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A COOPERATIVE EGALITARIAN PEER-TO-PEER STRATEGY FOR
REFUELING SATELLITES IN CIRCULAR CONSTELLATIONS

Atri Dutta∗ and Panagiotis Tsiotras†

We address the problem of peer-to-peer (P2P) refueling of satellites in a circu-
lar constellation. In particular, we propose a CooperativeEgalitarian P2P (CE-
P2P) strategy that combines the ideas of Cooperative and Egalitarian P2P refu-
eling strategies introduced in our previous work. During a CE-P2P maneuver, a
fuel-sufficient satellite and a fuel-deficient satellite engage in a cooperative ren-
dezvous, exchange fuel, and then return to any available orbital slots left vacant by
other active satellites. We propose a methodology, based ona network flow formu-
lation, to determine the CE-P2P maneuvers that use the minimum amount of fuel
during the ensuing orbital transfers. Since the methodology may yield sub-optimal
solutions, we provide estimates of sub-optimality of thesesolutions. Finally, and
with the help of numerical examples, we compare the CE-P2P, E-P2P and C-P2P
alternatives, and demonstrate the benefits of CE-P2P maneuvers in terms of reduc-
ing the overall fuel expenditure.

INTRODUCTION

The traditional practice in the space industry has been the development of large and complex
monolithic spacecraft. The result of this philosophy is high launching and maintenance costs. In
recent times, the need for several small satellites performing the equivalent job of a larger monolithic
spacecraft has been recognized. This new paradigm providesa means for reducing the overall cost
of space operations, while adding flexibility to space-based missions. The areas of formation flight,
satellite clustering,1,2,3 and the more recently proposed fractionated spacecraft architecture,4 have
been receiving significant attention in this context. We areinterested in the problem of on-orbit
servicing ofmultiple spacecraft. As a first step in this direction, we consider first the simple case
of a constellation comprised of several satellites in a circular orbit. Even for this seemingly simple
problem, devising optimal servicing strategies is far fromtrivial, as it requires the solution of a
large-scale optimization problem.

Traditionally, the practice in space industry has been the replacement of a spacecraft after its
design lifetime. Still, there have been instances when on-orbit servicing (OOS) has proven to be
beneficial. The first instances of OOS can be traced to the servicing missions for the SkyLab Space
Station in 1970s. OOS missions were also been undertaken forthe Solar Maximum Mission (SMM)
and the Russian Space Station. The most visible instance of an OOS mission was the repair of the
Hubble Space Telescope (HST).5,6,7,8 All of the above involve servicing of a single spacecraft. The
problem of servicing several spacecraft has only recently been looked at. The Orbital Express pro-
gram of DARPA9 considered the development of an architecture that will allow servicing operations
of multiple spacecraft. It involves the launching of small propellant and other units to a low-Earth
orbit, from where they can be transferred to a client spacecraft by a service vehicle.
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Figure 1. Refueling Strategies.

Waltz defines OOS as work done in space by man or machine or by both. He classifies the
objectives of OOS into three broad categories: assembly, maintenance, and servicing.5 Reyner-
son10 introduced the notion of the cost for on-orbit servicing as one for which the benefits of OOS
outweigh the associated cost. A recent customer-centric approach to studying OOS classifies the
objectives of OOS into three functions, namely life extension, upgrade, and modification.6,7

Replenishment of consumables is one aspect of OOS. Satellites need a regular fuel-budget for
stationkeeping. Providing fuel-deficient satellites withpropellant extends their lifetime, enables ex-
traordinary mission flexibility by allowing for frequent orbital maneuvering, and also reduces space
debris. The potential profitability of refueling relatively lightweight geostationary communication
satellites with long lifetimes has been emphasized in Reference11. An account of technical and
economic feasibility of on-orbit satellite servicing can also be found in Reference12. Saleh et al.7

provide numerical examples that point out the promise of refueling for OOS operations. In par-
ticular, refueling presents little risk, but offers immense gains if it is performed at the end of the
spacecraft lifetime.7

The conventional notion of refueling fuel-deficient satellites in a constellation is to have a refu-
eling spacecraft visit the former one by one, and impart fuelto them.13 Figure1(a) depicts such
a scenario, in which the service vehicles0 sequentially visits twelve satellites to deliver fuel to
them. Recently, an alternative refueling strategy has beeninvestigated by the authors. This is the
so-called peer-to-peer (P2P) refueling strategy,14,15,16,17 in which satellites distribute fuel amongst
themselves in the absence of a single refueling service vehicle. This is achieved by having satel-
lites with excess fuel sharing their resource (propellant)with those with either insufficient amount
of fuel or those that are completely depleted of fuel. P2P often comes as a natural choice in dis-
tributing fuel in the constellation in a mixed refueling strategy.15,16 In such a scenario, an external
refueling spacecraft, either launched from Earth or comingfrom a different orbit, replenishes part
(perhaps half) of the satellites in the constellation, before returning back to its original orbit. The
satellites which receive fuel from the external refueling spacecraft distribute the fuel amongst other
satellites in the constellation via P2P refueling. Figure1(b) depicts such a scenario, in which the
service vehicles0 refuels six satellites, which subsequently engage in P2P maneuvers with the re-
maining satellites. Numerical studies have shown that the mixed refueling strategy is a competitive
alternative to the single-service vehicle refueling strategy and, in fact, outperforms the latter, as the
number of satellites in the constellation increases and/orthe time to refuel decreases.15 By incorpo-
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rating additional cost-reducing strategies such as the Coasting Time Allocation (CTA) strategy and
Asynchronous P2P maneuvers (A-P2P), one can increase the fuel savings even more.16

An extension of the baseline P2P refueling, known as the Egalitarian P2P (E-P2P) refueling,
allows the active satellites to return to any available orbital slots during their return trip. This strategy
has been shown to further reduce the fuel expenditure duringthe overall refueling process.18,19,20

Another extension of the P2P strategy, known as the Cooperative P2P (C-P2P) strategy, allows the
satellites participating in a refueling transaction to engage in cooperative rendezvous. This strategy
is particularly beneficial in reducing the fuel expenditurewhen the fuel-deficient satellites do not
have enough fuel to be active.21 Typically, the optimal set of maneuvers are obtained by solving a
discrete optimization problem.18,19,21

