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Satellite proximity operations have been identified by NASA and the USAF as a crucial
technology that could enable a series of new missions in space. Such missions would require
a satellite to simultaneously and accurately track time-varying relative position and attitude
profiles. Moreover, the mass and moment of inertia of a satellite are also typically time-
varying, which makes this problem even more challenging. Based on recent results in dual
quaternions, a nonlinear adaptive position and attitude tracking controller for satellites
with unknown and time-varying mass and inertia matrix is proposed. Dual quaternions are
used to represent jointly the position and attitude of the satellite. The controller is shown
to ensure almost global asymptotic stability of the combined translational and rotational
position and velocity tracking errors. Moreover, sufficient conditions on the reference
motion are provided that guarantee mass and inertia matrix identification. The controller
compensates for the gravity force, the gravity-gradient torque, Earth’s oblateness, and
unknown constant disturbance forces and torques. The proposed controller is especially
suited for satellites with relatively high and quick variations of mass and moment of inertia,
such as highly maneuverable small satellites equipped with relatively powerful thrusters
and control moment gyros.

I. Introduction

The capability to safely and efficiently operate a satellite in close proximity to another small body, such as
another satellite or a small asteroid, is a game-changing technology that can potentiate missions such as on-
orbit satellite inspection, health monitoring, surveillance, servicing, refueling, and asteroid retrieval. One of
the biggest challenges introduced by these space missions is the need to simultaneously and accurately track
both time-varying relative position and attitude, i.e., pose, reference trajectories in order to avoid collisions
and achieve overall mission objectives. As it will be shown, the problem of simultaneously tracking both
position and attitude profiles in space can be substantially simplified through the use of dual quaternions.

Previous controllers developed to address this problem include the adaptive nonlinear controller presented
in Ref. [1], which considers unknown – but constant – mass and inertia matrix parameters. This controller
has a very high order, which limits its applicability. Ref. [2] also assumes constant but unknown mass and
inertia matrix. However, as explained in Ref. [3], if the reference motion is not exciting enough, this controller
cannot guarantee convergence of the position and attitude errors to zero. The controller proposed in Ref. [4]
also assumes constant mass and inertia matrix, but requires knowledge of an upper bound on the mass and
on the maximum eigenvalue of the inertia matrix. It also requires knowledge of upper bounds on several
states and parameters.

More recently, an adaptive pose (i.e., position and attitude) tracking controller has been proposed based
on dual quaternions5 that, unlike the controller presented in Ref. [4], does not require a priori knowledge
of any upper bounds, ensures almosta global asymptotical stability of the linear and angular position and
velocity tracking errors, and can identify the mass and inertia matrix of the satellite (if the reference motion
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aThe terminology almost global asymptotic stability will be used to designate asymptotic stability over an open and dense

set. This is the best one can achieve with a continuous controller for the rotational motion,6 since the special group of rotation
matrices SO(3) is a compact manifold.
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satisfies certain sufficient conditions). This controller has been further improved in Ref. [7] to handle the
gravity force, the gravity-gradient torque, constant unknown disturbance forces and torques, and Earth’s
oblateness (which is typically the largest perturbation on a satellite below GEO8). However, Refs. [5] and
[7] also assume that the mass and inertia matrix of the satellite are constant.

All the controllers mentioned before assume that the mass and inertia matrix of the satellite are constant
(albeit unknown). However, the mass and inertia matrix of a satellite are typically not constant. For
example, consider a small satellite equipped with thrusters and control moment gyros. In this case, the mass
of the propellant and the moment of inertia of the control moment gyros might be substantial compared to
the total mass and moment of inertia of the satellite.

The main contribution of this paper is to remove the assumption of constant mass and inertia matrix
used in Refs. [5] and [7].

Dual quaternions are used in this paper to derivate the controller. Dual quaternions are an extension of
classical quaternions and provide a compact representation of the position and attitude of a frame with respect
to another frame. Their properties, examples of previous applications, and a comparison with other pose
representations are discussed in length in Ref. [7]. However, the property that makes them most appealing is
that the combined translational and rotational kinematic and dynamic equations of motion written in terms
of dual quaternions have the same form as the rotational-only kinematic and dynamic equations of motion
written in terms of quaternions. This interesting property has been recently used in Refs. [5,7,9,10] to extend
existing attitude-only controllers with some desired properties into position and attitude controllers with
equivalent desired properties. This was achieved by, essentially, replacing quaternions by dual quaternions in
the attitude-only control laws and corresponding Lyapunov functions. This nice property of dual quaternions
is used here to extend the attitude-only results presented in Refs. [11, 12].

II. Mathematical Preliminaries

For the benefit of the reader, the main properties of quaternions and dual quaternions are summarized
here. Additional information can be found in Ref. [7].

