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SPACE CARVING IN SPACE: A VISUAL-SLAM APPROACH TO 3D
SHAPE RECONSTRUCTION OF A SMALL CELESTIAL BODY

Travis Driver*, Mehregan Dor†, Katherine A. Skinner‡, Panagiotis Tsiotras§

Missions to small bodies typically involve an initial characterization phase, where
a 3D shape model is constructed for the purposes of vision-based relative naviga-
tion and estimation of the dynamical properties of the body. Current state-of-the-
practice methods for shape reconstruction, such as Stereophotoclinometry (SPC),
rely heavily on human-in-the-loop processes executed on the ground, thus con-
straining the level of autonomy that can be achieved by these missions. This
work details a visual simultaneous localization and mapping (VSLAM) based
autonomous shape reconstruction algorithm for the estimation of the dynamical
properties and for the construction of a preliminary shape model of a small celes-
tial body. The proposed method is applied to both simulated and real image data
and is shown to accurately reconstruct the 3D shape of the target asteroid.

INTRODUCTION AND RELATED WORK

With the recent increase in the number of missions to near-Earth asteroids and other small celes-
tial bodies, such as JAXA’s Hayabusa2 mission to Asteroid (162173) Ryugu1 and NASA’s OSIRIS-
REx mission to Asteroid (10195) Bennu,2 opportunities have emerged for research in autonomous
algorithms for relative navigation and in-situ characterization of small bodies. Typically, these mis-
sions involve an initial extended characterization, where a 3D shape model of the small body is
reconstructed incrementally from a sequence of images acquired during a controlled orbit around
the body.3 These shape models are then used to derive high-resolution digital terrain maps (DTMs)
and detailed physical and dynamical property estimates of the small body. Moreover, DTMs can
be correlated with images taken on-board the spacecraft to provide an accurate relative navigation
solution.3–5 However, current state-of-the-practice shape estimation methods rely heavily on sup-
port from the ground to achieve accurate results. This reliance on ground-based operations greatly
limits the autonomous relative navigation capabilities of the spacecraft and introduces added time,
complexity, and cost.

Stereophotoclinometry4 (SPC) is the current method of choice for constructing detailed 3D shape
models of small bodies for science objectives and relative navigation.3, 5, 6 SPC estimates a collec-
tion of local topological landmark maps (L-maps) using estimated camera poses and Sun vector
information along with pixel information from a set of surface features matched across multiple
views. The L-maps are combined through an iterative optimization-based process to construct a
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global shape model of the body. While SPC is effective, it relies on a computationally intensive
process that is executed completely off-board and offline, and requires human input from operators
on the ground for the identification of robust surface features to match between images.

The development of more efficient and autonomous 3D reconstruction methods has been identi-
fied as a major factor for enabling future small body science missions, and has been the subject of
previous related works. Bandyonadhyay et al.7 and Baker et al.8 present silhouette-based meth-
ods to estimate the shape of a small body from a set of images. Silhouette extraction typically
involves estimating a contour between the foreground object and the background in an image using
pixel information directly. While their shape reconstruction results are promising, both methods
operate on the assumption that the Sun fully illuminates the target body in order to ensure accu-
rate silhouette acquisition, and that the orientation and distance of the camera with respect to the
small body is precisely known a priori. Additionally, Reference 7 assumes that the small body is
performing pure rotation about its principal axis to simplify the rotation rate estimation process.
However, accurate silhouettes are difficult to extract when shadowing and inconsistent illumination
are present, which is very often the case in space-based imagery. Dor et al.9 applies ORB-SLAM
to the non-cooperative rendezvous problem for estimation of a feature map of a target satellite and
the relative camera pose but does not reconstruct a volumetric representation of the object being
mapped. Kulumani et al.10 and Bercovici et al.11 present shape reconstruction algorithms that rely
on Light Detection And Ranging (LiDAR) measurements. In contrast, our method leverages images
from optical cameras given their relatively low complexity, low power consumption, and ability to
operate in a wide range of conditions.

Feature-based formulations12–14 for 3D reconstruction that do not suffer from the same limita-
tions as silhouette-based methods have also been proposed. These methods rely on feature points
and camera poses estimated through visual simultaneous localization and mapping (VSLAM), or
structure from motion (SfM), to construct a 3D model from the features through enforcing a set
of free-space constraints between the points and the camera. Pan et al.12 presents an online 3D
reconstruction pipeline that tracks the relative pose of an object with respect to a fixed-position
camera while also estimating its 3D shape. However the process is not incremental and starts over
at each keyframe. Lovi et al.13 exploits Parallel Tracking and Mapping (PTAM)15 to incrementally
reconstruct complex scenes online while simultaneously estimating the pose of the camera using
a laptop CPU. More recently, Piazza et al.14 demonstrated state-of-the-art incremental manifold
reconstruction using the output of ORB-SLAM16 on a challenging computer vision benchmark17