In this paper we combine the ideas of Cooperative and Egalitarian P2P refueling to develop a
strategy which we call Cooperative Egalitarian P2P (CE-P2P) refueling. During a CE-P2P maneu-
ver, a fuel-sufficient and a fuel-deficient satellite rendezvous in any available orbital slot, exchange
fuel, and then return to any available orbital slots left vacant by otheractivesatellites taking part
in refueling transactions. For the determination of the setof CE-P2P maneuvers that consume the
minimum fuel during the refueling process, we need to solve aNP-hard discrete optimization prob-
lem, in which the cost associated with each decision variable is obtained by solving one or more
time-fixed, minimum-fuel, non-cooperative or cooperativerendezvous orbital transfer problem. As-
suming that the satellites use chemical propulsion, the optimal orbital transfers typically employ
multiple-impulses, and require the solution of a non-linear programming problem (NLP).22,23,24

Solving an NLP is computationally intensive and there can also be issues with the convergence to
a local minimum rather than the global minimum. For our case,numerous rendezvous problems
need to be solved just to set up the discrete optimization problem. In order to minimize these com-
putations, we bypass the solution of NLPs by considering transfers with just two impulses. This
simplification leads to sub-optimal solutions, which can becomputed much faster. Our approach
is justified because P2P refueling is a discrete optimization problem; even if the numerical values
of the costs associated with the decision variables are not exact, the optimal matching between
satellites for refueling most likely will not change.

In the next section, we discuss a network flow formulation to find the satellite pairs for the op-
timal CE-P2P refueling strategy. We outline the optimization problem that yields the CE-P2P ma-
neuvers corresponding to the minimum total∆V during all ensuing orbital transfers. Recognizing
the potential sub-optimality of the solutions obtained by working with ∆V instead of the actual
fuel expenditure, we also derive bounds on the optimal fuel expenditure during CE-P2P refueling.
Finally, we demonstrate the benefits of a CE-P2P strategy with the help of numerical examples.

FORMULATION

In this section, we discuss in detail the mathematical formulation of the CE-P2P refueling strat-
egy. We introduce the basic notations, discuss the representation of CE-P2P maneuvers and outline
the optimization problem required to determine the optimalCE-P2P strategy.

Notation

Let us consider a circular constellation consisting ofn satellites, distributed overn orbital slots
in a circular orbit of radiusR. Let the set ofn satellites be given byS = {si : i = 0, 1, 2, . . . , n},
wheres0 represents a fictitious satellite, the purpose of which willbecome clear shortly. Let us
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consider a set ofn′ ≥ n slots in the circular orbit, given by the setΦ′ = {φi ∈ [0, 2π) : i =
1, 2, . . . , n′, φi 6= φj}. Out of thesen′ slots,n are occupied by the satellites. Let the set of slots
occupied by the satellites be denoted byΦ. Clearly,Φ ⊆ Φ′. For convenience, letI = J ==
{1, 2, . . . , n}, andJ ′ = {1, 2, . . . , n′}. Note thatJ ⊆ J ′. We introduce a mappingσt : Φ′ 7→ S
that, at timet ≥ 0, assigns to each orbital slot a satellite fromS. In particular,σt(φj) = si implies
that the satellitesi occupies the orbital slotφj at timet. If the slotφj is empty at timet, we write
σt(φj) = s0.

The initial fuel content of satellitesi will be denoted byf−
i and the final fuel content be denoted

by f+
i . Also, f

i
will denote the minimum amount of fuel for the satellitesi to remain operational,

and f̄i will denote the maximum fuel capacity of the same satellite.Fuel-sufficientsatellites are
those that have at least the required amount of fuel; the remaining satellites arefuel-deficient. Let

P2P Maneuvers: 
S2  -   S4

S1  -   S3

S5  -   S8

S6  -   S7

Ja

Jp

Js,0

Jd,0

Figure 2. Notations explanation for P2P refueling.

Is,0 denote the set comprised of indices of the fuel-sufficient satellites, and letId,0 denote the set
having as elements the indices of the fuel-deficient ones. The objective of P2P refueling is therefore
to achievef+

i ≥ f
i

for all i ∈ {1, 2, . . . , n} by expending the minimum amount of fuel during
the ensuing orbital transfers. For convenience, letJs,t = {j : σt(φj) = si, i ∈ Is,t} denote
the index set of orbital slots occupied by fuel-sufficient satellites at timet, and letJd,t = {j :
σt(φj) = si, i ∈ Id,t} denote the index set of orbital slots occupied by fuel-deficient satellites at
time t. Also, letJa denote the index set of orbital slots occupied by the active satellites before any
orbital maneuver commences, and letJc denote the set of slots where rendezvous takes place for the
various refueling transactions. Then, the set of indices ofthe orbital slots of the passive satellites is
given byJ ∩ Jc. Finally, we denote the set of indices of return slots byJr. Note that the available
return slots are the same as the slots initially occupied by the active satellites. We therefore have
Jr = Ja. Figure2 illustrates these concepts. For the situation depicted in Figure 2, we assume
J = J ′ andσ0(φi) = si. Also, satellitess1, s2, s7 ands8 are the fuel-sufficient satellites and
the remaining ones are the fuel-deficient satellites. The active satellites are marked with ’⋆’, the
forward trips are marked by a solid arrow, while the return trips are marked by a dashed arrow.

Let us consider a CE-P2P maneuver between two satellitessµ = σ0(φi1) and sν = σ0(φi2),
occupying the orbital slotsφi1 andφi2 respectively, wherei1, i2 ∈ J . Without loss of generality,
assumesµ to be the fuel-sufficient satellite andsν to be the fuel-deficient satellite, that is,i1 ∈
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Js,0 and i2 ∈ Jd,0. Let these satellites engage in a rendezvous at the orbital slot φj , wherej ∈
Jc. After the refueling transaction, the satellitessµ andsν return to the orbital slotsφk1

andφk2

respectively, wherek1, k2 ∈ Jr. Giveni1, i2 ∈ Ja, j ∈ Jc, andk1, k2 ∈ Jr, we can represent an
assignment for a CE-P2P maneuver by(i1, i2, j, k1, k2). An assignment(i1, i2, j, k1, k2) is feasible
if the satellitessµ andsν engaging in the CE-P2P refueling transaction end up being fuel-sufficient
after the maneuver is complete. LetP denote the set of all feasible CE-P2P assignments in the
constellation. LetMce ⊆ P denote the set of|Jd,0| feasible CE-P2P maneuvers such that all fuel-
deficient satellites are included in the refueling transactions. The cost of a CE-P2P solution is the
total fuel expenditure incurred during all the orbital transfers taking place. Letpµ

ij denote the fuel
used by satellitesµ during its transfer from the orbital slotφi to the slotφj . Therefore, the cost of
the CE-P2P solution is given by