A. Quaternions

A quaternion can be represented as q = q1i+ q2j + q3k + q4, where q1, q2, q3, q4 ∈ R and i, j, and k satisfy
i2 = j2 = k2 = −1, i = jk = −kj, j = ki = −ik, and k = ij = −ji,13 or alternatively as an ordered pair
q = (q̄, q4), where q̄ = [q1 q2 q3]T ∈ R3 is the vector part and q4 ∈ R is the scalar part. Quaternions with
zero vector part and with zero scalar part are called scalar quaternions and vector quaternions, respectively.
The set of quaternions will be denoted by H = {q : q = q1i + q2j + q3k + q4, q1, q2, q3, q4 ∈ R}, the set of
scalar quaternions will be denoted by Hs = {q ∈ H : q1 = q2 = q3 = 0}, and the set of vector quaternions
will be denoted by Hv = {q ∈ H : q4 = 0}. Moreover, the quaternions (0̄, 1) and (0̄, 0) will be denoted by 1

and 0, respectively. For the definition of the basic operations on quaternions and their main properties, the
reader is referred to Ref. [7].

B. Dual Quaternions

A dual quaternion is defined as q̂ = qr + εqd, where ε is the dual unit that satisfies ε2 = 0 and ε 6= 0. The
quaternion qr ∈ H is called the real part of the dual quaternion, whereas the quaternion qd ∈ H is called the
dual part of the dual quaternion.

Dual quaternions formed from vector quaternions (i.e., qr, qd ∈ Hv) and from scalar quaternions (i.e.,
qr, qd ∈ Hs) are called dual vector quaternions and dual scalar quaternions, respectively. The set of dual
quaternions will be denoted by Hd = {q̂ : q̂ = qr + εqd, qr, qd ∈ H}, the set of dual scalar quaternions will
be denoted by Hsd = {q̂ : q̂ = qr + εqd, qr, qd ∈ Hs}, the set of dual vector quaternions will be denoted by
Hvd = {q̂ : q̂ = qr + εqd, qr, qd ∈ Hv}, and the set of dual scalar quaternions with zero dual part will be
denoted by Hrd = {q̂ : q̂ = qr + ε0, qr ∈ Hs}. Moreover, the dual quaternions 1 + ε0 and 0 + ε0 will be
denoted by 1̂ and 0̂, respectively. Again, for the definition of the basic operations on dual quaternions and
their main properties, the reader is referred to Ref. [7].
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1. Representing Attitude and Position with Unit Dual Quaternions.

The position and attitude (i.e., pose) of a body-fixed frame with respect to an inertial frame can be
represented by a unit quaternion qB/I ∈ Hu = {q ∈ H : q · q = 1} and by a translation vector, re-
spectively. Alternatively, the pose of the body frame with respect to the inertial frame can be repre-
sented more compactly by the unit dual quaternion14 q̂B/I = qB/I + ε 1

2r
I
B/IqB/I = qB/I + ε 1

2qB/Ir
B
B/I, where

rX
Y/Z = (r̄X

Y/Z, 0) and r̄X
Y/Z = [xX

Y/Z y
X
Y/Z z

X
Y/Z]

T

is the translation vector from the origin of the Z-frame to the
origin of the Y-frame expressed in the X-frame. A unit dual quaternion is defined as belonging to the set9

Hud = {q̂ ∈ Hd : q̂ · q̂ = q̂q̂∗ = q̂∗q̂ = ‖q̂‖d = 1̂}.

2. Representing the Rotational and Translational Kinematic Equations with Dual Quaternions

The kinematic equations of a body-fixed frame and of a frame with some desired pose, both with respect
to an inertial frame and represented by the unit dual quaternions q̂B/I and q̂D/I = qD/I + ε 1

2r
I
D/IqD/I =

qD/I + ε 1
2qD/Ir

D
D/I, respectively, are given by14 ˙̂qB/I=

1
2 ω̂

I
B/Iq̂B/I=

1
2 q̂B/Iω̂

B
B/I and ˙̂qD/I=

1
2 ω̂

I
D/Iq̂D/I=

1
2 q̂D/Iω̂

D
D/I, where

ω̂X
Y/Z is the dual velocity of the Y-frame with respect to the Z-frame expressed in the X-frame, so that
ω̂X

Y/Z = ωX
Y/Z + ε(vX

Y/Z + ωX
Y/Z × rX

X/Y), vX
Y/Z = (v̄X

Y/Z, 0), v̄X
Y/Z is the linear velocity of the Y-frame with respect

to the Z-frame expressed in the X-frame, ωX
Y/Z = (ω̄X

Y/Z, 0), and ω̄X
Y/Z is the angular velocity of the Y-frame

with respect to the Z-frame expressed in the X-frame.
The relative pose between the body frame and the desired frame is represented by the unit9 dual quater-

nion4,10,13,15 q̂B/D = q̂∗D/Iq̂B/I = qB/D + ε 1
2qB/Dr

B
B/D, where rB

B/D = rB
B/I − rB

D/I. The kinematic equations of q̂B/D

can be calculated to be4,10,15

˙̂qB/D = 1
2 q̂B/Dω̂

B

B/D = 1
2 ω̂

D

B/Dq̂B/D, (1)

where ω̂B
B/D = ω̂B

B/I−ω̂B
D/I is the relative dual velocity between the body frame and the desired frame expressed

in the body frame. Note that ω̂B
D/I = q̂∗B/Dω̂

D
D/Iq̂B/D and ω̂D

B/I = q̂B/Dω̂
B
B/Iq̂
∗
B/D.

