Consider a linear, time-invariant (�nite-
dimensional) system G(s) interconnected with an un-
certain block � 2 � (� is a set of linear time-
invariant stable systems), as shown in Figure 1, denoted
as
P
[G(s);�(s)]: Then the system is said to be robustly

stable if G(s) is internally stable, the interconnection is
well-posed and it remains internally stable for all � 2 �:

Lemma 1 The system (1) is asymptotically stable for
all � 2 [0; �� ] if and only if

	(j!; �) 6= 0; 8! � 0; � 2 [0; �� ]:

Proof. This follows from the work of [3].

Corollary 1 The system (1) is asymptotically stable for
all � 2 [0; �� ]; if and only if

det[Iq �G(j!)�(j�!)] 6= 0; 8! � 0; � 2 [0; �� ]; (2)

where G(s) = F (sIn � �A)�1H and �(�s) = �(�s)Iq ;
�(�s) = e��s � 1.

Examining the stability of (1) by checking the condi-
tion (2) directly is nontrivial, because (2) involves solv-
ing a transcendental equation. An indirect but intuitive
approach of examining whether (2) holds, is to cover
�(j�!) with another set �(!), that is,

�(j�!) 2 �(!); 8! � 0; � 2 [0; �� ]:

Then (2) holds if

det[Iq �G(j!)�(j!)] 6= 0; 8! � 0;�(j!) 2 �(!):

which is satis�ed if the interconnection
P
[G(s);�(s)]

(referred to as the comparison system in the sequel)
is robustly stable. The conservatism of this approach
mainly arises from the manner in which the covering set
� is chosen based on the properties of the delay element
[15]. In [16], various covering sets, based on a shifted
disk and/or weighting �lter were introduced to reduce
the conservatism of the analysis. Herein, we introduce a
new less conservative covering set for the delay element
�(j�!): We consider the mth order (m � 3) diagonal
Pad�e approximation to e�s as follows [11]

Rm(s) =
Nm(s)

Nm(�s)

where

Nm(s) =

mX
l=0

(2m� l)!(�s)l

l!(m� l)!
:

Let Arg(�) denote the argument (phase) of Rm(j!)
such that it is continuous for all ! � 0 and Arg(Rm(j!))
j!=0 = 0: The authors are grateful to Mr. V. Maymeskul
and Prof. E.B. Sa� for providing a proof (to be presented
at the full version of this paper) for the following Lemma.

Lemma 2 The function d
d!
Arg(Rm(j!)) can be ex-

pressed in the following form:

d

d!
Arg(Rm(j!)) = �

Tm(!)

!2m + Tm(!)
; 8! 2 <

where Tm(!) =
m�1P
k=0

ak!
2k; and ak > 0; k = 0; � � � ;m�1:
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Now, we de�ne the following sets:


A(!; ��) := fe�j�!j� 2 [0; �� ]g;


B(!; ��) := fRm(j��m!)j� 2 [0; �� ]g;


C(!; ��) := fRm(j�!)j� 2 [0; �� ]g:

where �m := 1

2�
minf! > 0jRm(j!) = 1g: It can be

found that for m = 3; 4 and 5, �m � 1:2329; 1:0315; and
1:00363 respectively:

The function Rm(s) and the above sets have sev-
eral important properties which are summarized as the
following lemma.

Lemma 3 For every integer m � 3; the following state-
ments hold:

(a) All poles of Rm(s) are in the open left half com-
plex plane.

(b) 
C(!; ��) � 
A(!; �� ) � 
B(!; ��); 8! � 0:
(c) lim

m!1
�m = 1:

Proof. (a) is a well-known result, see [11]. (c) fol-
lows directly from Theorem 3 of [6]. (b) can be shown by
using Lemma 2. The details are omitted due to limited
space.