C(Mce) =
∑

(i1,i2,j,k1,k2)∈Mce

p
µ
i1j + pν

i2j + p
µ
jk1

+ pν
jk2

. (1)

Also note that, ifi1 = j = k1 or i1 = j = k1, for a CE-P2P assignment(i1, i2, j, k1, k2) ∈ P then
the assignment represents an E-P2P maneuver (non-cooperative). LetPe denote the set of feasible
E-P2P maneuvers in the constellation. Clearly,Pe ⊆ P. Similarly, if i1 = k1 and i2 = k2, for
the CE-P2P assignment(i1, i2, j, k1, k2) ∈ P then the assignment represents a C-P2P maneuver
(non-Egalitarian). LetPc denote the set of feasible C-P2P maneuvers in the constellation. Clearly,
Pc ⊆ P. Furthermore, letM∗

ce denote the optimal set of assignments that minimizes the fuel
expenditure during CE-P2P refueling. We therefore have

C(M∗
ce) = min

Mce⊆P
C(Mce). (2)

Similarly, letM∗
c ⊆ Pc andM∗

e ⊆ Pe denote the optimal set of assignments for C-P2P and E-P2P
refueling. We therefore have,

C(M∗
c) = min

Mce⊆Pc

C(Mce), (3)

and
C(M∗

e) = min
Mce⊆Pe

C(Mce). (4)

CE-P2P Maneuver Costs

Let us consider a CE-P2P maneuver(i1, i2, j, k1, k2). During the first phase of the maneuver, the
two satellitessµ = σ0(φi1) andsν = σ0(φi2) transfer to the orbital slotφj. The fuel consumed by
the active satellitesµ to transfer from the orbital slotφi1 to the orbital slotφj is given by

p
µ
i1j =

(

msµ + f−
µ

)

(

1 − e
−

∆Vi1j

c0µ

)

, (5)

wheremspµ denotes the mass of the permanent structure of the satellitesµ, c0µ denotes the charac-
teristic constant for the satellitesµ, and∆Vi1j denotes the optimal velocity change required for the
transfer from the slotφi1 to φj. The characteristic constant is defined byc0µ = g0Ispµ, whereg0

denote the gravitational acceleration on the surface of theearth, andIspµ denote the specific thrust
of the engine of the satellitesµ. Similarly, the fuel expenditure for satellitesν to transfer from the
orbital slotφi2 to the orbital slotφj is given by:

pν
i2j =

(

msν + f−
ν

)

(

1 − e
−

∆Vi2j

c0ν

)

. (6)
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The fuel content of satellitesµ after its forward trip (but before the fuel exchange takes place) is
f−

µ − p
µ
i1j, while that of satellitesν is f−

ν − pν
i2j . The amount of fuel thatsµ delivers tosν is gν

µ.
Hence, the fuel content of satellitesµ just after the fuel exchange takes place isf−

µ − p
µ
i1j − gν

µ,
while that of satellitesν is f−

ν − pν
i2j + gν

µ. After the fuel exchange, and in the second phase of the
P2P maneuver, satellitessµ andsν transfer to the orbital slotsφk1

andφk2
, respectively. During the

return trip, the fuel expenditure of satellitesµ to transfer from slotφj to slotφk1
is given by

p
µ
jk1

=
(

msµ + f−
µ − p

µ
i1j − gν

µ

)

(

1 − e
−

∆Vjk1

c0µ

)

, (7)

while that of satellitesν to transfer from slotφj to slotφk1
is given by

pν
jk2

=
(

msν + f−
ν − pν

i2j + gν
µ

)

(

1 − e
−

∆Vjk2

c0ν

)

. (8)

The amount of fuel exchanged affects the return trip fuel expenditure. Following an analysis similar
to the one in Reference21, it can be shown that the fuel expenditure during the CE-P2P is minimized
if the amount of fuel exchanged by the satellites is given by

gν
µ =











gν
µ|ℓ, e

−
∆Vjk2

c0ν < e
−

∆Vjk1

c0µ ,

gν
µ|u, e

−
∆Vjk2

c0ν > e
−

∆Vjk1

c0µ ,

(9)

where,

gν
µ|ℓ =

(

msν + f
ν

)

e
∆Vjk2

c0ν −
(

msν + f−
ν − pν

i2j

)

, (10)

and

gν
µ|u =

(

msµ + f−
µ − p

µ
i1j

)

−
(

msµ + f
µ

)

e

∆Vjk1

c0µ . (11)

Also, if e
−

∆Vjk2

c0ν = e
−

∆Vjk1

c0µ , gν
µ can assume any value in the intervalgν

µ|ℓ ≤ gν
µ ≤ gν

µ|u. For the
maneuver to be feasible we must havegν

µ|ℓ ≤ gν
µ|u, that is, there exists a fuel exchange that would

result in both satellites to be fuel-sufficient at the end of the maneuver. Furthermore, for feasibility
of the CE-P2P maneuver, we must also havep

µ
i1j < f−

µ andpν
i2j < f−

ν , that is, both satellites must
have enough fuel to complete their forward trips.

Constellation Digraph

We can represent a CE-P2P maneuver using a directed graph. Tothis end, let us define a constel-
lation graphG consisting of three partitionsJa,Jc andJr. The nodes ofG are given byJa∪Jc∪Jr.
However, we do not know a priori which satellites are active,which are passive, and which slots
are used for cooperative rendezvous. That is, we do not know the setsJa, Jc andJr a priori. We
therefore letJa = Jr = J andJc = J ′. We will denote an orbital transfer using adirectededge,
with the direction of edge signifying the direction of the orbital transfer. Let an edge(i, j), where
i ∈ Ja andj ∈ Jc, denote a forward trip from the slotφi to the slotφj, and let the associated cost
for this transfer be denoted bycij . Let an edge(j, k), wherej ∈ Jc andk ∈ Jr, denote a return trip
from the slotφj to φk, and let the associated cost for this transfer be denoted bycjk. A set of edges
(i1, j), (i2, j), (j, k1) and(j, k2) represents a CE-P2P maneuver. Figure3 depicts a constellation
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digraph, and four directed edges corresponding to a CE-P2P maneuver. The two edges between the
partitionsJa andJc correspond to forward trips of the active satellites, whilethe edges betweenJc

andJa correspond to their return trips. Note that any edge(i, j) havingφi = φj does not represent
a physical transfer, since it would mean that the active satellite occupies the same orbital slot during
its forward/return trip. Naturally, the cost associated with such an edge is zero. Hence, if we have
φi1 = φj or φi2 = φj , then the maneuver is actually non-cooperative, because one of the satellites
involved in the refueling transaction remains in its orbital slot throughout the maneuver. In other
words, our representation of a CE-P2P maneuver allows an E-P2P maneuver to be treated as a spe-
cial case of a CE-P2P maneuver in which one forward edge and one return edge does not actually
represent a maneuver, and each of these edges has a zero cost.