operating in real-time on a single CPU core. These methods demonstrate impressive reconstruction
results, and their ability to operate online on minimal hardware make them particularly attractive for
autonomous small body characterization due to on-board computing constraints of spacecraft. For
the proposed application, factors such as the large relative distance between the on-board camera
and the target asteroid, dynamic lighting conditions, and repetitive surface textures can introduce
outliers and significant noise in the feature point and camera pose estimates. While Reference 12
proposes a Gaussian noise model to account for possible noise, the method is only applied to exam-
ples with a relatively low noise profile. In this paper, we adopt a similar feature-based formulation
to Reference 12 and illustrate it’s effectiveness for in-situ 3D shape reconstruction of a small celes-
tial body. Additionally, we propose a set of filtering algorithms in order to better compensate for
outliers in the feature map and noise in the final shape model.

This work proposes a 3D shape reconstruction algorithm that leverages surface feature and cam-
era pose estimates from a VSLAM system to estimate the physical properties and to construct a
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preliminary shape model of a small celestial body. The shape reconstruction pipeline takes as in-
put a set of non-uniform, noisy surface feature points and camera poses which are estimated from
a collection of monocular images. To this end, feature-based monocular VSLAM is employed to
simultaneously estimate the set of 3D feature points and the position and orientation of the camera
from each image. The input from the VSLAM system provides free-space constraints for the pro-
posed feature-based space carving approach to estimate the shape of the small body as a collection
of non-uniform tetrahedral elements from the Delaunay triangulation of the feature map. A visual-
ization of the shape reconstruction pipeline is shown in Figure 1. Our algorithm requires no strict
assumptions on surface illumination, and the full 6DOF pose (position and orientation) of the cam-
era is estimated through the VSLAM solution. The proposed algorithm is validated using simulated
images of Asteroid (25143) Itokawa and real images of Asteroid (4) Vesta.

Figure 1: Summary of the shape reconstruction process (left to right): a set of surface features is input
from the VSLAM system; the Delaunay triangulation of the points is computed; the triangulation
defines the initial carving space (i.e., the convex hull of the points); free-space constraints are enforced
to carve away tetrahedra outside the underlying volume to construct a 3D shape model.

VISUAL SIMULTANEOUS LOCALIZATION AND MAPPING

Our shape reconstruction algorithm relies on feature point and camera pose estimates from a
feature-based monocular VSLAM system. Monocular VSLAM18 leverages images captured from
discrete viewpoints along the vehicle’s trajectory to provide spatial information about the target
scene, while simultaneously estimating the observer’s ego-motion. As VSLAM algorithms15, 16 are
commonly known and are not a main contribution of this paper, we only include a brief summary
of the method used for our simulations in this section for completion.

The VSLAM architecture is comprised of two main components: the front-end and the back-end.
Detection and tracking of salient surface features is performed by the front-end by first detecting
image keypoints through computing Oriented FAST and Rotated BRIEF (ORB)19 features, and
then extracting their binary feature descriptors. The binary feature descriptors are then matched
between frames using a brute force approach based on the Hamming distance, and the resulting
correspondences are used to initialize the pose of the camera with the Perspective-n-Point (PnP)
algorithm20 and to initialize the 3D position of newly matched keypoints through triangulation.
The data associations from the front-end are used to add factors to encode probabilistic constraints
between the 3D feature point and the camera pose estimates in a factor graph in the back-end of
the VSLAM system. Our VSLAM solution utilizes the Georgia Tech Smoothing and Mapping
(GTSAM) factor graph framework21, 22 to formulate SLAM as a maximum a posteriori inference
problem for estimation of the unknown variables (e.g., 3D feature point locations, camera pose)
given a set of measurements (e.g., 2D keypoint locations) and the measurement model. The factor
graph formulation of the SLAM problem is shown in Figure 2. Feature point locations and camera
poses are estimated through factor graph optimization by solving a non-linear least-squares problem
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in the back-end. The VSLAM pipeline also features loop closure to aid in reducing localization
drift accumulated between successive local optimizations over the spacecraft’s navigation sequence.
To this end, a bag-of-words (BoW) image representation23 is leveraged for place recognition, and
similarity metrics between each image’s BoW vectors are computed and compared to determine
when to “close” detected loops by addition of a factor between the camera poses. Loop closure is
an important component of the VSLAM system in the proposed framework, as it is expected that
the spacecraft will experience multiple loop-closures in an orbital relative navigation scenario.