III. Dual Quaternion Representation of the Relative Dynamic Equations for a
Satellite with Time-Varying Mass and Inertia Matrix

The dynamic equations of motion of a rigid body with constant mass and inertia matrix represented in
terms of dual quaternions can be found in Ref. [10]. However, as mentioned before, the mass and inertia
matrix of a spacecraft are not constant in general. In this paper, this variation will be modeled by rewriting
the previous dynamic equations of motion as follows:

( ˙̂ωB
B/D)

s=(MB(t))−1?
(
f̂B−(ω̂B

B/D+ω̂
B
D/I)×

(
MB(t) ? ((ω̂B

B/D)
s+(ω̂B

D/I)
s)
))
−(q̂∗B/D

˙̂ωD
D/Iq̂B/D)

s−(ω̂B
D/I×ω̂B

B/D)
s, (2)

where f̂B = fB + ετB is the total dual force applied to the body about its center of mass expressed in the
body frame, fB = (f̄B, 0), f̄B is the total force vector applied to the body, τB = (τ̄B, 0), and τ̄B is the total
moment vector applied to the body about its center of mass, MB(t) ∈ R8×8 is the dual inertia matrix 9

defined as

MB(t)=


m(t)I3 03×1 03×3 03×1

01×3 1 01×3 0

03×3 03×1 ĪB(t) 03×1

01×3 0 01×3 1

 , ĪB(t)=

I11(t) I12(t) I13(t)

I12(t) I22(t) I23(t)

I13(t) I23(t) I33(t)

 , IB(t)=

[
ĪB(t) 03×1

01×3 1

]
, (3)

ĪB(t) ∈ R3×3 is the mass moment of inertia of the body about its center of mass expressed in the body frame,
and m(t) is the mass of the body. Note that the dual inertia matrix is symmetric and positive definite.

Although the time-varying dual inertia matrix in Eq. (2) is assumed to be unknown, ṀB(t) is assumed
to be known. That is typically the case in a spacecraft equipped with thrusters and control moment gyros.
Whereas the time-varying mass and inertia matrix of the spacecraft might be unknown, their time derivatives
are typically known, as ṁ(t) and İB(t) are directly related with the control forces and moments produced
by the spacecraft.

Like in Ref. [7], the total dual force acting on the body will be decomposed as follows:

f̂B = f̂B

g + f̂B

∇g + f̂B

J2 + f̂B

d + f̂B

c , (4)
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where f̂B
g = m(t)âB

g , â
B
g = aB

g + ε0, aB
g = (āB

g , 0), āB
g is the gravitational acceleration given by āB

g = −µ r̄BB/I

‖r̄B
B/I
‖3 ,

µ = 398600.4418 km3/s2 is Earth’s gravitational parameter,8 f̂B

∇g = 0 + ετB

∇g, τ
B

∇g = (τ̄B

∇g, 0), τ̄B

∇g is the

gravity gradient torque4 given by τ̄B

∇g = 3µ
r̄BB/I×(ĪB(t)r̄BB/I)

‖r̄B
B/I
‖5 , f̂B

J2
= m(t)âB

J2
, âB

J2
= aB

J2
+ ε0, aB

J2
= (āB

J2
, 0), āB

J2

is the perturbing acceleration due to Earth’s oblateness16 given by

āI

J2 = −3

2

µJ2R
2
e

‖r̄I
B/I‖4


(1− 5(

zIB/I

‖r̄I
B/I
‖ )

2)
xI
B/I

‖r̄I
B/I
‖

(1− 5(
zIB/I

‖r̄I
B/I
‖ )

2)
yIB/I

‖r̄I
B/I
‖

(3− 5(
zIB/I

‖r̄I
B/I
‖ )

2)
zIB/I

‖r̄I
B/I
‖

 , (5)

J2 = 0.0010826267, Re = 6378.137 km is Earth’s mean equatorial radius,8 f̂B
c = fB

c + ετB
c is the dual

control force, and f̂B

d = fB

d + ετB

d is the dual disturbance force. Like in Ref. [7], f̂B

d is assumed to be an
unknown constant that captures neglected disturbance forces and torques, such as atmospheric drag, solar
radiation, and third-bodies. Finally, note that f̂B

g , f̂B

∇g, and f̂B

J2
can be written more compactly in terms

of dual quaternions as f̂B
g = MB(t) ? âB

g , f̂B

∇g =
3µr̂BB/I

‖r̂B
B/I
‖5 × (MB(t) ? (r̂B

B/I)
s), and f̂B

J2
= MB(t) ? âB

J2
, where

r̂B
B/I = rB

B/I + ε0.
In a spacecraft equipped with thrusters and control moment gyros, the dual control force is a known

function of the time derivative of the mass and inertia matrix of the spacecraft. In other words, to produce
control forces and torques, thrusters and control moment gyros need to change the mass and inertia matrix
of the spacecraft, respectively. In this paper, this effect will be modeled by considering the dual control
force to be a known function of the time derivative of the dual inertia matrix, i.e., f̂B

c = f̂B
c (ṀB(t)). The

exact form of this function depends on the characteristics of the actuators. This issue is further discussed in
Section IV.

