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A COOPERATIVE EGALITARIAN PEER-TO-PEER STRATEGY FOR
REFUELING SATELLITES IN CIRCULAR CONSTELLATIONS

Atri Dutta* and Panagiotis Tsiotras'

We address the problem of peer-to-peer (P2P) refuelingteflisas in a circu-
lar constellation. In particular, we propose a Cooperakigalitarian P2P (CE-
P2P) strategy that combines the ideas of Cooperative anlitdtza P2P refu-
eling strategies introduced in our previous work. DuringEa2P maneuver, a
fuel-sufficient satellite and a fuel-deficient satellitegage in a cooperative ren-
dezvous, exchange fuel, and then return to any availabiwbshots left vacant by
other active satellites. We propose a methodology, basadetwork flow formu-
lation, to determine the CE-P2P maneuvers that use the mmiamount of fuel
during the ensuing orbital transfers. Since the methodahegy yield sub-optimal
solutions, we provide estimates of sub-optimality of theskitions. Finally, and
with the help of numerical examples, we compare the CE-PFHRE and C-P2P
alternatives, and demonstrate the benefits of CE-P2P marseinverms of reduc-
ing the overall fuel expenditure.

INTRODUCTION

The traditional practice in the space industry has been d¢veldpment of large and complex
monolithic spacecraft. The result of this philosophy ishhigunching and maintenance costs. In
recent times, the need for several small satellites perfmgythe equivalent job of a larger monolithic
spacecraft has been recognized. This new paradigm pro&ide=ans for reducing the overall cost
of space operations, while adding flexibility to space-daséssions. The areas of formation flight,
satellite clustering;>2 and the more recently proposed fractionated spacecrdfitecture? have
been receiving significant attention in this context. We iaterested in the problem of on-orbit
servicing ofmultiple spacecraft. As a first step in this direction, we considet firs simple case
of a constellation comprised of several satellites in auténcorbit. Even for this seemingly simple
problem, devising optimal servicing strategies is far froiwial, as it requires the solution of a
large-scale optimization problem.

Traditionally, the practice in space industry has been éptacement of a spacecraft after its
design lifetime. Still, there have been instances whenrobii-eervicing (OOS) has proven to be
beneficial. The first instances of OOS can be traced to thécgsgmissions for the SkyLab Space
Station in 1970s. OOS missions were also been undertakdémef@olar Maximum Mission (SMM)
and the Russian Space Station. The most visible instance OG5 mission was the repair of the
Hubble Space Telescope (HSTY.”-8 All of the above involve servicing of a single spacecrafteTh
problem of servicing several spacecraft has only recemgnbdooked at. The Orbital Express pro-
gram of DARPA considered the development of an architecture that willaiervicing operations
of multiple spacecraft. It involves the launching of smatbpellant and other units to a low-Earth
orbit, from where they can be transferred to a client spadeby a service vehicle.
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Figurel. Refueling Strategies.

Waltz defines OOS as work done in space by man or machine or thy bde classifies the
objectives of OOS into three broad categories: assemblintemance, and serviciny.Reyner-
sontC introduced the notion of the cost for on-orbit servicing as éor which the benefits of 00S
outweigh the associated cost. A recent customer-centpooaph to studying OOS classifies the
objectives of OOS into three functions, namely life extensupgrade, and modificatiSry.

Replenishment of consumables is one aspect of OOS. Segefidged a regular fuel-budget for
stationkeeping. Providing fuel-deficient satellites witlpellant extends their lifetime, enables ex-
traordinary mission flexibility by allowing for frequentlmtal maneuvering, and also reduces space
debris. The potential profitability of refueling relatiydightweight geostationary communication
satellites with long lifetimes has been emphasized in Ref@11. An account of technical and
economic feasibility of on-orbit satellite servicing caeabe found in Referenck2. Saleh et al.
provide numerical examples that point out the promise afalig for OOS operations. In par-
ticular, refueling presents little risk, but offers immengains if it is performed at the end of the
spacecraft lifetimé.

The conventional notion of refueling fuel-deficient satedl in a constellation is to have a refu-
eling spacecraft visit the former one by one, and impart faghem?!® Figure 1(a) depicts such
a scenario, in which the service vehiclg sequentially visits twelve satellites to deliver fuel to
them. Recently, an alternative refueling strategy has lmesstigated by the authors. This is the
so-called peer-to-peer (P2P) refueling strat&égl 1817 in which satellites distribute fuel amongst
themselves in the absence of a single refueling serviceelkeehthis is achieved by having satel-
lites with excess fuel sharing their resource (propellanth those with either insufficient amount
of fuel or those that are completely depleted of fuel. P2Broftomes as a natural choice in dis-
tributing fuel in the constellation in a mixed refuelingategy>>1® In such a scenario, an external
refueling spacecraft, either launched from Earth or confiiam a different orbit, replenishes part
(perhaps half) of the satellites in the constellation, bef@turning back to its original orbit. The
satellites which receive fuel from the external refuelipgeecraft distribute the fuel amongst other
satellites in the constellation via P2P refueling. Figlife) depicts such a scenario, in which the
service vehiclesy refuels six satellites, which subsequently engage in P2kemeers with the re-
maining satellites. Numerical studies have shown that tixedirefueling strategy is a competitive
alternative to the single-service vehicle refueling siggtand, in fact, outperforms the latter, as the
number of satellites in the constellation increases artiéotime to refuel decreasés By incorpo-



rating additional cost-reducing strategies such as thei@gaTime Allocation (CTA) strategy and
Asynchronous P2P maneuvers (A-P2P), one can increaseehsaftings even moré.