3 Main Results
Now, we derive a delay-dependent stability condi-

tion for system (1). For convenience, denote the inter-
connection systems

P
[G(s); (Rm(��ms) � 1)Iq ] andP

[G(s); (Rm(�s)� 1)Iq ] as
P

B(�) and
P

C(�), respec-
tively. Let (AP ; BP ; CP ; DP ) be the minimal realization
of P (s) := [Rm(�ms)� 1]Iq and denote nP as the order
of AP . Also we let As := �A +HDPF;Bs := BPF; and
Cs =: HCP :

The following theorem gives a su�cient condition
for stability of (1).

Theorem 1 The system (1) is asymptotically stable for
all � 2 [0; �� ]; if the comparison system

P
B(�) is robustly

stable for � 2 [0; �� ]:

Using above theorem, we obtain the following eigen-
value test for the stability of (1).

Corollary 2 Let

AL(�) :=

�
As ��

1

2Cs

��
1

2Bs ��1AP

�
: (3)

Then the system (1) is asymptotically stable for any con-
stant time-delay � 2 [0; �� ]; if AL(�) is Hurwitz for all
� 2 (0; �� ]:

The following theorem presents a necessary condi-
tion for stability of (1). Later we will �nd that it plays
a key role for checking the d.o.c. of our new result. The
proof of this theorem is rather technical due to the sin-
gularity issue when � is zero and it is omitted to keep
our presentation straightforward.

Theorem 2 If (1) is asymptotically stable for all � 2
[0; �� ]; then

P
C(�) is robustly stable for � 2 [0; �� ]:

Now, we show that the d.o.c. of Theorem 1 (or
Corollary 2) is bounded by a function of �m:

Theorem 3 The d.o.c. of Theorem 1 (or Corollary 2)
satis�es

d:o:c: �
�m � 1

�m
: (4)

Moreover, d:o:c:! 0 as m!1:

Proof. Let ���B be the delay margin provided by
Theorem 1. Let ���C := sup

��>0
f�� j
P

C(�) is robustly stable

for � 2 [0; �� ]g: Then, clearly, we have ���C = �m���B : In ad-
dition, from Theorem 2,

P
C(�) is asymptotically stable

for all � 2 [0; �� ] whenever (1) is asymptotically stable for
all � 2 [0; �� ]: Therefore,

���C � ���

which immediately yields (4).

Remark 1 For k = 3; 4 and 5, �m�1
�m

� 18:9%; 3:05%
and 0:361%; respectively. This bound can be reduced to
any desired degree by choosing m su�ciently large at
the expense of higher computational e�ort. This bound
depends only on the order of Pad�e approximation used.
It is independent of ���; A and Ad; and hence the d.o.c.
of Theorem 1 is guaranteed for any linear system with a
time-invariant state-delay.

If one has already determined that (1) is asymptoti-
cally stable for all � 2 [0; ��a]; then the following corollary
can be used instead of using Corollary 2.

Corollary 3 Suppose that the system (1) is asymptot-
ically stable for all � 2 [0; ��a]; where ��a > 0: Then
it is asymptotically stable for any constant time-delay
� 2 [0; �� ]; if AL(�) is Hurwitz for all � 2 [ ��a

�m
; �� ], where

AL(�) is given by (3).

Remark 2 Any existing delay-dependent criteria, such
as those of [10, 7, 8, 12, 16] etc., can be applied to obtain
��a: Our result can be used to further reduce the conser-
vatism of the analysis.

The reader may be concerned that employing Theo-
rem 1 requires performing a parameter-sweep for �: Re-
markably, the condition of Theorem 1 can be checked rig-
orously without this parameter-sweep. To this end, two
di�erent approaches will be presented. One approach,
based on Corollary 3 and the work of [1], shows that
the delay margin ���B provided by Theorem 1 (or Corol-
lary 3) can be explicitly calculated without incurring any
additional conservatism in the single delay case.
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Theorem 4 Suppose that the system (1) is asymptoti-
cally stable for all � 2 [0; ��a]; where ��a > 0: Then the
delay margin provided by Theorem 1 (or Corollary 3) is
given by

���B =
��a
�m

+
1

�+max(�(A0 �A0)�1(A1 �A1))
; (5)

where A0 :=

�
��a
�m

As Cs
��a
�m

Bs AP

�
and A1 :=

�
As 0
Bs 0

�
:

The other approach is to solve a (�nite) set of LMIs.
Some conservatism may be introduced, but in the fol-
lowing section we will see that this simpli�ed criterion
still can provide a very tight lower bound of the delay
margin for system (1).