IV. Pose-Tracking Controller for Spacecraft with Unknown Time-Varying
Mass and Inertia Matrix

The main result of this paper is an adaptive pose-tracking controller for spacecraft with unknown time-
varying mass and inertia matrix. This controller is presented in the next theorem and shown to ensure almost
global asymptotic stability of the linear and angular position and velocity tracking errors. To simplify the
notation, the time dependence of MB(t) and ṀB(t) will not be explicitly indicated from now on.

Theorem 1. Let the dual control force in Eq. (4) be defined by the feedback control law

f̂B
c =−M̂B ? âB

g−
3µr̂BB/I

‖r̂BB/I‖5
× (M̂B ? (r̂BB/I)

s)−M̂B ? âB
J2
−̂̂fB

d −vec
(
q̂∗B/D(q̂

s
B/D − 1̂

s)
)
−Kd ? ŝ

s − 1

2
ṀB ? ŝs (6)

+ω̂B
B/I×(M̂B ? (ω̂B

B/I)
s)+M̂B?(q̂∗B/D

˙̂ωD
D/Iq̂B/D)

s+M̂B ? (ω̂B
D/I×ω̂B

B/D)
s−M̂B ? (Kp ?

d

dt
(q̂∗B/D(q̂

s
B/D − 1̂

s))),

where

ŝ = ω̂B

B/D + (Kp ? (q̂∗B/D(q̂sB/D − 1̂s)))s, Kp=

[
Kr 04×4

04×4 Kq

]
, Kd=

[
Kv 04×4

04×4 Kω

]
, (7)

Kr=

[
K̄r 03×1

01×3 0

]
,Kq=

[
K̄q 03×1

01×3 0

]
,Kv=

[
K̄v 03×1

01×3 0

]
,Kω=

[
K̄ω 03×1

01×3 0

]
, (8)

K̄r, K̄q, K̄v, K̄ω ∈ R3×3 are positive definite matrices, M̂B is an estimate of the dual inertia matrix updated

according to d
dtv(M̂B) = v(ṀB) + d

dtv(∆MB),

d

dt
v(∆MB) = Ki

[
h(ŝs,−(q̂∗B/D

˙̂ωD

D/Iq̂B/D)s−(ω̂B

D/I × ω̂B

B/D)s+Kp?
d(q̂∗B/D(q̂sB/D − 1̂s))

dt
+âB

g+âB

J)

− h((ŝ× ω̂B

B/I)
s, (ω̂B

B/I)
s) + h((ŝ×

µr̂B
B/I

‖r̂B
B/I‖

)s, (r̂B

B/I)
s)
]
, (9)

4 of 15

American Institute of Aeronautics and Astronautics



Ki ∈ R7×7 is a positive definite matrix, v(MB) = [I11 I12 I13 I22 I23 I33 m]T is a vectorized version of the dual

inertia matrix MB, the function h : Hvd×Hvd → R7 is defined as â◦(MB?b̂) = h(â, b̂)Tv(MB) = v(MB)Th(â, b̂)

or, equivalently, h(â, b̂) = [a5b5, a6b5+a5b6, a7b5+a5b7, a6b6, a7b6+a6b7, a7b7, a1b1+a2b2+a3b3]T,
̂̂
fB

d is an
estimate of the dual disturbance force updated according to

d

dt
̂̂
fB

d =
d

dt
∆f̂B

d = Kj ? ŝ
s, Kj =

[
Kf 04×4

04×4 Kτ

]
, Kf =

[
K̄f 03×1

01×3 1

]
, Kτ =

[
K̄τ 03×1

01×3 1

]
, (10)

and K̄f , K̄τ ∈ R3×3 are positive definite matrices. Let ṀB be known and assume that q̂D/I, ω̂
D
D/I,

˙̂ωD
D/I, v(MB),

v(ṀB) ∈ L∞ and r̂B
B/I 6= 0̂. Then, for all initial conditions, limt→∞ q̂B/D = ±1̂ (i.e., limt→∞ qB/D = ±1 and

limt→∞ rB
B/D = 0), limt→∞ ω̂B

B/D = 0̂ (i.e., limt→∞ ωB
B/D = 0 and limt→∞ vB

B/D = 0), and v(M̂B),
̂̂
fB

d ∈ L∞.

Proof. Let the dual inertia matrix and dual disturbance force estimation errors be defined as

∆MB = M̂B −MB and ∆f̂B

d =
̂̂
fB

d − f̂
B

d , (11)

respectively. Note that (q̂B/D, ŝ, v(∆MB), ∆f̂B

d ) = (±1̂, 0̂, 07×1, 0̂) are the equilibrium conditions of the closed-
loop system formed by Eqs. (2), (4), (1), (9), and (10). Consider now the following time-varying candidate

Lyapunov function for the equilibrium point (q̂B/D, ŝ, v(∆MB), ∆f̂B

d ) = (+1̂, 0̂, 07×1, 0̂):

V (q̂B/D, ŝ, v(∆M
B),∆f̂B

d )=(q̂B/D−1̂)◦(q̂B/D−1̂)+ 1
2
ŝs◦(MB?ŝs)+ 1

2
v(∆MB)TK−1

i v(∆MB)+ 1
2
∆f̂B

d ◦(K−1
j ?∆f̂B

d ). (12)