An extension of the baseline P2P refueling, known as theitagah P2P (E-P2P) refueling,
allows the active satellites to return to any availabletailsiots during their return trip. This strategy
has been shown to further reduce the fuel expenditure dtnmgverall refueling proces§.1%20
Another extension of the P2P strategy, known as the Coapef@2P (C-P2P) strategy, allows the
satellites participating in a refueling transaction toa&geyin cooperative rendezvous. This strategy
is particularly beneficial in reducing the fuel expenditwken the fuel-deficient satellites do not
have enough fuel to be acti¢é. Typically, the optimal set of maneuvers are obtained byisgha
discrete optimization probledf: 1921

In this paper we combine the ideas of Cooperative and Egalitd&2P refueling to develop a
strategy which we call Cooperative Egalitarian P2P (CEjR&Rieling. During a CE-P2P maneu-
ver, a fuel-sufficient and a fuel-deficient satellite renaezs in any available orbital slot, exchange
fuel, and then return to any available orbital slots leftardcby otheractive satellites taking part
in refueling transactions. For the determination of theoféZE-P2P maneuvers that consume the
minimum fuel during the refueling process, we need to solM®ahard discrete optimization prob-
lem, in which the cost associated with each decision vagiaghbbtained by solving one or more
time-fixed, minimum-fuel, non-cooperative or cooperaterdezvous orbital transfer problem. As-
suming that the satellites use chemical propulsion, thangptorbital transfers typically employ
multiple-impulses, and require the solution of a non-linpeogramming problem (NLP% 2324
Solving an NLP is computationally intensive and there cao &le issues with the convergence to
a local minimum rather than the global minimum. For our camemnerous rendezvous problems
need to be solved just to set up the discrete optimizatiohlene. In order to minimize these com-
putations, we bypass the solution of NLPs by consideringsfeas with just two impulses. This
simplification leads to sub-optimal solutions, which cancbenputed much faster. Our approach
is justified because P2P refueling is a discrete optimingtimblem; even if the numerical values
of the costs associated with the decision variables are xauit,ethe optimal matching between
satellites for refueling most likely will not change.

In the next section, we discuss a network flow formulation nd the satellite pairs for the op-
timal CE-P2P refueling strategy. We outline the optimi@atproblem that yields the CE-P2P ma-
neuvers corresponding to the minimum tatel” during all ensuing orbital transfers. Recognizing
the potential sub-optimality of the solutions obtained byrking with AV instead of the actual
fuel expenditure, we also derive bounds on the optimal fuperditure during CE-P2P refueling.
Finally, we demonstrate the benefits of a CE-P2P stratedytivit help of numerical examples.

FORMULATION

In this section, we discuss in detail the mathematical fdatimn of the CE-P2P refueling strat-
egy. We introduce the basic notations, discuss the repagsanof CE-P2P maneuvers and outline
the optimization problem required to determine the opti@&tP2P strategy.

Notation

Let us consider a circular constellation consistinguafatellites, distributed over orbital slots
in a circular orbit of radiusk. Let the set of: satellites be given bg = {s; : i = 0,1,2,...,n},
where sy represents a fictitious satellite, the purpose of which béltome clear shortly. Let us



consider a set of/ > n slots in the circular orbit, given by the sé&t = {¢;, € [0,27) : i =
1,2,...,n, ¢; # ¢;}. Out of thesen' slots,n are occupied by the satellites. Let the set of slots
occupied by the satellites be denoteddy Clearly,® C ®’. For convenience, lef = J ==
{1,2,...,n},andJ’ = {1,2,...,n'}. Note that7 C J'. We introduce a mapping; : &' — S
that, at timef > 0, assigns to each orbital slot a satellite fréinin particular,o(¢;) = s; implies
that the satellites; occupies the orbital slat; at timet. If the slot¢g; is empty at timef, we write

a1(¢;) = so-

The initial fuel content of satellits; will be denoted byf,” and the final fuel content be denoted
by f;r. Also, /s will denote the minimum amount of fuel for the satellitgto remain operational,
and f; will denote the maximum fuel capacity of the same satellFeiel-sufficientsatellites are
those that have at least the required amount of fuel; theinengasatellites arduel-deficient Let

Too =11.278)

Ji,0 = (34,56}

T, ={1457

Jp ={2,3,6,8}

P2P Maneuvers:

Sz - Sa
St - Ss
Ss - Ss
Se - S7

Figure 2. Notationsexplanation for P2P refueling.