Theorem 5 The system (1) is asymptotically stable for
any constant time-delay � 2 [0; �� ]; if there exist matrices
X0 > 0; X0; X1 2 <

n�n; X22 > 0; X22 2 <
nP�nP and

X12 2 <
n�nP such that

�(0) < 0; �(�� ) < 0

and �
X0 + ��X1 ��X12

��XT
12 ��X22

�
> 0

where

�(�) :=

�
�11(�) �12(�)
� �22(�)

�
;

�11(�) := (X0 + �X1)As + X12Bs + AT
s (X0 + �X1) +

BT
s X

T
12; �12(�) := (X0 + �X1)Cs +X12AP + �AT

s X12 +
BT
s X22; and �22(�) := �XT

12Cs + �CT
s X12 + X22AP +

AT
PX22:

Remark 3 The formula (5) only applies to the single
delay case, and to use it, one usually has to use other
methods (perhaps Theorem 5) to obtain ��a: Although it
introduces some conservatism, the above Theorem, does
not need another test to obtain ��a: More importantly,
the LMI-based approach can be easily extended to linear
systems with multiple delays and/or dynamical uncer-
tainties.

4 Numerical Examples
We now use the 5th order Pad�e approximation

for several numerical examples. Since from Theorem
3, the d.o.c. of Theorem 1 is known to be no more
than 0:361%; here we only examine the conservatism
of the simpli�ed condition, Theorem 5. We compare
the results from Theorem 5 with those from similar
criteria published elsewhere [10, 7, 8, 12] including some
previous results by the authors [16].
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Figure 2: Calculated delay margin vs. K: (1) Actual
value from Nyquist Criterion. (2) Theorem 5. (3) Result
of [16] using both a �lter and a shifted disk. (4) Result
of [16] using a shifted disk. (5) Result of [10]. (6) Result
of [7]. (7) Result of [8]. (8) Delay-independent result
[12].

Example #1: Chatter Dynamics.
Consider the following system motivated by the dy-

namics of machining chatter with the matrices A and Ad

given by

A =

2
664

0 0 1 0
0 0 0 1

�(10:0 +K) 10:0 0 0
5:0 �15:0 0 �:25

3
775

Ad = [ 0 0 K 0 ]T [ 1 0 0 0 ]:

The generalized Nyquist criterion [4] was used to
calculate the actual delay margin. The delay margins
calculated with the results of [10, 7, 8, 12] and [16] are
shown in Figure 2 as a function of K. We can see that
Theorem 5 provides a delay margin very close to the
actual value obtained from the Nyquist Criterion.

Example #2 [10].
Consider the system (1) with

A =

�
�2 0
0 �0:9

�
; Ad =

�
�1 0
�1 �1

�

For this example, the results of [8], [7], [10], and [16]
provide the delay margins of 0:956; 0:9984, 4:3588, and
5:542; respectively: The generalized MIMO Nyquist Cri-
terion [13, 4] provides the actual delay margin of 6:172.
Using Theorem 5, the delay margin obtained is 6:150;
which has a d.o.c. of only 0:36%: This delay margin
coincides with the value calculated by Theorem 4, and
hence in this case using the a�ne basis function in The-
orem 5 does not introduce additional conservatism.
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Figure 3: Performance of several criteria. (a) Result of
[7]. (b) Result of [10]. (c) Result of [16]. (d) Theorem
5.

Example #3: Statistical Performance.

Finally, we compare the statistical performance of
our result with that of [7], [10], and [16] by examining
1000 randomly-generated 2nd order systems1. The com-
puted delay margins are compared with the actual values
from the MIMO Nyquist Criterion and their distribution
is shown in Figure 3. We �nd that for 97:3% of these
systems, our new result gives the d.o.c. less than 10%:
We note that with the next best performing criterion of
[16], less than 50% of the cases have d.o.c. below 10%.
The average d.o.c. for Theorem 5 is 1:52%.