Note that V (q̂B/D = 1̂, ŝ = 0̂, v(∆MB) = 07×1, ∆f̂
B

d = 0̂) = 0 and min{1, 1
2σmin(MB), 1

2
1

σmax(Ki)
, 1

2
1

σmax(Kj)}
(‖q̂B/D − 1̂‖2 + ‖ŝ‖2 + ‖v(∆MB)‖2 + ‖∆f̂B

d ‖2) ≤ V (q̂B/D, ŝ, v(∆MB), ∆f̂B

d ) ≤ max{1, 1
2σmax(MB), 1

2
1

σmin(Ki)
,

1
2

1
σmin(Kj)}(‖q̂B/D − 1̂‖2 + ‖ŝ‖2 + ‖v(∆MB)‖2 + ‖∆f̂B

d ‖2) for all (q̂B/D, ŝ, v(∆MB), ∆f̂B

d ) ∈ Hud × Hvd × R7 ×
Hvd\{1̂, 0̂, 07×1, 0̂}, where σmin and σmax denote the minimum and maximum singular value, respectively. In
addition, the time derivative of V is equal to

V̇ = 2(q̂B/D− 1̂) ◦ ˙̂qB/D + ŝs ◦ (MB ? ˙̂ss) +
1

2
ŝs ◦ (ṀB ? ŝs) + v(∆MB)TK−1

i

d

dt
v(∆MB) +∆f̂B

d ◦ (K−1
j ?

d

dt
∆f̂B

d ).

Then, since from Eq. (1), ω̂B
B/D = 2q̂∗B/D

˙̂qB/D, Eq. (7) can be rewritten as ˙̂qB/D = 1
2 q̂B/Dŝ − 1

2 q̂B/D(Kp ?

(q̂∗B/D(q̂sB/D − 1̂s)))s, which can then be plugged into V̇ , together with the time derivative of Eq. (7), to yield

V̇=(q̂B/D − 1̂) ◦ (q̂B/Dŝ− q̂B/D(Kp ? (q̂∗B/D(q̂sB/D − 1̂s)))s) + ŝs ◦ (MB ? ( ˙̂ωB

B/D)s) + 1
2 ŝ

s ◦ (ṀB ? ŝs)

+ŝs ◦ (MB ? (Kp ?
d(q̂∗B/D(q̂sB/D − 1̂s))

dt
)) + v(∆MB)TK−1

i

d

dt
v(∆MB) +∆f̂B

d ◦ (K−1
j ?

d

dt
∆f̂B

d ).
(13)

Applying Eq. (9) of Ref. [5], inserting Eq. (2), and using ω̂B
B/D + ω̂B

D/I = ω̂B
B/I yields

V̇=ŝs ◦ (q̂∗B/D(q̂sB/D − 1̂s))− (Kp ? (q̂∗B/D(q̂sB/D − 1̂s))) ◦ (q̂∗B/D(q̂sB/D − 1̂s))+ŝs ◦ (f̂B−ω̂B

B/I×
(
MB ? (ω̂B

B/I)
s
)

−MB?(q̂∗B/D
˙̂ωD

D/Iq̂B/D)s−MB?(ω̂B

D/I×ω̂B

B/D)s)+
1

2
ŝs ◦ (ṀB ? ŝs)+ŝs ◦ (MB ? (Kp ?

d(q̂∗B/D(q̂sB/D − 1̂s))

dt
))

+v(∆MB)TK−1
i

d

dt
v(∆MB) +∆f̂B

d ◦ (K−1
j ?

d

dt
∆f̂B

d ).

(14)

Introducing the feedback control law given by Eq. (6), using Eq. (10) and Eq. (13) of Ref. [5], and the
commutativity property of the dual quaternion circle product yields

V̇=−(q̂∗B/D(q̂sB/D − 1̂s)) ◦ (Kp ? (q̂∗B/D(q̂sB/D − 1̂s)))+(ŝ× ω̂B

B/I)
s ◦ (∆MB ? (ω̂B

B/I)
s)+ŝs ◦ (∆MB?(q̂∗B/D

˙̂ωD

D/Iq̂B/D)s

+∆MB?(ω̂B

D/I×ω̂B

B/D)s−∆MB ? (Kp ?
d(q̂∗B/D(q̂sB/D − 1̂s))

dt
)−∆MB ? âB

g−∆MB ? âB

J2 −∆f̂
B

d )

−(ŝ×
3µr̂B

B/I

‖r̂B
B/I‖5

)s◦(∆MB?(r̂B

B/I)
s)−ŝs◦(Kd?ŝ

s)+v(∆MB)TK−1
i

d

dt
v(∆MB)+∆f̂B

d ◦(K−1
j ?

d

dt
∆f̂B

d ). (15)
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Therefore, if d
dtv(∆MB) and d

dt∆f̂
B

d are defined as in Eqs. (9) and (10), it follows that V̇=−(q̂∗B/D(q̂sB/D−1̂s))◦
(Kp ?(q̂∗B/D(q̂sB/D− 1̂s)))−ŝs ◦(Kd ? ŝ

s) ≤ 0, for all (q̂B/D, ŝ, v(∆MB), ∆f̂B

d ) ∈ Hud×Hvd×R7×Hvd\{1̂, 0̂, 07×1, 0̂}.
Hence, the equilibrium point (q̂B/D, ŝ, v(∆MB), ∆f̂B

d ) = (+1̂, 0̂, 07×1, 0̂) is uniformly Lyapunov stable,17 i.e.,

q̂B/D, ŝ, v(∆MB), ∆f̂B

d ∈ L∞. Moreover, from Eqs. (7) and (11), this implies that ω̂B
B/D, v(M̂B),

̂̂
fB

d ∈ L∞.