7,0 denote the set comprised of indices of the fuel-sufficietelis@s, and letZ,; , denote the set
having as elements the indices of the fuel-deficient ones.obfective of P2P refueling is therefore
to achievef;” > L, foralli € {1,2,...,n} by expending the minimum amount of fuel during
the ensuing orbital transfers. For convenience,Jgt = {j : o:(¢;) = s;,i € Z,;} denote
the index set of orbital slots occupied by fuel-sufficienteites at timet, and let7,; = {j :
oi(¢;) = si,i € Iy} denote the index set of orbital slots occupied by fuel-deficsatellites at
timet. Also, let 7, denote the index set of orbital slots occupied by the actvelli¢es before any
orbital maneuver commences, andjetdenote the set of slots where rendezvous takes place for the
various refueling transactions. Then, the set of indicab®brbital slots of the passive satellites is
given by 7 N 7.. Finally, we denote the set of indices of return slots’By Note that the available
return slots are the same as the slots initially occupiechbyattive satellites. We therefore have
Jr = J,. Figure?2illustrates these concepts. For the situation depictedgaorg 2, we assume
J = J"andoy(¢;) = s;. Also, satellitessy, s2, s7 and sg are the fuel-sufficient satellites and
the remaining ones are the fuel-deficient satellites. Thigeasatellites are marked withk”, the
forward trips are marked by a solid arrow, while the retuipstiare marked by a dashed arrow.

Let us consider a CE-P2P maneuver between two satedlites oq(¢;,) ands, = oo(¢i,),
occupying the orbital slote;, and¢;, respectively, where;, i, € J. Without loss of generality,
assumes,, to be the fuel-sufficient satellite ang to be the fuel-deficient satellite, that ig, €



Jso andiz € Jy0. Let these satellites engage in a rendezvous at the orlotabs wherej €

J.. After the refueling transaction, the satellitgsands, return to the orbital slotg;, and¢y,
respectively, wheré, ks € J,.. Giveniy,is € J,,j € J., andky, ko € J,-, We can represent an
assignment for a CE-P2P maneuver(by is, j, k1, k2). An assignmentiy, io, j, k1, k2) is feasible

if the satellitess,, ands, engaging in the CE-P2P refueling transaction end up beielgsiufficient
after the maneuver is complete. LBtdenote the set of all feasible CE-P2P assignments in the
constellation. LetM.. C P denote the set df7; | feasible CE-P2P maneuvers such that all fuel-
deficient satellites are included in the refueling trarisast The cost of a CE-P2P solution is the
total fuel expenditure incurred during all the orbital séars taking place. Lqiﬁj denote the fuel
used by satellites,, during its transfer from the orbital slot; to the slot¢;. Therefore, the cost of
the CE-P2P solution is given by

C(Mee) = >, Piyj + Piyj + Py + Dy 1)
(i1,i2,j,k1,k2) EMce

Also note that, ifiy = j = ky ori; = j = kq, for a CE-P2P assignmeft, io, j, k1, k2) € P then
the assignment represents an E-P2P maneuver (non-coeperaet P. denote the set of feasible
E-P2P maneuvers in the constellation. Cleafy, C P. Similarly, if i1 = &y andis = ko, for
the CE-P2P assignmelit , is, j, k1, ko) € P then the assignment represents a C-P2P maneuver
(non-Egalitarian). LeP. denote the set of feasible C-P2P maneuvers in the congirllalearly,
P. C P. Furthermore, letM?, denote the optimal set of assignments that minimizes thie fue
expenditure during CE-P2P refueling. We therefore have

C(M},) = MnclelgPC(Mc@). 2
Similarly, let M C P, and M? C P, denote the optimal set of assignments for C-P2P and E-P2P
refueling. We therefore have,

C(M7) ZMIggPCC(Mce), (3)
and
C(Me) = MICI-:IQDPE C(Mee). (4)

CE-P2P Maneuver Costs

Let us consider a CE-P2P maneuvar, iz, j, k1, k2). During the first phase of the maneuver, the
two satellitess,, = oo (¢s,) ands, = oo(¢;,) transfer to the orbital slap;. The fuel consumed by
the active satellite,, to transfer from the orbital slat;, to the orbital slot; is given by

AV

Pl = (msu + 1) (1 —e ) 7 (5)

wheremy,,, denotes the mass of the permanent structure of the satellitg,, denotes the charac-
teristic constant for the satellitg,, andAV;, ; denotes the optimal velocity change required for the
transfer from the slo;, to ¢;. The characteristic constant is defineddgy = golsp,, Whereg
denote the gravitational acceleration on the surface oéénth, and/,,, denote the specific thrust
of the engine of the satellite,. Similarly, the fuel expenditure for satellitg, to transfer from the
orbital slotg;, to the orbital slot; is given by:

AV,
p;’;j = (msu + fy_) <1 —e ‘o ) . (6)



The fuel content of satellits,, after its forward trip (but before the fuel exchange takex@) is

Tu — ij, while that of satellites, is f, — Piyje The amount of fuel that,, delivers tos, is gj;.
Hence, the fuel content of satellitg, just after the fuel exchange takes placefjs — pflj — 9
while that of satellites, is f,” — pf,; + g,,. After the fuel exchange, and in the second phase of the
P2P maneuver, satellitag ands,, transfer to the orbital slots;,, and¢y,, respectively. During the

return trip, the fuel expenditure of satellitg to transfer from slot; to slot¢y, is given by

_AVik
P, = (ot S —why =) (1 -0 ),

while that of satellites, to transfer from slot; to slot¢y,, is given by

» B . , AV,
pijZ(msV+fy _p22]+g“) (1—6 ov >

(7)

(8)