Currently, map and pose information from the VSLAM algorithm is optimized in an initial step
and then used as input into the shape reconstruction component in a second phase. The relative
pose between the spacecraft from two images in the sequence is used to rectify the scale ambiguity
inherent to monocular VSLAM systems, and to allow for direct comparison of the final solution
with ground truth data. Future work will focus on integrating the VSLAM and shape reconstruction
algorithms into a single pipeline.

o C0 C1 Cn−1 Cn
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m1 m2 m3 m4

u1 un
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· · ·

· · ·
Figure 2: Factor graph formulation of the SLAM problem. Variable nodes are camera poses C and

landmark (feature) positions p. Factor nodes are pose measurements u, landmark measurements m,
loop closing constraints l, and possibly a prior factor o.

VORONOI DIAGRAM AND DELAUNAY TRIANGULATION

Voronoi diagrams (VD) and Delaunay triangulation (DT) are geometric data structures built upon
the notion of nearness that will allow for the reformulation of the shape reconstruction problem as
a space carving problem using the VSLAM feature map and pose solution. These data structures,
along with a set of points sampled from a continuous surface, allow for complex geometries to
be discretized as a collection of simplices (triangles in 2D and tetrahedrons in 3D). The following
definitions are adopted from Dey.24

Let P be a set of affinely independent points in Rd. The Voronoi cell Vp for each point p ∈ P is
defined as24

Vp = {x ∈ Rd | d(x, p) ≤ d(x, q), ∀ q ∈ P, q 6= p}, (1)

that is, Vp is the set of all points whose Euclidean distance d(·, ·) to p is smaller than the distance
to any other point in P . The Voronoi diagram Vor(P) is defined as the cell complex of the Voronoi
cells. Here, a cell complex is defined as a collection of polytopes that intersect in a face.24 The
Delaunay triangulation Del(P) of P is the dual graph of Vor(P) and is defined as24

Del(P) = {σ(d) = Conv(T ) |
⋂

p∈T⊆P
Vp 6= ∅}, (2)

that is, Del(P) partitions the convex hull of P into a complex of d-dimensional simplices such that
their corresponding Voronoi cells have nonempty intersection. Here, the d-simplex σ(d) = Conv(T )

4



Figure 3: 2D illustration of the formulated space carving problem on Itokawa: (left) a set of features
are sampled from the target asteroid’s surface and (right) the underlying shape of the curve is recon-
structed from the associated Delaunay triangulation (black lines) of the points by selecting a subset of
the triangles. The Voronoi diagram of the point set is shown in blue.

is the convex hull of a set of d+ 1 affinely independent points T ⊆ P . Every triangle (tetrahedron)
in the Delaunay triangulation satisfies the empty circumscribing ball property, i.e., no point p ∈ P
can lie in the circumscribing ball of a Delaunay triangle (tetrahedron).24

An important motivation for the use of Delaunay triangulation in the proposed 3D reconstruction
algorithm is the following property: under the assumption that the sampling of P of the underlying
surface is sufficiently dense, it can be shown that the facets and edges between sample points of
the surface are contained within Del(P).25, 26 Therefore, the Delaunay complex allows for the
reformulation of the shape reconstruction problem as a space carving problem, i.e., determining a
subset of simplices and their facets in Del(P) that accurately approximate the underlying surface
and shape of the object; this is illustrated in Figure 3. Another important motivation is that the
construction of the VD and DT is inherently incremental and is therefore amenable to incremental
optimization as new measurements are acquired by VSLAM.

3D SHAPE RECONSTRUCTION

The main contribution of this paper is the proposed shape reconstruction pipeline that utilizes our
VSLAM solution. The shape reconstruction pipeline has three main components: (1) outlier detec-
tion of mapped feature points from the VSLAM solution through the use of a k-nearest neighbors
graph (k-NNG), (2) probabilistic feature-based space carving for reconstruction of the object from
the mapped feature points and their corresponding DT and visibility constraints, and (3) filtering of
the carved model by employing basic morphological operations defined on the tetrahedra of the DT.

Outlier Detection

A k-NNG27 is used to identify two main outlier types: (Type I) points in regions where the local
point density is low relative to the mean point density of the map,28 and (Type II) points whose mean
viewing direction deviates from that of other points in some neighborhood. For Type I outliers, the
mean distance from the point to its k = 5 nearest neighbors is computed, and the point is omitted
from the reconstruction process if its mean k-NN distance is greater than a 1-σ deviation from the
global mean of all points in the map. For Type II outliers, the mean direction of the visibility ray rj,k
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from the observed feature point pk to the camera cj is computed for each point and compared with
that of it’s k = 5 nearest neighbors. If, on average, the ray direction deviates from it’s neighbors
by more that 60◦, then the point is omitted from the reconstruction process. While this is a post-
processing step in the current formulation, these simple geometric tests can easily be integrated into
the VSLAM pipeline to select a subset of features that are amenable to the reconstruction method.