Ja
Jc Jr

Figure 3. Directed constellation graph.

Ideally, the cost of the edges in the graphG has to be the fuel expenditure during the orbital
transfers. However, the calculation of the fuel expenditure is dependent on the mass of the satellite
performing the orbital transfer. Since we do not know a priori which satellites are going to pair up
for the refueling transactions, the return trip fuel expenditure cannot be uniquely determined for the
return trip edges on the graphG. Instead of the fuel expenditure, we can use the velocity change
∆V required for the corresponding orbital transfer because the∆V can be uniquely determined for
all edges. The minimization of∆V would yield sub-optimal results since the true objective isto
minimize fuel expenditure. However, it was observed in our numerical simulations that solutions
are only marginally sub-optimal when we minimize∆V . Furthermore, in order to avoid solutions
in which a fuel-deficient satellite does not have enough fuelto complete the desired rendezvous,
we only allow those forward edges(i, j) in the graphG for which we havepµ

ij < f−
µ , where

sµ = σ0(φi) andφj ∈ Φ′.

A Network Flow Formulation

We now present a network flow formulation for the solution of CE-P2P problem. We set up a
constellation networkGn using the constellation digraphG. To this end, we add a source nodes

and a sink nodet to the constellation digraphG. For all i ∈ Ja, we also add an arc(s, i) with
associated costcsi = 0. We denote the set of these arcs byEs. Similarly, for all k ∈ Jr, we add an
arc(k, t) with associated costckt = 0. We denote the set of these arcs byEt. Let us now consider
two s → t flows in the networkGn, that pass through the same nodej ∈ Jc. A pair of such flows

7



s → i1 → j → k1 → t ands → i2 → j → k2 → t represent a CE-P2P maneuver(i1, i2, j, k1, k2).
The total cost of the flows equal the total∆V required for all the orbital transfers during a CE-P2P
maneuver. We seek|Jd,0| pairs of flows in the constellation network with minimum total cost, such
that all flows also pass through all the fuel-deficient satellites in the constellation. Note that each
assignment(i1, i2, j, k1, k2) in a CE-P2P solutionMce corresponds to a set of edges(s, i1), (s, i2),
(i1, j), (i2, j), (j, k1), (j, k2), (k1, t), and(k2, t) in Gn. The total cost of these edges is therefore
the total∆V required for all the orbital transfers corresponding to theassignment(i1, i2, j, k1, k2).
Let the set of edges in the network corresponding to all assignments in the CE-P2P solutionMce be
denoted byM. Also, let the set of slots where the cooperative rendezvoustakes place corresponding
to the solutionMce be given byY. Let us now introduce the following decision variables for our
optimization problem. Corresponding to each edge(i, j), we introduce a flow variablexij defined
by

xij =

{

1, if xij ∈ M,

0, otherwise.
(12)

Also, corresponding to each slot for cooperative rendezvous, let us introduce the decision variables
yj, as follows

yj =

{

1, if j ∈ Y,

0, otherwise.
(13)

We need|Jd,0| CE-P2P maneuvers in order to refuel all fuel-deficient satellites. Hence, the total
flow that goes out of the source is2|Jd,0| and the flow distributes itself into|Jd,0| fuel-sufficient
satellites and|Jd,0| fuel-deficient satellites. Noting thatJs,0 ∪ Jd,0 = J , we have,

∑

i∈J

xsi = 2|Jd,0|, (14)

and
∑

i∈Js,0

xsi = |Jd,0|. (15)

An amount of flow equal to the flow originating from the source must be collected at the sink node,
that is,

∑

k∈J

xkt = 2|Jd,0|. (16)

The flow balance equations at the different nodes yield the following constraints

xsi =
∑

j∈Jc

xij, for all i ∈ Ja, (17)

xkt =
∑

j∈Jc

xjk, for all i ∈ Jr, (18)

and
∑

i∈Ja

xij =
∑

k∈Jr

xjk, for all j ∈ Jc. (19)

The orbital slots available for return are exactly the orbital slots for the active satellites. Hence, we
have,

xsi = xit, for all i ∈ J . (20)
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The total number of slots for rendezvous is the total number of CE-P2P maneuvers, which in turn
equals the number of fuel-deficient satellites in the constellation. We therefore have,

∑

j∈Jc

yj = |Jd,0|. (21)

If a slot is selected for cooperative rendezvous, two satellites must transfer to that location (unless
it is a non-cooperative maneuver). Hence, we have the following constraint:

∑

i∈J

xij = 2yj , for all j ∈ Jc. (22)

The two satellites transferring to the slotφj must be a fuel-sufficient and a fuel-deficient satellite.
In other words, we have at most one fuel-sufficient satelliteending up in the slotφj, that is,

∑

i∈Js,0

xij ≤ 1, for all j ∈ Jc. (23)

Given the decision variables defined in (12) and (13), and the set of constraints (14)-(23), we are
required to minimize the total∆V for the CE-P2P maneuvers, that is,

(CE-P2P) : min
∑

(i,j)∈En

cijxij . (24)

BOUNDS ON THE OPTIMAL FUEL EXPENDITURE

The set of CE-P2P maneuvers obtained by solving the optimization problem (CE-P2P) corre-
sponds to the minimum total∆V required for the orbital transfers taking place during refueling. Let
this solution be denoted byMH

ce. Our true objective is to minimize fuel expenditure, and hence the
solutionMH

ce is potentially sub-optimal. In this section, we provide a measure of the sub-optimality
of the solutionMH

ce by deriving bounds on the optimal fuel expenditure for CE-P2P refueling. In
particular, we show that a conservative lower bound on the total fuel expenditureC (M∗

ce) can be
obtained by solving a bipartite assignment problem.