The amount of fuel exchanged affects the return trip fuekexigture. Following an analysis similar
to the one in Referenc, it can be shown that the fuel expenditure during the CE-B2fnimized
if the amount of fuel exchanged by the satellites is given by

| _ AVikgy _AVjky
gV ¢, € o <e  Om 5
vo_ B
gy, - _Avjk2 _Aijl (9)
g}l:‘uﬂ e v >e O
where,
AVjkg
v e — v
gile = (o +1,) € 0 = (mey + f7 = Py) (10)
and
AV,
v _ — 12 c
Iplu = (msu + [ —pilj) — (msu —i—iﬂ) e on (11)
I 1> S . .
Also, if e cov =e o , gy can assume any value in the interg§l, < g, < g;|.. For the

maneuver to be feasible we must hayé, < g;/|., thatis, there exists a fuel exchange that would
result in both satellites to be fuel-sufficient at the endhef inaneuver. Furthermore, for feasibility
of the CE-P2P maneuver, we must also hﬁﬁ{? < f, andp;; < f,/, thatis, both satellites must

have enough fuel to complete their forward trips.

Constellation Digraph

We can represent a CE-P2P maneuver using a directed graphis Bmd, let us define a constel-
lation graphg consisting of three partitiong,, J. and7,.. The nodes o are given by7,UJ.UJ,;.
However, we do not know a priori which satellites are activbjch are passive, and which slots
are used for cooperative rendezvous. That is, we do not khewets7,, 7. and 7, a priori. We
therefore let7, = J, = J andJ. = J'. We will denote an orbital transfer usinglaectededge,
with the direction of edge signifying the direction of theébital transfer. Let an edgg, j), where
i € J, andj € J., denote a forward trip from the slat; to the slotg;, and let the associated cost
for this transfer be denoted ly;. Let an edg€j, k), wherej € J. andk € 7,, denote a return trip
from the slotg; to ¢, and let the associated cost for this transfer be denoteg,byA set of edges
(i1,7), (i2,7), (4, k1) and(j, k2) represents a CE-P2P maneuver. FigBidepicts a constellation



digraph, and four directed edges corresponding to a CE-RZzfeaver. The two edges between the
partitions.7, and.7. correspond to forward trips of the active satellites, witile edges betweef.
andJ, correspond to their return trips. Note that any e¢igg) having¢; = ¢, does not represent
a physical transfer, since it would mean that the activdlgateccupies the same orbital slot during
its forward/return trip. Naturally, the cost associatedhwvauch an edge is zero. Hence, if we have
¢i, = ¢; Or ¢, = ¢;, then the maneuver is actually non-cooperative, becausefahe satellites
involved in the refueling transaction remains in its orb#it throughout the maneuver. In other
words, our representation of a CE-P2P maneuver allows aPHErRaneuver to be treated as a spe-
cial case of a CE-P2P maneuver in which one forward edge amdatarn edge does not actually
represent a maneuver, and each of these edges has a zero cost.

Figure 3. Directed constellation graph.

Ideally, the cost of the edges in the gra@hhas to be the fuel expenditure during the orbital
transfers. However, the calculation of the fuel expendiisrdependent on the mass of the satellite
performing the orbital transfer. Since we do not know a prdrich satellites are going to pair up
for the refueling transactions, the return trip fuel exgemeé cannot be uniquely determined for the
return trip edges on the gragh Instead of the fuel expenditure, we can use the velocitygha
AV required for the corresponding orbital transfer becausé@ii can be uniquely determined for
all edges. The minimization cAV would yield sub-optimal results since the true objectivéois
minimize fuel expenditure. However, it was observed in aumerical simulations that solutions
are only marginally sub-optimal when we minimi2d/. Furthermore, in order to avoid solutions
in which a fuel-deficient satellite does not have enough faelomplete the desired rendezvous,
we only allow those forward edgds, j) in the graphg for which we havepfj < f.7, where
sy = 0o(¢;) andg; € @'

A Network Flow Formulation

We now present a network flow formulation for the solution &-2P problem. We set up a
constellation networlg,, using the constellation digragh. To this end, we add a source nogle
and a sink node to the constellation digrapg. For alli € 7,, we also add an ar(s, i) with
associated cost; = 0. We denote the set of these arcséiy Similarly, for all k € 7., we add an
arc (k, t) with associated cosf,; = 0. We denote the set of these arcséhy Let us now consider
two s — ¢ flows in the networlg,,, that pass through the same ngde 7. A pair of such flows



s — i1 — j— k1 — tands — is — j — ko — t represent a CE-P2P maneuver, iz, j, k1, k2).
The total cost of the flows equal the total” required for all the orbital transfers during a CE-P2P
maneuver. We segk/; | pairs of flows in the constellation network with minimum tatast, such
that all flows also pass through all the fuel-deficient sisllin the constellation. Note that each
assignmentiy , i2, j, k1, k2) in @ CE-P2P solutiooM .. corresponds to a set of edgesiy ), (s, i2),
(i1,74), (i2,7), (4, k1), (4, k2), (k1,t), and(k2,t) in G,. The total cost of these edges is therefore
the total AV required for all the orbital transfers corresponding todesignmentiy, iz, j, k1, k2).