In addition, since V ≥ 0 and V̇ ≤ 0, limt→∞ V (t) exists and is finite. By extension, limt→∞
∫ t

0
V̇ (τ) dτ =

limt→∞ V (t) − V (0) also exists and is finite. Since q̂B/D, ŝ, v(∆MB), ∆f̂B

d , ω̂
B
B/D, v(M̂B),

̂̂
fB

d ,
˙̂ωD
D/I, ω̂

B
D/I, q̂D/I,

v(MB), v(ṀB) ∈ L∞ and r̂B
B/I 6= 0̂, then from Eqs. (1), (6), and (2) and from Lemma 1 of Ref. [7],

r̂B
B/I,

˙̂qB/D, f̂
B, ˙̂ωB

B/D,
˙̂s ∈ L∞. Hence, by Barbalat’s lemma, limt→∞ vec

(
q̂∗B/D(q̂sB/D− 1̂s)

)
= 0̂ and limt→∞ ŝ = 0̂.

In Ref. 9, it is shown that limt→∞ vec
(
q̂∗B/D(q̂sB/D − 1̂s)

)
= 0̂ is equivalent to limt→∞ q̂B/D = ±1̂. Finally,

ω̂B
B/D → 0̂ results from calculating the limit as t→∞ of both sides of Eq. (7).

Remark 1. According to Theorem 1, q̂B/D converges to either +1̂ or −1̂. Since q̂B/D = +1̂ and q̂B/D = −1̂
represent the same physical pose between frames, either equilibrium is acceptable. However, this can lead to
the so-called unwinding phenomenon, where a large rotation to the equilibrium (greater than 180 degrees) is
performed, despite the fact that a smaller rotation (less than 180 degrees) exits. For more information about
this well know problem of quaternions and possible solutions, the reader is referred to Refs. [4, 6, 18,19].

Remark 2. The terms M̂B ? âB
g ,

3µr̂BB/I

‖r̂B
B/I
‖5 × (M̂B ? (r̂B

B/I)
s), M̂B ? âB

J2
, and

̂̂
fB

d of the control law given by

Eq. (6) are estimates of the gravitational force, gravity-gradient torque, perturbing force due to Earth’s
oblateness, and dual disturbance force calculated using the estimated mass and inertia matrix. These terms
can be thought of as an approximate cancellation of these forces and torques. As shown in Ref. [9], the
term vec

(
q̂∗B/D(q̂sB/D − 1̂s)

)
is equal to 1

2r
B
B/D + εvec

(
qB/D

)
and, hence, is the feedback of the relative position

and attitude errors. The term Kd ? ŝ
s can be thought of as a damping term, where ŝ takes the place of

ω̂B
B/D. The terms ω̂B

B/I×(M̂B ? (ω̂B
B/I)

s), M̂B?(q̂∗B/D
˙̂ωD
D/Iq̂B/D)s, and M̂B ? (ω̂B

D/I×ω̂B
B/D)s are a direct cancellation

of identical terms in Eq. (2) with the true mass and inertia matrix replaced by their estimates. The term

M̂B ? (Kp ?
d
dt (q̂

∗
B/D(q̂sB/D − 1̂s))) is a result of using ŝ instead of ω̂B

B/D in the damping term and, ultimately,
guarantees that the pose error will converge to zero even if the reference motion is not sufficiently exciting.
Finally, the term 1

2Ṁ
B ? ŝs is a result of having time-varying mass and inertia matrix.

Remark 3. As mentioned before, the dual control force is typically a known function of the time derivative
of the dual inertia matrix, i.e., f̂B

c = f̂B
c (ṀB). In other words, a spacecraft typically produces control forces

and moments by changing its mass and inertia matrix, for example, by using thrusters and control moment
gyros, respectively. In that case, the required ṀB can be calculated by solving the following equation:

f̂B

c (ṀB) + 1
2Ṁ

B ? ŝs = f̂B

c,0, (16)

where f̂B
c,0 is equal to f̂B

c minus the term due to ṀB, i.e., f̂B
c,0 = f̂B

c − (− 1
2Ṁ

B ? ŝs).