Probabilistic Feature-based Space Carving

In this work we adopt a probabilistic feature-based space-carving approach that uses 3D spatial
information provided by the VSLAM system to carve away tetrahedra defined by the Delaunay tri-
angulation based on free-space constraints between the point and the camera.12 Space carving is the
process of reconstructing 3D scenes from a set of images by enforcing a set of free-space constraints
to “carve” out the scene from a larger volume in space, traditionally formulated as a silhouette-based
technique.29 The proposed feature-based approach is motivated by the assertion that indirect meth-
ods that extract a set of intermediate features (such as ORB keypoints and descriptors) from the
image are typically more robust to lighting inconsistencies and large viewpoint changes than direct
methods which operate on pixel intensities directly.30

To formulate the proposed solution, let P ⊂ R3 denote the set of estimated feature points and
let C ⊂ R3 be the set of estimated camera positions. Furthermore, let R denote the set of all
rays defined by rj,k = (pTk mT

j,k)
T ∈ R6 from each feature point pk ∈ P towards each camera

cj ∈ C from which it is visible, where mj,k = (cj − pk)/‖cj − pk‖ ∈ R3. Each triangular facet
F` with vertices V` ⊂ P of the tetrahedra Ti ∈ Del(P) is taken to be an estimate of an element
of the underlying shape model (i.e., either on the surface or in the interior), and feature points pk
are assumed to be observations of a surface element corrupted by Gaussian noise along the ray rj,k,
centered at the surface of a facet F` with variance σ2. We define the probability of the estimate F`
given the ray rj,k from the observed feature point pk to the camera cj (see Figure 4) as follows,
similar to Reference 12:

P(F` | rj,k) =

{
P(x ≤ dk), if rj,k intersects F`,
1, otherwise,

(3)

where x ∼ N (0, σ2) is the signed distance along rj,k (negative away from the camera) with E(x) =
x̄ = 0 defined as the intersection of rj,k and the facet F`, and dk is the signed distance from x = 0 to
point pk of rj,k. The Intersection between a ray rj,k and a triangular facet F` is computed according
to Moller et al.31

Figure 4: Proposed free-space constraint. The camera cj observes a point pk, but the the facet F`
intersects the ray rj,k and would occlude the point.
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Evaluating F` against all rays in R, and further assuming that each observation is independent,
gives

P(F` | R) =
∏

rj,k∈R
P(F` | rj,k). (4)

Furthermore, the probability P(Ti) of a tetrahedron Ti ∈ Del(P) is defined as

P(Ti) = min
({

P(F
(i)
1 | R), . . . ,P(F

(i)
4 | R)

})
, (5)

where
{
F

(i)
1 , F

(i)
2 , F

(i)
3 , F

(i)
4

}
are the faces of tetrahedron Ti. If P(Ti) < η for some threshold η

(set to η = 0.15 for our experiments), then the tetrahedron is carved (marked as free-space) from
Del(P).

Morphological Filtering

The large relative distance between the on-board camera and the target asteroid and the dynamic
lighting conditions inherent to the space environment can introduce significant noise in the feature
points and camera pose estimates, which may not be properly compensated for by the probabilistic
space carving method. Moreover, the relative motion of the spacecraft with respect to the small body
is typically constrained in an orbital plane. This can limit the availability of novel viewpoints be-
tween successive revolutions, allowing for certain types of spurious features to persist in the carved
model. Therefore, we define a set of filtering procedures using the formalism of morphological
operations on the tetrahedra in the DT to compensate for these unique constraints.

Morphological operators are a special form of non-linear filters, and are primarily defined on
pixels for filtering, segmentation, classification, and general analysis of 2D binary and gray-scale
images.32 An important insight is that the 3D partitioning of space and adjacency relationships
defined by Del(P) and Vor(P) can be considered a 3D gray-scale image with tetrahedral elements
and P(Ti) ∈ [0 1] as their respective “intensity” values. Therefore, the basic operations erode and
dilate can be extended to operate on the tetrahedra and their respective probability computed in the
previous feature-based space carving step.