Let the set of edges in the network corresponding to all asséts in the CE-P2P solutioml .. be
denoted byM. Also, let the set of slots where the cooperative rendeziakes place corresponding
to the solutionM .. be given by). Let us now introduce the following decision variables for o
optimization problem. Corresponding to each edigg), we introduce a flow variable;; defined

by
1 f %] )
wy = M (12)
0, otherwise

Also, corresponding to each slot for cooperative rendezviat us introduce the decision variables

y;, as follows
1, ifje),
- 13
Yi {O, otherwise (13)
We need|J,,0| CE-P2P maneuvers in order to refuel all fuel-deficient 8sl Hence, the total

flow that goes out of the source 287, | and the flow distributes itself intQ7; | fuel-sufficient
satellites and.7, o| fuel-deficient satellites. Noting thaf; o U J40 = J, we have,

PEREINE (14)
ieJ
and
> wai =|TJaol- (15)
’iEjs,O

An amount of flow equal to the flow originating from the sourcestrbe collected at the sink node,
that is,

> ap = 2|Tapl- (16)

keJ
The flow balance equations at the different nodes yield thevfong constraints

vy = Y xy, forallie J,, (17)
jeTe
Te= Y ak, foralli € 7, (18)
JETe
and
Y wy= Y ay, forallje g (19)
1€Ja ke

The orbital slots available for return are exactly the @ilstots for the active satellites. Hence, we
have,
Tgi = Tit, forallz € J. (20)



The total number of slots for rendezvous is the total numib&EB-P2P maneuvers, which in turn
equals the number of fuel-deficient satellites in the cdlasien. We therefore have,

>y = 1Jaol- (21)

FISNE

If a slot is selected for cooperative rendezvous, two stgglmust transfer to that location (unless
it is a non-cooperative maneuver). Hence, we have the follpwonstraint:

> ay =2y;, forallj € J.. (22)
i€J

The two satellites transferring to the siot must be a fuel-sufficient and a fuel-deficient satellite.
In other words, we have at most one fuel-sufficient satedlitding up in the slop;, that is,

> @y <1, forallj € .. (23)
iGJs,o

Given the decision variables defined 2] and (L3), and the set of constraint44)-(23), we are
required to minimize the totahV' for the CE-P2P maneuvers, that is,

(CE-P2P): min Y cjzy;. (24)
(4,7)€ER

BOUNDSON THE OPTIMAL FUEL EXPENDITURE

The set of CE-P2P maneuvers obtained by solving the optilmiz@roblem (CE-P2P) corre-
sponds to the minimum totaél V' required for the orbital transfers taking place during eéifhg. Let
this solution be denoted by1'L. Our true objective is to minimize fuel expenditure, anddeethe
solution ML is potentially sub-optimal. In this section, we provide aaswre of the sub-optimality
of the solution ML by deriving bounds on the optimal fuel expenditure for CERR&fueling. In
particular, we show that a conservative lower bound on tted foel expenditure® (M3,) can be

obtained by solving a bipartite assignment problem.

To this end, let us consider the undirected bipartite g@ph {7 0UJ40,E}. We will represent
a P2P maneuver between two satellites byiadirectededge in the grapl,. In particular, we say
that there exists an (undirected) edde, i) between two nodes € J; andiy € Jy if and
only if the satellitess,, ands,,, occupying initially the orbital slot®;, and¢;,, respectively, can
engage in a feasible CE-P2P maneuver. By this, we mean #léteatcan engage in a rendezvous
at a slotg;, wherej € J’, and return respectively to the orbital sletg, and ¢5,. The set of
all such edges in the graph is given By = {(i1,i2) : thereexists j € J', and¢y,, dr, €
J such that eitheliy, io, j, k1, ko) € P}. To each edgeiy, i), we associate a cosfcm that takes
into account the fuel expenditure during the forward andrretrips of the satellites, among all
possible slots for cooperative rendezvous and returniposit The minimum fuel consumption for
all possible return slots corresponding to the cooperagmeezvous slap;, wherej € 7', is given

by

" v . o H
Pt oo+ kl’bg}lf}c#h (pjkl + pm)] . (25)



Therefore, the cost of the edga, i2) € & is taken as

£ s iz v : iz iz
Cinia = JHEI\I% Pirj +pi2j + kl,kzg}l?ﬂ#kz (pjkl +pjk2>] ‘ (26)

It represents the minimum possible fuel expenditure if titeltess,, ands, engage in a CE-P2P
maneuver.

We are interested in a subset, of £ with |75 | edges, such that no two edges share the same
node. This ensures that a satellite can be assigned to oelZBAP2P maneuver. Let us associate
with each edgéi, j) € & the binary variable:;; given by

1, ifxy e s
(L'Z'j = ’ * 7 -MZ (27)
0, otherwise

We now define the following optimization problem ga*:

(CE-P2P-LB):min Y~ c;xi, (28)
(i,j>€(€g
subject to
> ay < 1iforallie T, (29)
ROVIS)
> iy =1forallj € Jup. (30)
’i:(i,j>€5@

The constraint Z9) implies that each fuel-sufficient satellite can be asgigioe at most, one
fuel-deficient satellite, while the constrair8Q) implies that each fuel-deficient satellite has to be
assigned to a fuel-sufficient satellite. Let the optimaligoh to the problem (CE-P2P-LB) bk}
and the optimal value of the objective given &8) be denoted by; 3. We then have

Cip = Z ij- (31)

(i,5)eM;
We now state the following theorem.