Remark 4. It can be easily shown that the model-dependent version of the control law given by Eq. (6),
i.e.,

f̂B

c =−MB?âB

g−
3µr̂B

B/I

‖r̂B
B/I‖5

×(MB?(r̂B

B/I)
s)−MB?âB

J2−f̂
B

d−vec
(
q̂∗B/D(q̂sB/D−1̂s)

)
−Kd?ŝ

s − 1

2
ṀB ? ŝs (17)

+ω̂B

B/I×(MB?(ω̂B

B/I)
s)+MB?(q̂∗B/D

˙̂ωD

D/Iq̂B/D)s+MB?(ω̂B

D/I×ω̂B

B/D)s−MB ? (Kp?
d

dt
(q̂∗B/D(q̂sB/D−1̂s))),

where the estimates of the dual inertia matrix and dual disturbance force are replaced by its true values,
still guarantees that limt→∞ q̂B/D = ±1̂ and limt→∞ ω̂B

B/D = 0̂, for all initial conditions.

Sufficient conditions on the reference pose (i.e., on the reference position and attitude) can be derived that
guarantee that the estimate of the dual inertia matrix will converge to the true dual inertia matrix. Since
these conditions are the same conditions given in Proposition 1 of Ref. [7], with the additional assumptions
that ṀB is known and v(MB), v(ṀB), v(M̈B) ∈ L∞, the reader is referred to Ref. [7] for more details. Note
however that the controller presented in Theorem 1 guarantees almost global asymptotical stability of the
linear and angular position and velocity tracking errors with or without dual inertia matrix identification.
Nevertheless, identification of the mass and inertia matrix of the satellite might be important, for example,
for calculation of re-entry trajectories and terminal velocities, state estimation, fault-detecting-and-isolation
systems, and docking/undocking scenarios.
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V. Simulation Results

Two numerical simulations are presented in this section. In the first, the proposed controller is applied
to a conceivable satellite proximity operations scenario. In the second, the same controller is used to identify
the time-varying mass and inertia matrix of the chaser satellite.

A. Satellite Proximity Operations

In this numerical simulation, the versatility of the controller is demonstrated by using it, in sequence, to
approach (phase #1), circumnavigate (phase #2), and dock (phase #3) with a target satellite.

Four reference frames are defined: the inertial frame, the target frame, the desired frame, and the body
frame. The inertial frame is the Earth-Centered-Inertial (ECI) frame. The body frame is some frame fixed
to the chaser satellite and centered at its center of mass. The target frame and the desired frame are defined
as

ĪT =
r̄T/I

‖r̄T/I‖
, J̄T = K̄T × ĪT, K̄T =

ω̄T/I

‖ω̄T/I‖
and

ĪD =
r̄D/T

‖r̄D/T‖
, J̄D = K̄D × ĪD, K̄D ‖ K̄T,

respectively, where ω̄T/I =
r̄T/I×v̄T/I

‖r̄T/I‖2
is calculated from the orbital angular momentum of the target spacecraft

with respect to the inertial frame given by h̄T/I = m‖r̄T/I‖2ω̄T/I = r̄T/I×mv̄T/I. The target satellite is assumed
to be fixed to the target frame. The objective of the control law is to superimpose the body frame to the
desired frame. The relationship between the different frames is illustrated in Figure 1. Additional details

I
I

I
J

I
KT/I

r

B
I

B
J

B
K

D
O

I
O

B
O

D D/T
I r

D D D
J K I 

D D/T
K 

B/D
r

T
O

T T/I
I r

T T T
J K I 

T T/I
K 

D/T
r

Figure 1. Reference frames.

about the simulation are given in Ref. [7].
Unlike in Ref. [7], the mass and inertia matrix of the chaser satellite are time-varying and given by

ĪB(t) =
1

2
sin2

(
2π

20
t

)
ĪB

0 + ĪB

0 (18)

and
m(t) = 100− 0.001t kg, (19)

where

ĪB

0 =

22 0.2 0.5

0.2 20 0.4

0.5 0.4 23

 kg m2. (20)
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The form of Eq. (18) was taken from Ref. [12], whereas Eq. (19) corresponds to a linear decrease in mass
with a flow rate orders of magnitude higher than the flow rate of electric thrusters, which is typically just
a few milligrams per second.20 As explained in Remark 3, ṀB and f̂B

c are typically coupled. However,
for simplicity and without loss of generality whenever ṀB can be solved from Eq. (16), for the purpose of

demonstrating the properties proven in Theorem 1, ṀB and f̂B
c are assumed to be decoupled here.

The constant disturbance force and torque acting on the chaser satellite are set to f̄B

d = [0.005, 0.005,
0.005]T N and τ̄B

d = [0.005, 0.005, 0.005]T N m, respectively. The origin of the body frame (coincident
with the center of mass of the chaser satellite) is positioned relatively to the origin of the desired frame
at r̄B

B/D=[2, 2, 2]T m. The initial error quaternion, relative linear velocity, and relative angular veloc-
ity of the body frame with respect to the desired frame are set to qB/D = [qB/D1 qB/D2 qB/D3 qB/D4]T =
[0.4618, 0.1917, 0.7999, 0.3320]T, v̄B

B/D = [uB
B/D v

B
B/D w

B
B/D]T = [0.1, 0.1, 0.1]T m/s, and ω̄B

B/D = [pB
B/D q

B
B/D

rB
B/D]T = [0.1, 0.1, 0.1]T rad/s, respectively. The initial estimates for the mass, inertia matrix, and dual

disturbance force are set to zero, whereas the control gains are chosen to be K̄r = 0.1I3, K̄q = 0.25I3,
K̄v = 15I3, K̄w = 15I3, Ki = 100I7, K̄f = 0.8I3, and K̄τ = 0.8I3.