To this end, let us consider the undirected bipartite graphGℓ = {Js,0∪Jd,0, Eℓ}. We will represent
a P2P maneuver between two satellites by anundirectededge in the graphGℓ. In particular, we say
that there exists an (undirected) edge〈i1, i2〉 between two nodesi1 ∈ Js,0 and i2 ∈ Jd,0 if and
only if the satellitessµ andsν , occupying initially the orbital slotsφi1 andφi2, respectively, can
engage in a feasible CE-P2P maneuver. By this, we mean the satellites can engage in a rendezvous
at a slotφj , wherej ∈ J ′, and return respectively to the orbital slotsφk1

andφk2
. The set of

all such edges in the graph is given byEℓ = {〈i1, i2〉 : there exists j ∈ J ′, andφk1
, φk2

∈
J such that either(i1, i2, j, k1, k2) ∈ P}. To each edge〈i1, i2〉, we associate a costcℓ

i1i2
that takes

into account the fuel expenditure during the forward and return trips of the satellites, among all
possible slots for cooperative rendezvous and return positions. The minimum fuel consumption for
all possible return slots corresponding to the cooperativerendezvous slotφj , wherej ∈ J ′, is given
by

[

p
µ
i1j + pν

i2j + min
k1,k2∈J ,k1 6=k2

(

p
µ
jk1

+ p
µ
jk2

)

]

. (25)
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Therefore, the cost of the edge〈i1, i2〉 ∈ Eℓ is taken as

cℓ
i1i2

= min
j∈Jc

[

p
µ
i1j + pν

i2j + min
k1,k2∈J ,k1 6=k2

(

p
µ
jk1

+ p
µ
jk2

)

]

. (26)

It represents the minimum possible fuel expenditure if the satellitessµ andsν engage in a CE-P2P
maneuver.

We are interested in a subsetMℓ of Eℓ with |Jd,0| edges, such that no two edges share the same
node. This ensures that a satellite can be assigned to only one CE-P2P maneuver. Let us associate
with each edge〈i, j〉 ∈ Eℓ the binary variablexij given by

xij =

{

1, if xij ∈ Mℓ,

0, otherwise.
(27)

We now define the following optimization problem onGℓ
∗:

(CE-P2P-LB):min
∑

〈i,j〉∈Eℓ

cℓ
ijxij , (28)

subject to
∑

j:〈i,j〉∈Eℓ

xij ≤ 1 for all i ∈ Js,0, (29)

∑

i:〈i,j〉∈Eℓ

xij = 1 for all j ∈ Jd,0. (30)

The constraint (29) implies that each fuel-sufficient satellite can be assigned to, at most, one
fuel-deficient satellite, while the constraint (30) implies that each fuel-deficient satellite has to be
assigned to a fuel-sufficient satellite. Let the optimal solution to the problem (CE-P2P-LB) beM∗

ℓ

and the optimal value of the objective given in (28) be denoted byCLB. We then have

CLB =
∑

〈i,j〉∈M∗
ℓ

cℓ
ij. (31)

We now state the following theorem.

Theorem 1. The total fuel expenditureC(M∗
ce) corresponding to the optimal CE-P2P solution

M∗
ce is bounded below by the optimal valueCLB of the objective function in the bipartite assign-

ment problem (CE-P2P-LB). Moreover,C(M∗
ce) is bounded above by the optimal fuel expenditure

C(M∗
e) obtained via E-P2P refueling orC(M∗

c) obtained via C-P2P refueling, whichever is smaller.
Therefore,CLB ≤ C(M∗

ce) ≤ min{C(M∗
e), C(M∗

c)}.

Proof. The optimal CE-P2P solutionM∗
ce consists of|Jd,0| assignments. For an assignment given

by (i1, i2, j, k1, k2) ∈ M∗
ce, the satellitessµ = σ0(φi1) and sν = σ0(φi2) represent the fuel-

sufficient and fuel-deficient satellites respectively. Since M∗
ce ⊆ P, sµ andsν can engage in a

feasible CE-P2P maneuver, which implies that the edge〈i1, i2〉 exists inGℓ. We therefore define
the mappingQ : P 7→ Eℓ that gives an edge inEℓ for every assignment inP. For instance,

∗CE-P2P-LB stands for CE-P2P - Lower Bound
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Q (i1, i2, j, k1, k2) = 〈i1, i2〉. Note that the CE-P2P solutionM∗
ce corresponds to|Jd,0| distinct

fuel-sufficient and all|Jd,0| fuel-deficient satellites involved in refueling transactions (refer to (14)
and (15)). Let us now consider the following assignment inGℓ: xqr = 1 for all 〈q, r〉 ∈ Q(M∗) and
0 otherwise. For all the|Jd,0| fuel-sufficient satellites included in CE-P2P solutionM∗

ce, we have

∑

r:〈q,r〉∈Eℓ

xqr = 1,

whereas for the remaining|Js,0| − |Jd,0| fuel-sufficient satellites not included in any refueling
transaction, we have

∑

r:〈q,r〉∈Eℓ

xqr = 0.

Combining the above two equations, we have

∑

r:〈q,r〉∈Eℓ

xqr ≤ 1 for all q ∈ Js,0.

All the fuel-deficient satellites are included in the CE-P2Psolution and each of them engages in
a refueling transaction with a distinct fuel-sufficient satellite (refer to (14),(15), and (23)). We
therefore have,

∑

q:〈q,r〉∈Eℓ

xqr = 1 for all r ∈ Jd,0.

Hence, the optimal CE-P2P solutionM∗
ce corresponds to a feasible solutionQ(M∗

ce) for the opti-
mization problem (CE-P2P-LB). Hence, we have

∑

〈q,r〉∈Q(M∗
ce)

cℓ
qr ≥

∑

〈q,r〉∈M∗
ℓ

cℓ
qr. (32)

Now, let us consider the fuel expenditureC(M∗
ce). We have

C(M∗
ce) =

∑

(i1,i2,j,k1,k2)∈M∗
ce

p
µ
i1j + pν

i2j +
(

p
µ
jk1

+ p
µ
jk2

)

≥
∑

{i1,i2,j}:(i1,i2,j,k1,k2)∈M∗
ce

[

p
µ
i1j + pν

i2j + min
k1,k2∈J ,k1 6=k2

(

p
µ
jk1

+ p
µ
jk2

)

]

≥
∑

{i1,i2}:(i1,i2,j,k1,k2)∈M∗
ce

[

min
j∈Jc

(

p
µ
i1j + pν

i2j + min
k1,k2∈J ,k1 6=k2

(

p
µ
jk1

+ p
µ
jk2

)

)]

.