Theorem 1. The total fuel expenditur€(AM?,) corresponding to the optimal CE-P2P solution

M, is bounded below by the optimal valGgg of the objective function in the bipartite assign-

ment problem (CE-P2P-LB). Moreoveéii M, ) is bounded above by the optimal fuel expenditure
C(M}) obtained via E-P2P refueling @t(M) obtained via C-P2P refueling, whichever is smaller.

ThereforeCrp < C(MZ,) < min{C(M3),C(M})}.

Proof. The optimal CE-P2P solution}, consists of.7; | assignments. For an assignment given
by (i1,12,7, k1, ko) € M}, the satellitess, = oo(¢;;) ands, = oo(¢s,) represent the fuel-
sufficient and fuel-deficient satellites respectively. @My, C P, s, ands, can engage in a
feasible CE-P2P maneuver, which implies that the edge-) exists inG,. We therefore define
the mapping@ : P — &, that gives an edge i, for every assignment ifP. For instance,

*CE-P2P-LB stands for CE-P2P - Lower Bound
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Q (41,12, J, k1, k2) = (i1,12). Note that the CE-P2P solutiafv, corresponds t0.7; | distinct
fuel-sufficient and al|.7; | fuel-deficient satellites involved in refueling transaos (refer to {4)
and (15)). Let us now consider the following assignmentin z,, = 1 for all (¢,r) € Q(M*) and
0 otherwise. For all thé7; o| fuel-sufficient satellites included in CE-P2P solutitity,, we have

ce’
E ZTgr =1,

r:{q,r)EEy

whereas for the remaining7, o| — |J4,0| fuel-sufficient satellites not included in any refueling
transaction, we have
Z Tgr = 0.

r:{q,r)EEy

Combining the above two equations, we have

> g < lforallg e Jup.
ri{q,r)e€y

All the fuel-deficient satellites are included in the CE-P2itution and each of them engages in
a refueling transaction with a distinct fuel-sufficientedhbitie (refer to (4),(15), and @3)). We
therefore have,

> g =1forallr € Jyp.

q:(q,r)€EE

Hence, the optimal CE-P2P solutiow;, corresponds to a feasible soluti@{.M,) for the opti-
mization problem (CE-P2P-LB). Hence, we have

Yoo = Y (32)

(gr)€QME) {gryeM]

Now, let us consider the fuel expendituteM,). We have

CM) = > Phj +ph; T+ (pﬁ;1 +p§-‘k2>
(11,92,4,k1,k2) €M,
> Z [pflj + p;-;j + min <p’fk —|—p’.‘k ﬂ
JrR1 JR2
{in,i2,}:(i1 iz, g k1 k) M, fka T b7k
> Z [min <p§‘1j +ph,;+  min (p’.‘ +p >>} :
=z - jk Jka
v ia}:(inia gk ko) ez, 7 k€ s X
(33)
Using 26), we have from 83),
CML) = Y (34)
(q,r)eQ(M:,)
Finally, comparing Eqg.32) and Eqg. 84), we have
C(Mce) > CLB- (35)
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For the upper bound, recall th& C P andP. C P. Therefore, from the definition af(M,),
C(M}) andC(M}), given in @)-(4), we have

C(M],) <C(M.)andC(M?,) < C(M.). (36)

The inequalities35) and @6) give the desired result. O

The fuel expenditure associated with the (CE-P2P) solutibtained by solving the optimization
problem (CE-P2P), is given bg(M!L). Since M! might be a sub-optimal solution, we have
C(ML) > ¢c(Mz,). Considering the bounds given by Theorémwe obtain an estimate of sub-
optimality of these results. Specifically, we may define tleximum percentage of sub-optimality
of ML by the following expression

C(Me) —C

n= LB 100%. (37)

CLB

Note that because the solution of the CE-P2P-LB problem roegspond to an infeasible CE-P2P
solution, n is a worst case (conservative) estimate of the suboptiynalitM'L. However, we can
guarantee that the solution is no worse thyaibut it could also be better. In fact, there are indeed
cases in which the solution of the (CE-P2P-LB) does lead &aaible solution. In such cases, the
solution is globally optimal.

EXAMPLES

In this section we discuss a few numerical examples that shevbenefit of a cooperative re-
fueling strategy for different satellite constellationshese constellations vary in the number of
satellites, the mass and fuel content of the satellitestfadonstellation orbit. The details of these
constellations are given in Table

Example 1. CE-P2P strategy for a constellation of satellites.