Morphological operators are often based on predefined sets called structuring elements.32 Let
E ⊆ R denote the space of gray-scale image values, and let H,G ⊆ R3 denote the domains of the
3D gray-scale image h : H → E and the 3D gray-scale structuring element g : G → E , respectively.
For our purposes, we will consider a structuring element that is both flat (i.e., g(i, j, k) = 0 for all
(i, j, k) ∈ G) and symmetric. Then the dilation of h by g is defined as33

(h⊕ g) (x, y, z) = max
(i,j,k)∈G

{h(x+ i, y + j, z + k)} , (6)

for all (x+ i, y+ j, z+ k) ∈ H. That is, the elements in the dilated image h⊕ g take the maximum
value in a neighborhood defined by G of the elements in h. In a similar fashion, the erosion of h by
g is defined as33

(h	 g) (x, y, z) = min
(i,j,k)∈G

{h(x+ i, y + j, z + k)} , (7)

for all (x+ i, y+ j, z + k) ∈ H. That is, the elements in the eroded image h	 g take the minimum
value in a neighborhood defined by G of the elements in h. The basic operations of erosion and
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(a) G1
(b) G2

Figure 5: Example structuring elements.

dilation can be combined to form more complex operations such as opening. The opening operation
is defined as an erosion operation followed by a dilation operation:33

h ◦ g = (h	 g)⊕ g. (8)

The opening operation is idemponent (i.e., converges in a single step) and anti-extensive (i.e., the
result is smaller than the original image).32, 33

For our purposes, we will utilize two different structuring elements. The first structuring element
G1 is taken to be the set containing a tetrahedron, the origin of the structuring element denoted TO,
and its adjacent tetrahedra. Here, two tetrahedra Ti, Tj are considered to be adjacent if they intersect
in a face. The second structuring element G2 is taken to be the set containing a tetrahedron TO, all
of the tetrahedra that are adjacent to the tetrahedron TO, and additionally all of the tetrahedra that
are adjacent to the tetrahedra that are adjacent to TO. Examples of these structuring elements are
shown in Figure 5.

The connectivity of the tetrahedra in Del(P) is also leveraged to identify spurious features in the
carved shape. A tetrahedron is identified as spurious if (1) it is occupied but is adjacent to three
tetrahedra, or (2) it is occupied, is adjacent to two free tetrahedra, and it’s aspect ratio is below a
threshold α (taken to be α = 0.02 for our experiments). Here, the aspect ratio of a tetrahedron is
defined as the ratio of its inradius to its longest edge. The first case represents tetrahedra that are
not well integrated into the underlying shape model, while the second case promotes isotropic faces
on the surface of the shape model and handles tetrahedron that are generally too thin with respect to
the viewing direction to be carved using the proposed free-space constraint.

First, the opening operation with the G2 structuring element is applied to the tetrahedra in the DT.
Next, spurious features are identified and eliminated through an iterative conditional erosion step
using the G1 structuring element and the defined criteria. For our simulations, this procedure was
used in order to remove visual artifacts from the surface of the shape model and was also shown
to decrease the relative error of the estimated physical parameters with respect to the theoretical
values. An overview at each step of this process is shown in Figure 6.
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(a) Initial carving. (b) Morphological opening. (c) Conditional erosion.

Figure 6: Morphological filtering results.

EXPERIMENTAL SETUP

Both real images from the Dawn mission to Asteroid (4) Vesta and simulated images from the
Hayabusa mission to Asteroid (25143) Itokawa were used to validate the proposed algorithm. These
image sequences were chosen such that the majority of the surface of the asteroid was observed dur-
ing the sequence and such that the spacecraft makes roughly one revolution with respect to a body-
fixed frame of the asteroid without any large gaps in observations. Blender Cycles,34 an open source
ray tracing-based production renderer integrated in Blender, was used to generate photorealistic im-
ages of Itokawa using the high-resolution shape model provided by Gaskell et al.35 The dataset of
100 simulated images used for our experiments were sampled using the ground truth mission pa-
rameters from the Hayabusa mission.36 Camera parameters were set to match those of the Hayabusa
Spacecraft Asteroid Multiband Imaging Camera (AMICA),37 and images were synthesized using
the theoretical camera pose and Sun pointing vector in a body-fixed frame of Itokawa at specified
epochs during the Hayabusa mission taken from Saito et al.38 A qualitative comparison between a
real and simulated image is shown in Figure 7. During the sequence, the spacecraft makes roughly
one revolution about the body with respect to a body-fixed frame of Itokawa at a mean radius of
8.0165 km from the origin. This simulated dataset will hereafter be referred to as HAYAB.

Moreover, real imagery39 of Vesta acquired during the Rotation Characterization 3b (RC3b) ob-
servation phase of the Dawn mission was used to validate the algorithm. The images were captured

Figure 7: Simulated image (left) with real image38 (right) of Asteroid (25143) Itokawa.
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Table 1: Overview of Image sequences used for experiments.