Figure 2 shows the linear and angular velocity of the desired frame with respect to the inertial frame
expressed in the desired frame for the complete maneuver. These signals form the reference for the controller.

Figure 3 shows the initial transient response and the transient response between phases #1 and #2 of
the position and attitude of the body frame with respect to the desired frame using the controller given by
Eq. (6) (adaptive) and the controller given by Eq. (17) (nonadaptive). Note that the transition between
phases #1 and #2 occurs at 400 s. The transient response between phases #2 and #3 is similar and, thus,
not shown here. Both controllers successfully cancel the relative position and attitude errors at the beginning
of the maneuver and between phases (these latter are due to the fact that ω̄T

D/T and v̄T
D/T are discontinuous

between phases, in other words, between phases ω̂D
D/I /∈ L∞, which instantaneously violates the conditions of

Theorem 1), even with time-varying mass and inertia matrix.
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Figure 2. Reference motion.

Figure 4 shows the relative linear and angular velocity of the body frame with respect to the desired frame
for the same two cases studied in Figure 3. Again, both controllers successfully cancel the relative linear and
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Figure 3. Relative attitude and position expressed in the body frame.

angular velocity errors at the beginning of the maneuver and between phases, even with time-varying mass
and inertia matrix.

Figure 5 shows that the mass and inertia matrix estimates do not converge to their true values for this
reference motion. This is to be expected as this reference motion is not designed to provide persistence of
excitation. Nevertheless, the controller is still able to track the reference motion.

Figure 6 shows that for this reference motion, the dual disturbance force estimate converges to its true
value. Note however that Theorem 1 only guarantees that this estimate will remain uniformly bounded.
Relatively small oscillations in the estimate can be seen between phases as a result of the discontinuities in
ω̂D

D/I.

Finally, Figure 7 shows the control force, f̄B
c =[fB

c1 f
B
c2 f

B
c3]T, and the control torque, τ̄B

c =[τB
c1 τ

B
c2 τ

B
c3]T,

produced by the adaptive and nonadaptive controllers during the initial transient response and between
phases #1 and #2.

B. Mass and Inertia Matrix Identification

In this numerical simulation, the control law is used to identify the time-varying mass and inertia matrix of
a satellite in a Geosynchronous Earth Orbit (GEO) with orbital elements given in Table 1 of Ref. [7].

In this scenario, the target frame is the unperturbed Hill frame21 of the satellite. Note that in this case
there is not a physical spacecraft attached to the target frame. The desired frame is defined to have the
same pose as the target frame at the beginning of the simulation. The inertial frame and the body frame
are defined as in the previous example.

The satellite has the same time-varying mass and inertia matrix as the chaser satellite in the previous
example. As assumed in Proposition 1 of Ref. [7], the dual disturbance force is assumed to be known and, in
this example, equal to zero. The body frame is assumed to have the same position, attitude, linear velocity,
and angular velocity as the desired frame at the beginning of the simulation. The initial estimates for the
mass and inertia matrix are set to zero. The control gains are the same as in the previous simulation.
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Figure 4. Relative linear and angular velocity expressed in the body frame.

The relative motion of the desired frame with respect to the target frame is defined in Figure 8. It is
composed by a pure translation and several pure rotations designed to identify the mass and the elements of
the inertia matrix in sequence, while keeping the control forces and torques within reasonable values. This
reference motion is the same reference motion used in Ref. 7 to identify the constant mass and inertia matrix
of the chaser satellite.

The identification of the time-varying mass and inertia matrix is shown in Figure 9. Note that the time-
varying mass and inertia matrix are identified even though their initial estimates are zero. They are identified
in sequence: m is identified during the first triangle waveform (on vD

D/T), I12, I22, and I23 are identified during
the second triangle waveform (on qD

D/T), I11 and I13 are identified during the third triangle waveform (on
pD

D/T), and I33 is identified during the fourth and last triangle waveform (on rD
D/T). The associated control

forces and torques are shown in Figure 10.

VI. Conclusion

An adaptive pose tracking controller for satellites with unknown and time-varying mass and inertia matrix
is presented. The controller is proved to ensure almost global asymptotic stability of the linear and angular
position and velocity tracking errors. The gravity force, the gravity-gradient torque, Earth’s oblateness,
and unknown constant disturbance forces and torques are considered. Moreover, sufficient conditions of the
reference motion are specified that guarantee identification of the time-varying mass and inertia matrix of
the satellite. This controller is especially suited for satellites with relatively high and quick variations of
mass and moment of inertia, such as highly maneuverable small satellites equipped with relatively powerful
thrusters and control moment gyros.
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Figure 5. Mass and inertia matrix estimation for low-exciting reference motion.
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Figure 7. Control force and torque.
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Figure 8. Reference motion for identification.

13 of 15

American Institute of Aeronautics and Astronautics



0 500 1000
0

20

40

Time (s)
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Î 1
2
(k

g
m

2
)

0 500 1000

0

0.5

1

Time (s)
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Figure 9. Mass and inertia matrix identification.
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Figure 10. Control force and torque during identification.
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