Let us consider the constellatiéry given in Tablel. It consists ofl0 satellites evenly distributed
in a circular orbit. The initial fuel content of the satedlits;, so, ..., s19 are30, 30, 6, 6, 6, 6, 6,
30, 30, 30 units respectively. The maximum allowed time for refuelisg” = 12 orbital periods.
Each satellites; has a minimum fuel requirement gi; = 12 units, while the maximum amount
of fuel for each satellite ig; = 30 units. Each satellite has a permanent structure.gf = 70
units, and a characteristic constantegf= 2943 m/s. The indices of the fuel-sufficient satellites
areZ,o = {1,2,8,9,10} and those of the fuel-deficient satellites &g, = {3,4,5,6,7}. Let
®’ be a set oR0 evenly distributed slots, out of which) are occupied by the satellites. We have,
J' =1{1,2,...,20}, and the satellites occupy the slgfs= {1, 3, ... 19} respectively, that is, we
haves; = o¢(¢2;—1) forall ¢ € {1,2,...,10}. An E-P2P strategy for this constellation yields the
following optimal assignmentss; — s3 — S2, S5 — S4 — S5, S5 — Sg — S9, ST — S10 — S1,
sg — s¢ — s7, Where the assignmeni — s3 — s implies that the satellite; undergoes an
orbital transfer to rendezvous with, exchanges fuel, and then returns to the orbital slot caltyin
occupied by the satellite,. Figure4(a)depicts these E-P2P maneuvers. The fuel expenditure dur-
ing the E-P2P refueling process1i8.11 units. This represents).62% of the total initial fuel in
the constellation. Figuré(a) shows the optimal assignments for the E-P2P case. A C-Paiegpjr
for this constellation yields a higher fuel expenditurertihe E-P2P case. Let us now consider
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Table 1. Sample Constellations.

Label Description
Ch 10 satellites, Altitude= 35,786 Km, T' = 12
fi+30,30,6,6,6,6,6,30,30,30
fi = 30, f, =12, mg = 70 for all satellites
Cy 16 satellltes Altitude= 1,200 Km, T' = 30
f; 30,30, 30, 30, 30, 30, 10, 10, 10, 10, 10, 10, 10, 10, 30, 30
fi = 30, S, =15, mg =70 for all satellites
Cs 16 satellltes Altitude= 1,200 Km,T' = 30
f;+ 30,10, 30, 10, 30, 10, 30, 10, 30, 10, 30, 10, 30, 10, 30, 10
fi = 30, S, =15, mg = 70 for all satellites
Cy 16 satellltes Altitude= 1,200 Km, T' = 30
f;:30,0.4,30,0.4, 30, 0.4, 30, 0.4, 30, 0.4, 30, 0.4, 30, 0.4, 30, 0.4
fi = 30, S, =12, mg =70 for all satellites
Cs 12 satellltes Altitude= 12,000 Km, T' = 20
fi+25,25,25,25,25,25,8,8,8,8,8,8
fi = 25, f = 12, mg; = 75 for all satellites
Cs 14 satellltes Altitude= 1,400 Km, T' = 35
fi+25,25,25,25,25,25,25,8,8,8,8,8,8,8
fi = 25, f = 12, mg; = 75 for all satellites
Cy 14 satellltes Altitude= 30,000 Km, T' = 15
fi:1.2,1.2,1.2,1.2,1.2,1.2,1.2,25, 25,25, 25, 25, 25, 25
fi = 25, [ = 10, mg; = 75 for all satellites

a CE-P2P strategy for refueling satellites in this constielh. First, let us look at the solution
provided by the problem (CE-P2P-LB). The lower bound on (GP-Rxpenditure is found to be
Crp = 17.05 units. The corresponding optimal matching is the followsadellites pairss; < sy,

S9 < 83, Sg <> S5, S9 < Sg, andsyy — sy with their preferred slots for rendezvous being
o3, P15, P17, andpyg respectively. Note that in all of these matchings betweerfulel-sufficient
and fuel-deficient satellites, the fuel-deficient salpierforms a non-cooperative rendezvous with
the corresponding fuel-sufficient satellite. The prefeémeturn locations for these active satellites
are ¢s, o7, ¢17, ¢19, and ¢y respectively. All these are slots adjacent to the corredipgnren-
dezvous slot. Note that these slots are occupied by thevpasatellites and it is not possible
for all of the active satellites to return to their most prede choice of orbital slots. Hence, the
solution of (CE-P2P-LB) is not a feasible CE-P2P solutione therefore solve the optimization
problem (CE-P2P) yielding the following assignmentis;, s3) — ¢4 — (s2,53), S2 — S4 — S5,
(85, 88) — P12 — (36, 37), (86, 89) — P15 — (Sg, 89) and37 — S10 — S1- Figure4(b) depicts this
solution. Note that, like the E-P2P case, all active s#slliransfer to available slots in the vicinity
during their return trips. The fuel expenditure during tlo®perative E-P2P refueling process is
18.65 units, which represent3.5% fuel savings over the E-P2P refueling strategy. This exampl
demonstrates the utility of the CE-P2P refueling strategseducing the fuel expenditure incurred
during a (non-cooperative) E-P2P strategy or a (non-Eagalit) C-P2P strategy. The solution de-
termined is potentially sub-optimal. Comparing with thevéw bound on fuel expenditure, we have
n = 9.38%. This means that our solution is at m&s38% sub-optimal. Furthermore, looking at
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(a) E-P2P strategy (b) CE-P2P strategy

Figure4. Optimal assgnments.

the optimal CE-P2P solution, we find that two of the maneuaeesactually non-cooperative E-
P2P maneuvers. Satellites, s, andsz, s1o engage in (non-cooperative) E-P2P maneuvers, while
the remaining transactions are all cooperative. Hengc@nd s,y are the passive satellites for the
CE-P2P refueling strategy, that is, they remain in theiitalislots throughout the refueling process.

Example 2. Global minimum in the case of a constellationléfsatellites.