Name Mission Target Images Mean Orbital Size (pixels) Resolution
Radius (km) (km/pixel)

HAYAB Hayabusa (25143) Itokawa 100 8.0165 1024× 1024 70× 10−5

DAWNRC3b Dawn (4) Vesta 64 5480.0 1024× 1024 0.5

at a mean orbital radius of 5480.0 km, and the spacecraft makes roughly one revolution about the
body with respect to a body-fixed frame. However, due to the downward spiraling trajectory of the
orbit with respect to a body-fixed frame of Vesta, loop-closure constraints were not satisfied for any
frame in this sequence. While a majority of the surface was imaged during the RC3b observation
phase,40 much of the surface of Vesta above latitude 60◦N was occluded due to self-shadowing.
Therefore, the northern polar region of the asteroid could not be reconstructed from this image
sequence. This real dataset will henceforth be referred to as the DAWNRC3b sequence. Table 1
gives an overview of the two image sequences used for our experiments, and Figure 8 shows a
sub-sampling of images from the respective datasets.

In addition, a low-noise case is presented using the HAYAB image sequence. This case serves to
illustrate the effects of noise on the algorithm, and will also illustrate how the proposed morpho-
logical operations can help compensate for significant noise in the final solution. For this case only,
the spacecraft relative pose was assumed known, and the resulting feature map from our VSLAM
algorithm was filtered with respect to the theoretical shape model.35 This scenario will be referred
to as HAYAB,low-noise in the subsequent analysis.

(a) HAYAB (b) DAWNRC3b

Figure 8: 20 sample images from the respective sequences.

10



RESULTS

Camera Pose and Feature Map Reconstruction

The reconstructed pose of the camera and feature map solution from the VSLAM pipeline for
the respective experiments is shown in Figure 9. Points marked as carved include landmarks
that were identified as outliers, that have corresponding tetrahedra that were eliminated as part of
the reconstruction process, or that are interior points not included as vertices of the final surface
mesh. The camera axes are shown at evenly spaced intervals with the x-axis in red, y-axis in
green, and z-axis (boresight) in blue. The camera poses used to rectify the scale ambiguity of the
monocular VSLAM system were given in a body-fixed frame of the respective asteroids. Therefore,
all values reported are with respect to these frames. For HAYAB, the body-fixed frame of Itokawa
is defined by its principal axes of inertia (assuming a uniform density) with the x−axis along the
smallest moment of inertia, the z−axis along the largest moment of inertia, and the y−axis along
the intermediate moment of inertia with its center of mass (CoM) as the origin.41 For RB3b, the
Claudia crater defines the prime meridian and the largest moment of inertia defines the z-axis, with
the CoM (assuming a uniform density) located at (−0.333,−1.409,−0.003) km relative to the
origin.42 Relative error magnitudes between the reconstructed and actual position and orientation
of the camera are given in Table 2. The relative position error magnitude ∆r is taken to be ∆r =
‖r− r′‖, where r ∈ R3 is the actual position of the camera with respect to the asteroid and r′ ∈ R3

is the estimated position. We adopt an axis-angle representation to compute the relative angular
error magnitude ∆θ between RCA, the actual orientation of the camera frame C with respect to
the asteroid body-fixed frame A, and RC′A, the estimated orientation of the camera frame C ′ with
respect to A:43

∆θ(R) = cos−1
(

trace(R)− 1

2

)
, R = RC′C = RC′AR

T
CA. (9)

Table 2: VSLAM estimation results for the position and orientation of the camera. Relative error
percentages are with respect to the mean orbital radius of the respective experiments.

∆r (km) ∆θ (rad)

max mean RMS max mean RMS

HAYAB 0.1448 (1.81%) 0.0816 (1.02%) 0.0859 (1.07%) 0.0237 0.0136 0.0145

RC3b 47.369 (0.86%) 23.079 (0.42%) 25.050 (0.46%) 0.0089 0.0049 0.0053

3D Shape Reconstruction and Physical Properties Estimation

In this section we will present the results of the proposed reconstruction method for the estimation
of the physical properties (e.g., volume, principal moments of inertia) and 3D shape of a small
celestial body. For the HAYAB,low-noise and HAYAB experiments, σ was taken to be 0.03 km,
and for the DAWNRC3b experiment, σ was taken to be 10.00 km. A qualitative comparison between
the final shape model from the proposed shape reconstruction pipeline and the theoretical shape
models of Asteroids Itokawa35 and Vesta44 is shown in Figure 10. The theoretical shape model of
Itokawa is taken to be the truth, as the simulated images of Itokawa in the HAYAB sequence were
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Table 3: Relevant physical properties of the reconstructed shape model as compared to theoretical
values. The normalized principal moments of inertia Ixx/M , Iyy/M , and Izz/M are expressed with
respect to the reference frame defined by the principal axes and CoM. The value reported for prin-
cipal axes is the relative error with respect to the theoretical principal axes matrix computed us-
ing Equation 9. The experimental section reports two values, <initial carving result> →
<final filtered result>.