(33)

Using (26), we have from (33),

C(M∗
ce) ≥

∑

〈q,r〉∈Q(M∗
ce)

cℓ
qr. (34)

Finally, comparing Eq. (32) and Eq. (34), we have

C(Mce) ≥ CLB. (35)
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For the upper bound, recall thatPc ⊆ P andPe ⊆ P. Therefore, from the definition ofC(M∗
ce),

C(M∗
c) andC(M∗

e), given in (2)-(4), we have

C(M∗
ce) ≤ C(Mc) andC(M∗

ce) ≤ C(Me). (36)

The inequalities (35) and (36) give the desired result.

The fuel expenditure associated with the (CE-P2P) solution, obtained by solving the optimization
problem (CE-P2P), is given byC(MH

ce). SinceMH
ce might be a sub-optimal solution, we have

C(MH
ce) ≥ C(M∗

ce). Considering the bounds given by Theorem1, we obtain an estimate of sub-
optimality of these results. Specifically, we may define the maximum percentage of sub-optimality
of MH

ce by the following expression

η =
C(MH

ce) − CLB

CLB
× 100%. (37)

Note that because the solution of the CE-P2P-LB problem may correspond to an infeasible CE-P2P
solution,η is a worst case (conservative) estimate of the suboptimality of MH

ce. However, we can
guarantee that the solution is no worse thanη, but it could also be better. In fact, there are indeed
cases in which the solution of the (CE-P2P-LB) does lead to a feasible solution. In such cases, the
solution is globally optimal.

EXAMPLES

In this section we discuss a few numerical examples that showthe benefit of a cooperative re-
fueling strategy for different satellite constellations.These constellations vary in the number of
satellites, the mass and fuel content of the satellites, andthe constellation orbit. The details of these
constellations are given in Table1.

Example 1. CE-P2P strategy for a constellation of10 satellites.

Let us consider the constellationC1 given in Table1. It consists of10 satellites evenly distributed
in a circular orbit. The initial fuel content of the satellitess1, s2, . . . , s10 are30, 30, 6, 6, 6, 6, 6,
30, 30, 30 units respectively. The maximum allowed time for refuelingis T = 12 orbital periods.
Each satellitesi has a minimum fuel requirement off

i
= 12 units, while the maximum amount

of fuel for each satellite is̄fi = 30 units. Each satellite has a permanent structure ofmsi = 70
units, and a characteristic constant ofc0 = 2943 m/s. The indices of the fuel-sufficient satellites
areIs,0 = {1, 2, 8, 9, 10} and those of the fuel-deficient satellites areId,0 = {3, 4, 5, 6, 7}. Let
Φ′ be a set of20 evenly distributed slots, out of which10 are occupied by the satellites. We have,
J ′ = {1, 2, . . . , 20}, and the satellites occupy the slotsJ = {1, 3, . . . 19} respectively, that is, we
havesi = σ0(φ2i−1) for all i ∈ {1, 2, . . . , 10}. An E-P2P strategy for this constellation yields the
following optimal assignments:s1 → s3 → s2, s2 → s4 → s5, s5 → s8 → s9, s7 → s10 → s1,
s9 → s6 → s7, where the assignments1 → s3 → s2 implies that the satellites1 undergoes an
orbital transfer to rendezvous withs3, exchanges fuel, and then returns to the orbital slot originally
occupied by the satellites2. Figure4(a)depicts these E-P2P maneuvers. The fuel expenditure dur-
ing the E-P2P refueling process is19.11 units. This represents10.62% of the total initial fuel in
the constellation. Figure4(a)shows the optimal assignments for the E-P2P case. A C-P2P strategy
for this constellation yields a higher fuel expenditure than the E-P2P case. Let us now consider

12



Table 1. Sample Constellations.

Label Description
C1 10 satellites, Altitude= 35, 786 Km, T = 12

f−
i : 30, 30, 6, 6, 6, 6, 6, 30, 30, 30

f̄i = 30, f
i
= 12, msi = 70 for all satellites

C2 16 satellites, Altitude= 1, 200 Km, T = 30
f−

i : 30, 30, 30, 30, 30, 30, 10, 10, 10, 10, 10, 10, 10, 10, 30, 30
f̄i = 30, f

i
= 15, msi = 70 for all satellites

C3 16 satellites, Altitude= 1, 200 Km, T = 30
f−

i : 30, 10, 30, 10, 30, 10, 30, 10, 30, 10, 30, 10, 30, 10, 30, 10
f̄i = 30, f

i
= 15, msi = 70 for all satellites

C4 16 satellites, Altitude= 1, 200 Km, T = 30
f−

i : 30, 0.4, 30, 0.4, 30, 0.4, 30, 0.4, 30, 0.4, 30, 0.4, 30, 0.4, 30, 0.4
f̄i = 30, f

i
= 12, msi = 70 for all satellites

C5 12 satellites, Altitude= 12, 000 Km, T = 20
f−

i : 25, 25, 25, 25, 25, 25, 8, 8, 8, 8, 8, 8
f̄i = 25, f

i
= 12, msi = 75 for all satellites

C6 14 satellites, Altitude= 1, 400 Km, T = 35
f−

i : 25, 25, 25, 25, 25, 25, 25, 8, 8, 8, 8, 8, 8, 8
f̄i = 25, f

i
= 12, msi = 75 for all satellites

C7 14 satellites, Altitude= 30, 000 Km, T = 15
f−

i : 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 25, 25, 25, 25, 25, 25, 25
f̄i = 25, f