Let us consider the constellatidry; in Tablel consisting ofl6 satellites, evenly distributed in
a circular orbit. The fuel content of satellites, s», ..., s1g are 30, 10, 30, 10, 30, 10, 30, 10,
30, 10, 30, 10, 30, 10, 30, 10 respectively. The indices of the fuel-sufficient satedlisreZ , =
{1,5,7,9,11,13,15} and those of the fuel-deficient satellites &g = {2,4,6,8, 10,12, 14, 16}.
Let us conside®’ to be a set 082 orbital slots evenly distributed on the orbit, out of whibhare
initially occupied by the satellites. We therefore hay@,= {1,2,...,32}. The satellites occupy
the slotsgy, ¢, . . . 31 respectively, so that; = og(¢e;—1) forall i € {1,2,...,16}. If we solve
(CE-P2P-LB), we have the lower bound on the CE-P2P fuel edipge to beCrz = 9.08 units
of fuel. The optimal matching yielded by (CE-P2P-LB) is tloldwing satellites pairss; < sy,
S9 <> 83, 84 <> S5, 86 < S7, 810 < S11, S12 < S13, andsy4 < s15. For all of these matchings, the
fuel-deficient satellite performs a non-cooperative rendas with the corresponding fuel-sufficient
satellite and returns to an orbital slot previously occdfig a different active satellite. Furthermore,
the active satellites rendezvous with their preferred ahoif fuel-sufficient satellite in its vicinity,
and return to their preferred choice of orbital slots withaay conflict. Thus, the solution of (CE-
P2P-LB) yields a feasible, and hence the global optimum,R2B-solution. Figur&(a) depicts
this global minimum. In particular, we find that the globalnimium is also the optimal (non-
cooperative) E-P2P solution. The (non-Egalitarian) C-Ba@Rtion has a higher fuel expenditure
(10.34 units) in this case.

Example 3. Fuel-deficient satellites have insufficient fuel to engag@oin-cooperative rendezvous.

Let us consider the constellatiari; given in Tablel. This is similar to the constellatiot’s,
except that now the fuel-deficient satellites have muchdessunt of fuel so that they cannot engage
in a non-cooperative rendezvous. If we solve (CE-P2P-LB),dptimal matching obtained is the
foIIowing set of satellites pairs:sl > S9, 83 <> S4, S5 <> Sg, S7 <> S8, S9 <> S10, S11 <> S12,
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(a) Fuel-deficient satellites can initiate non- (b) Fuel-deficient satellites cannot initi-
cooperative rendezvous ate non-cooperative rendezvous

Figure5. Global Minimum for a Constellation of 16 satellites.

$13 < S14, andsys < s16. The lower bound obtained ;g = 9.48 units of fuel. In each of these
assignments, the fuel-deficient satellite engages in aesatipe rendezvous with a neighboring
fuel-sufficient satellite and after undergoing a fuel-extdpe, returns to its original orbital slot. For
each pair of active satellites engaging in a fuel excharge stot for cooperative rendezvous is
midway between the original slots of the satellites. In fatltfuel-deficient satellites rendezvous
with their preferred choice of fuel-sufficient satellitesdareturn to their preferred orbital slots,
without any conflict. The solution of (CE-P2P-LB) is thenefa feasible CE-P2P solution and,
hence, also the global optimal solution. Figdg) depicts the matching between the satellites

Fuel expenditure in P2P refueling
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Figure6. Refueling Expenditures.

required for refueling. The global minimum in this case ie tiptimal C-P2P solution. For this
constellation, the (non-cooperative) E-P2P solution Haiglaer fuel expenditure of1.85 units.

Figure 6 provides a comparison of the CE-P2P, E-P2P and C-P2P mgusirategies for the
constellations depicted in Table It also shows the lower bound given by the (CE-P2P-LB) smtut
for all constellations. In general, it is observed that tle 2P strategy provides an improvement
over either the E-P2P or the C-P2P strategies.
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CONCLUSIONS

In this paper, we have studied a Cooperative Egalitarian (EHP2P) strategy for refueling
satellites in a circular constellation. We have presenteetaork flow formulation for determining
the optimal set of CE-P2P maneuvers in the constellationmantdave computed a lower bound on
the fuel expenditure for the optimal set of CE-P2P maneuvédrs bound is determined by solving a
bipartite assignment problem, the solution of which may aymot correspond to a feasible CE-P2P
solution. In case it does, we have a globally optimal CE-R#2&tien. Otherwise, the bound helps
in providing an estimate of the sub-optimality of the CE-Pfution obtained by our proposed
methodology. The CE-P2P strategy is found to be a betteeliafustrategy compared to either a
(non-cooperative) Egalitarian P2P (E-P2P) strategy opa-fagalitarian) Cooperative P2P strategy
(C-P2P). In fact, the CE-P2P strategy allows for the benefitsoth Egalitarian P2P refueling and
Cooperative P2P refueling. On one hand, active satellgagperform smalleAV (and hence lower
fuel expenditure) orbital transfers since they are allowgerktturn to any available orbital slot. On
the other hand, the CE-P2P strategy reduces the fuel expenbly allowing satellites to engage in
cooperative rendezvous. This is particularly advantagedien the fuel-deficient satellite does not
have enough fuel to initiate a non-cooperative rendezvous.
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