experimental theoretical

HAYAB,low-noise

Volume
(
km3

)
1.82× 10−2 (2.25%)→ 1.80× 10−2 (1.12%) 1.78× 10−2

Ixx/M
(
km2

)
0.642× 10−2 (0.78%)→ 0.636× 10−2 (0.16%) 0.637× 10−2

Iyy/M
(
km2

)
2.154× 10−2 (1.51%)→ 2.145× 10−2 (1.08%) 2.122× 10−2

Izz/M
(
km2

)
2.267× 10−2 (1.43%)→ 2.259× 10−2 (1.07%) 2.235× 10−2

λ 0.93 (0.00%)→ 0.93 (0.00%) 0.93

Bounding box (km) 0.5675× 0.3096× 0.2423→ 0.5675× 0.3096× 0.2423 0.5558× 0.3027× 0.2430

CoM (m) (0.542, 0.145, 0.920)→ (0.159, 0.091, 1.038) (0.000, 0.000, 0.000)

Principal axes (rad) 0.0511→ 0.0518 0.0000

HAYAB

Volume
(
km3

)
1.85× 10−2 (3.93%)→ 1.79× 10−2 (0.56%) 1.78× 10−2

Ixx/M
(
km2

)
0.652× 10−2 (2.35%)→ 0.638× 10−2 (0.16%) 0.637× 10−2

Iyy/M
(
km2

)
2.169× 10−2 (2.21%)→ 2.145× 10−2 (1.08%) 2.122× 10−2

Izz/M
(
km2

)
2.289× 10−2 (2.42%)→ 2.268× 10−2 (1.48%) 2.235× 10−2

λ 0.93 (0.00%)→ 0.92 (1.08%) 0.93

Bounding box (km) 0.5778× 0.3177× 0.2372→ 0.5762× 0.3141× 0.2372 0.5558× 0.3027× 0.2430

CoM (m) (−10.112,−0.639, 6.465)→ (−10.857,−0.839, 6.682) (0.0000, 0.0000, 0.0000)

Principal axes (rad) 0.0508→ 0.0519 0.0000

DAWNRC3b

Volume
(
km3

)
7.43× 107 (0.80%)→ 7.34× 107 (2.00%) 7.49× 107

Ixx/M
(
km2

)
2.553× 104 (0.66%)→ 2.53× 104 (1.44%) 2.570× 104

Iyy/M
(
km2

)
2.620× 104 (1.24%)→ 2.601× 104 (1.96%) 2.653× 104

Izz/M
(
km2

)
3.243× 104(2.50%)→ 3.227× 104(1.99%) 3.164× 104

λ 0.10 (28.57%)→ 0.10 (28.57%) 0.14

Bounding box (km) 572.24× 574.84× 431.44→ 569.33× 573.41× 430.95 562.86× 568.18× 466.00

CoM (km) (1.3190,−0.4150,−1.9610)→ (1.2230,−0.4930,−1.7520) (0.0000, 0.0000, 0.0000)

Principal axes 0.0277→ 0.0221 0.0000
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(a) HAYAB

(b) DAWNRC3b

Figure 9: VSLAM pose and feature map estimation results in a body-fixed frame.

synthesized using this model. These results illustrate how the estimated shape model responds to
feature maps with different noise profiles.

Table 3 reports a set of physical properties derived from the estimated shape model as compared
to the theoretical values, including a simple measure of the mass distribution and the second degree
and order gravity coefficients contained in the parameter λ defined as45

λ =
Iyy − Ixx
Izz − Ixx

=
4C22

C20 − 2C22
. (10)

The normalized principal moments of inertia Ixx/M , Iyy/M , and Izz/M were computed assuming
a uniform density throughout and are expressed with respect to a reference frame defined by the
principal axes and CoM. The estimated physical properties are provided for both the initial space-
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(a) HAYAB,low-noise (24383 points).

(b) HAYAB (27280 points).

(c) DAWNRC3b (29203 points).

Figure 10: Qualitative comparison between the reconstructed feature map (left) and our reconstructed
shape model (middle), and the theoretical shape model (right) for the various experiments. Feature
points p are colorized by their distance d(p,S) to the closest point on the theoretical surface mesh S.
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carving and the final filtered result to demonstrate the effects of the proposed morphological filtering
procedure. In general, all estimates are improved by the procedure. The physical property values
of Itokawa reported by Scheeres et al.41 were taken to be the theoretical values for the HAYAB
simulation and are provided in Table 3. The theoretical shape model44 of Vesta was used to derive
the theoretical values reported in Table 3, assuming constant density, and are within the reported
error bounds of the values reported by Konopliv et al.42 and Russell et al.40 The presented results
show close agreement between the reconstructed values from the proposed shape reconstruction
algorithm and the theoretical values. In addition, we employ the well-known bidirectional Hausdorff
distance dH , detailed in Appendix A, to obtain a distance metric between the actual triangular
surface mesh and the result obtained from our shape reconstruction algorithm. These results are
summarized in Table 4 and Figure 11.