i
= 10, msi = 75 for all satellites

a CE-P2P strategy for refueling satellites in this constellation. First, let us look at the solution
provided by the problem (CE-P2P-LB). The lower bound on CE-P2P expenditure is found to be
CLB = 17.05 units. The corresponding optimal matching is the followingsatellites pairs:s1 ↔ s4,
s2 ↔ s3, s8 ↔ s5, s9 ↔ s6, ands10 ↔ s7 with their preferred slots for rendezvous beingφ1,
φ3, φ15, φ17, andφ19 respectively. Note that in all of these matchings between the fuel-sufficient
and fuel-deficient satellites, the fuel-deficient satellite performs a non-cooperative rendezvous with
the corresponding fuel-sufficient satellite. The preferred return locations for these active satellites
areφ3, φ7, φ17, φ19, andφ1 respectively. All these are slots adjacent to the corresponding ren-
dezvous slot. Note that these slots are occupied by the passive satellites and it is not possible
for all of the active satellites to return to their most preferred choice of orbital slots. Hence, the
solution of (CE-P2P-LB) is not a feasible CE-P2P solution. We therefore solve the optimization
problem (CE-P2P) yielding the following assignments:(s1, s3) → φ4 → (s2, s3), s2 → s4 → s5,
(s5, s8) → φ12 → (s6, s7), (s6, s9) → φ16 → (s8, s9) ands7 → s10 → s1. Figure4(b)depicts this
solution. Note that, like the E-P2P case, all active satellites transfer to available slots in the vicinity
during their return trips. The fuel expenditure during the cooperative E-P2P refueling process is
18.65 units, which represents2.5% fuel savings over the E-P2P refueling strategy. This example
demonstrates the utility of the CE-P2P refueling strategy in reducing the fuel expenditure incurred
during a (non-cooperative) E-P2P strategy or a (non-Egalitarian) C-P2P strategy. The solution de-
termined is potentially sub-optimal. Comparing with the lower bound on fuel expenditure, we have
η = 9.38%. This means that our solution is at most9.38% sub-optimal. Furthermore, looking at
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Figure 4. Optimal assignments.

the optimal CE-P2P solution, we find that two of the maneuversare actually non-cooperative E-
P2P maneuvers. Satellitess2, s4 ands7, s10 engage in (non-cooperative) E-P2P maneuvers, while
the remaining transactions are all cooperative. Hence,s4 ands10 are the passive satellites for the
CE-P2P refueling strategy, that is, they remain in their orbital slots throughout the refueling process.

Example 2. Global minimum in the case of a constellation of16 satellites.

Let us consider the constellationC3 in Table1 consisting of16 satellites, evenly distributed in
a circular orbit. The fuel content of satellitess1, s2, . . . , s16 are30, 10, 30, 10, 30, 10, 30, 10,
30, 10, 30, 10, 30, 10, 30, 10 respectively. The indices of the fuel-sufficient satellites areIs,0 =
{1, 5, 7, 9, 11, 13, 15} and those of the fuel-deficient satellites areId,0 = {2, 4, 6, 8, 10, 12, 14, 16}.
Let us considerΦ′ to be a set of32 orbital slots evenly distributed on the orbit, out of which16 are
initially occupied by the satellites. We therefore have,J ′ = {1, 2, . . . , 32}. The satellites occupy
the slotsφ1, φ3, . . . φ31 respectively, so thatsi = σ0(φ2i−1) for all i ∈ {1, 2, . . . , 16}. If we solve
(CE-P2P-LB), we have the lower bound on the CE-P2P fuel expenditure to beCLB = 9.08 units
of fuel. The optimal matching yielded by (CE-P2P-LB) is the following satellites pairs:s1 ↔ s16,
s2 ↔ s3, s4 ↔ s5, s6 ↔ s7, s10 ↔ s11, s12 ↔ s13, ands14 ↔ s15. For all of these matchings, the
fuel-deficient satellite performs a non-cooperative rendezvous with the corresponding fuel-sufficient
satellite and returns to an orbital slot previously occupied by a different active satellite. Furthermore,
the active satellites rendezvous with their preferred choice of fuel-sufficient satellite in its vicinity,
and return to their preferred choice of orbital slots without any conflict. Thus, the solution of (CE-
P2P-LB) yields a feasible, and hence the global optimum, CE-P2P solution. Figure5(a) depicts
this global minimum. In particular, we find that the global minimum is also the optimal (non-
cooperative) E-P2P solution. The (non-Egalitarian) C-P2Psolution has a higher fuel expenditure
(10.34 units) in this case.

Example 3. Fuel-deficient satellites have insufficient fuel to engage in non-cooperative rendezvous.

Let us consider the constellationC4 given in Table1. This is similar to the constellationC3,
except that now the fuel-deficient satellites have much lessamount of fuel so that they cannot engage
in a non-cooperative rendezvous. If we solve (CE-P2P-LB), the optimal matching obtained is the
following set of satellites pairs:s1 ↔ s2, s3 ↔ s4, s5 ↔ s6, s7 ↔ s8, s9 ↔ s10, s11 ↔ s12,
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(a) Fuel-deficient satellites can initiate non-
cooperative rendezvous

(b) Fuel-deficient satellites cannot initi-
ate non-cooperative rendezvous

Figure 5. Global Minimum for a Constellation of 16 satellites.

s13 ↔ s14, ands15 ↔ s16. The lower bound obtained isCLB = 9.48 units of fuel. In each of these
assignments, the fuel-deficient satellite engages in a cooperative rendezvous with a neighboring
fuel-sufficient satellite and after undergoing a fuel-exchange, returns to its original orbital slot. For
each pair of active satellites engaging in a fuel exchange, the slot for cooperative rendezvous is
midway between the original slots of the satellites. In fact, all fuel-deficient satellites rendezvous
with their preferred choice of fuel-sufficient satellites and return to their preferred orbital slots,
without any conflict. The solution of (CE-P2P-LB) is therefore a feasible CE-P2P solution and,
hence, also the global optimal solution. Figure5(b) depicts the matching between the satellites

Fuel expenditure in P2P refueling
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Figure 6. Refueling Expenditures.

required for refueling. The global minimum in this case is the optimal C-P2P solution. For this
constellation, the (non-cooperative) E-P2P solution has ahigher fuel expenditure of11.85 units.

Figure 6 provides a comparison of the CE-P2P, E-P2P and C-P2P refueling strategies for the
constellations depicted in Table1. It also shows the lower bound given by the (CE-P2P-LB) solution
for all constellations. In general, it is observed that the CE-P2P strategy provides an improvement
over either the E-P2P or the C-P2P strategies.
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CONCLUSIONS

In this paper, we have studied a Cooperative Egalitarian P2P(CE-P2P) strategy for refueling
satellites in a circular constellation. We have presented anetwork flow formulation for determining
the optimal set of CE-P2P maneuvers in the constellation andwe have computed a lower bound on
the fuel expenditure for the optimal set of CE-P2P maneuvers. The bound is determined by solving a
bipartite assignment problem, the solution of which may or may not correspond to a feasible CE-P2P
solution. In case it does, we have a globally optimal CE-P2P solution. Otherwise, the bound helps
in providing an estimate of the sub-optimality of the CE-P2Psolution obtained by our proposed
methodology. The CE-P2P strategy is found to be a better refueling strategy compared to either a
(non-cooperative) Egalitarian P2P (E-P2P) strategy or a (non-Egalitarian) Cooperative P2P strategy
(C-P2P). In fact, the CE-P2P strategy allows for the benefitsof both Egalitarian P2P refueling and
Cooperative P2P refueling. On one hand, active satellites can perform smaller-∆V (and hence lower
fuel expenditure) orbital transfers since they are allowedto return to any available orbital slot. On
the other hand, the CE-P2P strategy reduces the fuel expenditure by allowing satellites to engage in
cooperative rendezvous. This is particularly advantageous when the fuel-deficient satellite does not
have enough fuel to initiate a non-cooperative rendezvous.