5 Conclusions

The stability of linear time-delay systems can be an-
alyzed rigorously and accurately via covering the delay
element value set with a parameter-dependent Pad�e ap-
proximation. We presented a simple su�cient delay de-
pendent stability condition for the time-delay system.
Then we demonstrated that the degree of conservatism
of this condition is no more than an a priori upper bound
and this bound can be reduced by choosing a higher or-
der approximation. Furthermore, the delay margin of
this condition can be computed explicitly in the case of
a single delay. This condition was also reduced to �nite-
dimensional LMIs with small additional conservatism. It
should be noted that this result can be extended to the
case of multiple delays and/or dynamical uncertainties.

Acknowledgments. The authors sincerely thank
Mr. V. Maymeskul and Professor E.B. Sa� at the
University of South Florida for providing the proof of
Lemma 2.

1For each test case, A+Ad is Hurwitz and the system is delay-

dependent.

References
[1] B. R. Barmish. New Tools for Robustness of Linear

Systems. Macmillan Publishing Company, 1994.

[2] J. Chen and H.A. Latchman. \Frequency sweeping tests
for stability independent of delay". IEEE Transactions

on Automatic Control, AC-40(9):1640{1645, 1995.

[3] R. Datko. \A procedure for determination of the expo-
nential stability of certain di�erential-di�erence equa-
tions.". Quarterly of Applied Mathematics, pages 279{
292, October 1978.

[4] C. A. Desoer and M. Vidyasagar. Feedback Systems:

Input-Output Properties. Academic Press, New York,
1975.

[5] L. Dugard and E.I. Verriest (Eds). Stability and Control
of Time-delay Systems. Springer-Verlag, 1997.

[6] J. Lam. \Convergence of a class of Pad�e approxima-
tions for delay systems". Int. J. Control, 52(4):989{
1008, 1990.

[7] X. Li and C. E. de Souza. \Robust stabilization andH1

control of uncertain linear time-delay systems". 13th

IFAC World Congress, pages 113{118, 1996.

[8] S.-I. Niculescu, A. T. Neto, J.-M. Dion, and L. Dugard.
\Delay-dependent stability of linear systems with de-
layed state: An LMI approach". In Proc. 34th IEEE

Conf. Dec. Contr., pages 1495{1497, 1995.

[9] S.-I. Niculescu, E.I. Verriest, L. Dugard, and J.-M. Dion.
\Stability and robust stability of time-delay systems: A
guided tour". In Stability and Robust Control of Time

Delay Systems, pages 1{71. Springer-Verlag, 1997.

[10] P. Park. \A delay-dependent stability criterion for
systems with uncertain time-invariant delays". IEEE

Transactions on Automatic Control, AC-44(4):876{877,
1999.

[11] E. B. Sa� and R. S. Varga. \On the zeros and poles
of Pad�e approximants to ez". Numer. Math., 25:1{14,
1975.

[12] E. I. Verriest, M.K.H. Fan, and J. Kullstam. \Fre-
quency domain robust stability criteria for linear delay
systems". In Proc. 32nd IEEE Conf. Dec. Contr., pages
3473{3478, 1993.

[13] M. Vidyasagar. Nonlinear Systems Analysis. Prentice
Hall, Englewood Cli�s, New Jersey, 2nd edition, 1993.

[14] Z. Wang and H. Hu. \Robust stability test for dynamic
systems with short delays by using Pad�e Approxima-
tion". Nonlinear Dynamics, 18:275{287, 1999.

[15] J. Zhang, C. R. Knospe, and P. Tsiotras. \A uni�ed
approach to time-delay system stability via scaled small
gain". In Proc. American Control Conference, pages
307{308, 1999.

[16] J. Zhang, C. R. Knospe, and P. Tsiotras. \Toward less
conservative stability analysis of time-delay systems". In
Proc. 38th IEEE Conf. Dec. Contr., pages 2017{2022,
1999.

5