For the DAWNRC3b experiment, the filtering process can be seen to marginally increase the rel-
ative error for the estimates of Ixx/M , Iyy/M , and the volume. This is likely due to the fact that
much of the surface of Vesta above latitude 60◦N was not mapped due to persistent self-shadowing
during the image sequence. This presumably resulted in spurious tetrahedra in the north polar region
of the carved shape model that were removed during the filtering process. However, the normalized
principal moment of inertia Izz/M estimate was improved as the model was more completely de-
veloped with respect to the z-axis. This lack of observations of the north polar region also likely
inflated the values for DAWNRC3b reported in Table 4.

Baker et al.8 provides estimates of geometric properties for the case of Itokawa that we will
compare directly to our HAYAB experiment. The computed volume and bounding box of our recon-
structed shape model (1.79× 10−2 km3 and 0.5762× 0.3141× 0.2372 km, respectively) are much
closer to the actual values (1.78× 10−2 km3 and 0.5558× 0.3027× 0.2430 km, respectively) than
the values reported in Reference 8 (2.045× 10−2 km3 and 0.5835× 0.2588× 0.3412 km, respec-
tively). Furthermore, the mean of the magnitudes of the Hausdorff distance values from our method
(5.992 × 10−3 km) are almost an order of magnitude better (1.903 × 10−2), and without making
the same set of restrictive assumptions such as the Sun directly behind the camera and the camera
position and orientation exactly known a priori. The detailed results show that our method is able
to reconstruct an accurate volumetric model of the asteroids at a relatively large radial distance from
the body by leveraging noisy feature point and camera pose estimates without making any strict
assumptions on the surface illumination conditions of the target.

Table 4: Hausdorff distance dH(S,S ′), mean Hausdorff distance dµH(S,S ′), and root mean square
Hausdorff distance dRMS

H (S,S ′) between the theoretical surface mesh S and the surface mesh ob-
tained from our shape reconstruction algorithm S ′. Relative error percentages are with respect to the
bounding box diagonal of the respective theoretical shape models.

dH(S,S ′) (km) dµH(S,S ′) (km) dRMS
H (S,S ′) (km)

HAYAB3, ideal 9.240× 10−3 (1.36%) 1.456× 10−3 (0.21%) 1.786× 10−3 (0.26%)

HAYAB3 2.321× 10−2 (3.42%) 5.992× 10−3 (0.88%) 7.237× 10−3 (1.07%)

DAWNRC3b 37.273 (4.03%) 3.400 (0.37%) 6.560 (0.71%)

CONCLUSION

In this paper, we presented a 3D shape reconstruction algorithm that leverages feature point and
camera pose estimates from a VSLAM system for reconstructing a preliminary shape model and
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(a) HAYAB,low-noise

(b) HAYAB

(c) DAWNRC3b

Figure 11: Distance d(v,S ′) from the vertices v of the theoretical shape model to the closest point on
the triangular surface mesh S ′ obtained from our space carving algorithm overlaid on the theoretical
shape model for visualization.
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a set of physical properties of a small body during a relative navigation scenario. Our algorithm
requires no strict assumptions on surface illumination and estimates the 3D shape of the small body.
Moreover, the presented results demonstrate that our algorithm is able to accurately reconstruct the
shape of the small body from noisy feature point and camera pose estimates from both simulated
and real images through VSLAM. Future work will focus on integrating the shape reconstruction
algorithm into a VSLAM pipeline that can operate online.
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APPENDIX A: HAUSDORFF DISTANCE

We employ the bidirectional Hausdorff distance dH to obtain a distance metric between the actual
shape model and the triangular surface mesh obtained from our shape reconstruction algorithm. The
following definitions are adopted from Aspert et al.46 To obtain this metric, we first define the one-
sided Hausdorff distance dO between a point p belonging to a surface S and a surface S ′ as46

dO(S,S ′) = max
p∈S

d(p,S ′), (11)

where
d(p,S ′) = min

p′∈S′
‖p− p′‖2.

The bidirectional Hausdorff distance dH is then defined as46

dH(S,S ′) = max
{
dO(S,S ′), dO(S ′,S)

}
. (12)

Furthermore, the distance metric defined above in Equation (11) can be used to define a mean error
dµO and root mean square error dRMS

O between the surfaces S and S ′:46

dµO(S,S ′) =
1

|S|

∫ ∫
p∈S

d(p,S ′) dS, (13)

dRMS
O (S,S ′) =

√
1

|S|

∫ ∫
p∈S

d(p,S ′)2 dS, (14)

where |S| is the area of S . Bidirectional versions of the mean and root mean square error, dµH and
dRMS
H , respectively, can be defined using Equation (12).
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