REFERENCES
1 P. Zetocha, L. Self, R. Wainwright, R. Burns, M. Brito, and D.Surka, “Commanding and Controlling

Satellite Clusters,”IEEE Intelligent Systems, Vol. 15, No. 6, 2000, pp. 8–13.
2 C. Sabol and C. A. Burns, R.and McLaughlin, “Satellite Formation Flying Design and Evolution,”Journal

of Spacecraft and Rockets, Vol. 38, Mar-Apr 2001, pp. 270–278.
3 V. Kapila, A. Sparks, J. Buffington, and Q. Yan, “Spacecraft Formation Flying: Dynamics and Control,”

Journal of Guidance, Control and Dynamics, Vol. 23, No. 3, 2001, pp. 561–564.
4 O. Brown, P. Eremenko, and B. A. Hamilton, “Fractionated Space Architectures: A Vision for Responsive

Space,”4th Responsive Space Conference, Los Angeles, CA, April 24-27 2006.
5 D. M. Waltz,On-orbit Servicing of Space Systems. Malabar, FL: Krieger, first ed., 1993.
6 E. Lamassoure, “A Framework to Account for Flexibility in Modeling the Value of On-Orbit Servicing

for Space Systems,” Master’s thesis, Dept. of Aeronautics and Astronautics, Massachusetts Institute of
Technology, Cambridge, MA, June 2001.

7 J. Saleh, E. Lamassoure, D. Hastings, and D. Newman, “Flexibility and the Value of On-orbit Servicing:
New Customer-centric Perspective,”Journal of Spacecraft and Rockets, Vol. 40, 2003, pp. 279–291.

8 A. Tatsch, N. Fitz-Coy, and S. Gladun, “On-orbit servicing:A Brief Survey,” Performance Metrics for
Intelligent Systems Conference, Gaithersburg, MD, Aug. 2006.

9 N. Dipprey and S. Rotenberger, “Orbital Express PropellantResupply Servicing,”AIAA/ASME/SAE/ASEE
Joint Propulsion Conference and Exhibit, Huntsville, AL, Jul. 20-23 2003. AIAA Paper 03-4898.

10 C. M. Reynerson, “Spacecraft Modular Architecture for On-orbit Servicing,” AIAA Space Technology
Conference and Exposition, No. AIAA-99-4473, Albuquerque, NM, Sept. 1999.

11 J. A. Vandenkerckhove, “Satellite Refueling in Orbit,”Communications Satellite Systems Conference, San
Diego, CA, Mar. 1982. AIAA Paper 82-0514.

12 B. R. Sullivan,Technical and Economic Feasibility of Telerobotic On-orbit Satellite Refueling. PhD thesis,
University of Maryland, 2005.

13 H. Shen and P. Tsiotras, “Optimal Scheduling for Servicing Multiple Satellites in a Circular Constellation,”
AIAA/AAS Astrodynamics Specialists Conference, Monterey, CA, Aug. 2002. AIAA Paper 02-4907.

14 H. Shen and P. Tsiotras, “Peer-to-Peer Refueling for Circular Satellite Constellations,”AIAA Journal of
Guidance, Control, and Dynamics, Vol. 28, No. 6, 2005, pp. 1220–1230.

15 P. Tsiotras and A. Nailly, “Comparison Between Peer-to-Peer and Single Spacecraft Refueling Strategies
for Spacecraft in Circular Orbits,”Infotech at Aerospace Conference, Crystal City, DC, Sept. 2005. AIAA
Paper 05-7115.

16



16 A. Dutta and P. Tsiotras, “Asynchronous Optimal Mixed P2P Satellite Refueling Strategies,”The Journal
of the Astronautical Sciences, Vol. 54, Jul-Dec 2006, pp. 543–565.

17 A. Salazar and P. Tsiotras, “An Auction Algorithm for Optimal Satellite Refueling,”Georgia Tech Space
Systems Engineering Conference, Atlanta, GA, Nov. 2005.

18 A. Dutta and P. Tsiotras, “A Greedy Random Adaptive Search Procedure for Optimal Scheduling of P2P
Satellite Refueling,”AAS/AIAA Space Flight Mechanics Meeting, Sedona, AZ, Jan. 2007. AAS Paper
07-150.

19 A. Dutta and P. Tsiotras, “A Network Flow Formulation for an Egalitarian P2P Refueling Strategy,”
AAS/AIAA Space Flight Mechanics Meeting, Sedona, AZ, Jan. 2007. AAS Paper 07-151.

20 A. Dutta and P. Tsiotras, “An Egalitarian Peer-to-Peer Satellite Refueling Strategy,”Journal of Spacecraft
and Rockets, Vol. 45, No. 3, 2008, pp. 608–618.

21 A. Dutta and P. Tsiotras, “A Cooperative P2P Refueling Strategy for Circular Satellite Constellations,”
AIAA Space Conference and Exposition, San Diego, CA, Sep. 9-11 2008. AIAA Paper 08-7643.

22 P. M. Lion and M. Handelsman, “Primer Vector on Fixed-time Impulsive Trajectories,”AIAA Journal,
Vol. 6, No. 1, 1968, pp. 127–132.

23 J. E. Prussing and J. Chiu, “Optimal Multiple-impulse Time-fixed Rendezvous Between Circular Orbits,”
Journal of Guidance, Control and Dnamics, Vol. 9, Jan-Feb 1986, pp. 17–22.

24 K. Mirfakhraie and B. Conway, “Optimal Cooperative Time-fixed Impulsive Rendezvous,”Journal of
Guidance, Control and Dynamics, Vol. 17, 1994, pp. 607–613.

17


	INTRODUCTION
	FORMULATION
	Notation
	CE-P2P Maneuver Costs
	Constellation Digraph
	A Network Flow Formulation

	BOUNDS ON THE OPTIMAL FUEL EXPENDITURE
	EXAMPLES
	CONCLUSIONS

