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Control moment gyros (CMGs) are spacecraft attitude control actuators which
act as torque amplifiers. They are thus suitable for attitude hold and reorientation
of large spacecraft or for slew maneuvering. They provide the necessary torques
via gimballing a spinning flywheel. A major problem encountered with the use
of CMGs in practice is the possibility of singularities for certain combinations of
gimbal angles. In such singular gimbal angle configurations the CMG cluster cannot
generate torques along a certain direction. Several singularity avoidance and escape
steering logics have been reported in the literature to solve the CMG singularity
problem. In this paper, we experimentally compare three of the most common
CMG steering logics using a realistic spacecraft simulator. We compare the relative
merits of these steering laws with respect to their singularity avoidance capabilities
and their efficiency in generating the commanded control torques. An adaptive
feedback stabilizing control law is also used in conjunction with each CMG steering
law to account for the gravity disturbance torque.

I. Introduction

Control Moment Gyros (CMGs) are actuators that produce a control torque by changing the
angular momentum vector direction with respect to the spacecraft reference frame. The major ben-
efit of utilizing CMGs for spacecraft control is their well-known torque amplification property.1 The
flywheel of a CMG spins at a constant speed, and torquing of the gimbal results in a precessional,
gyroscopic torque, which is orthogonal to both the spin and gimbal axes. This torque is much
larger than the gimbal axis command torque, hence the term “torque amplification.” Despite the
advantages of CMGs over, say, reaction wheels stemming from their increased torque production
capabilities, the employment of CMGs in practice has been hindered by the possibility of geometric
singularities.

A singular state for a CMG is a gimbal angle combination at which no torque is possible along a
certain direction. Two types of singular states can be identified. External or saturation singularities
occur when the sum of all CMG angular momenta reaches its maximum. This is owing to the fact
that a CMG changes only the direction of the angular momentum vector and hence, there exists
a maximal momentum surface. External singularities are those gimbal angle combinations, for
which the total CMG cluster momentum has reached this surface, since in this case the CMG
cluster cannot generate a torque which is directed outward this surface. In addition, there exist
singular states at which the total angular momentum is smaller than the maximum. These are
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called internal singularities.1 References 2–4 offer a comprehensive analysis and classification of
the CMG singularities. A visualization of the angular momentum surface can be found in Refs. 5,6
and 7.

During maneuvering, the gimbal angles should be steered away from the singular states in
order to be able to generate any commanded torque. Many researchers have studied and proposed
a variety of methods to avoid or escape the CMG singularities. The simplest, and probably the
most common, method is based on the minimum two-norm, pseudo-inverse solution to the gimbal
steering equation.4,8–10 In these methods, the gimbals are steered away from the singular states
using finite gimbal rates. As these methods rely on the pseudo-inverse solution for steering the
gimbal angles, they do not explicitly avoid or escape the singularities. Instead they steer the
gimbal angles towards the singularities and rapidly transit through them with a finite torque error,
whenever needed. This compensation torque should have a short duration and its value should be
kept at a minimum. Despite the introduced torque error, the methods based on the pseudo-inverse
are relatively simple and can be easily implemented online.

Alternative methods have been reported in the literatures for handling the CMG singularities.
They can be broadly categorized as local gradient methods and global avoidance methods. The
local gradient methods utilize a null motion,2,11 which does not affect the output torque for a
redundant CMG cluster. The null motion direction is searched locally, along with an objective
function containing information about the singularities, and then a null motion is applied to avoid
the singularities. Even though these methods produce a torque which is exactly the same as the
required torque, nonetheless, there still exist singularities which cannot be avoided using these
methods. The global avoidance methods12,13 incorporate global optimization to anticipate the
singularities and steer the gimbal angles so that the CMG system does not encounter them. The
off-line calculation needed for these methods makes them of limited use for online steering.

In this article, several CMG singularity avoidance steering laws are compared in a realistic
three-axis spacecraft simulator. The steering logics tested are all based on the minimum two-norm,
pseudo-inverse solution, and they were chosen because they can be efficiently implemented online
without the need of any off-line calculations. The basic form of these methods is known as the
Singularity Robust (SR) method. Its variations in terms of the singularity avoidance parameters
are briefly presented and compared. Each steering law provides the ability to avoid or escape any
singularities with finite gimbal rates. Different choices of the singularity avoidance parameters
produce different torque errors in the vicinity of singularities. These errors are compared and
commented upon.

Since the gravity torque acting on the spacecraft simulator cannot be completely eliminated
by balancing, a dynamic state feedback control law is implemented to cancel this gravity torque
and improve the final pointing accuracy. This dynamic state feedback attitude control law is a
slight modification over the one proposed by Di Gennaro in Ref. 14 for the case of CMGs. During
the maneuver the gimbals are steered in accordance to the desired gimbal rate command, which is
calculated by the feedback stabilization controller and implemented via the singularity avoidance
steering law. The seamless integration of the feedback control law and the feedforward steering
logic is crucial for achieving high pointing accuracy, and it is demonstrated in the experimental
results.

II. Equations of Motion

The complete equations of motion for a rigid spacecraft with a cluster of N CMGs have been
developed in the literature. Here we use the format of Ref. 15, which is repeated below for conve-
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nience

J̇ω + Jω̇ + AgIcgγ̈ + AtIws[Ω]dγ̇ + [ω×]
(
Jω + AgIcgγ̇ + AsIwsΩ

)
= ge. (1)

In Eq. (1) ω = (p, q, r)T ∈ R
3 is the spacecraft angular velocity vector. The matrix J is the

inertia matrix of the whole spacecraft, defined as

J � BI + AsIcsA
T
s + AtIctA

T
t + AgIcgA

T
g , (2)

where BI is the combined matrix of inertia of the spacecraft platform and the point-masses of
the CMGs. The matrices Ic� and Iw� are diagonal, with elements the values of the inertias of
the gimbal plus wheel structure and wheel-only-structure of the CMGs, respectively. The vectors
γ = (γ1, . . . , γN )T ∈ R

N and Ω = (Ω1, . . . ,ΩN )T ∈ R
N are the gimbal angles and the wheel speeds

of the CMGs with respect to the gimbals, respectively. On each CMG we attach a frame located at
the center of the gimbal/wheel combination having unit vectors êgj , êsj , êtj , (j = 1, . . . , N) along the
gimbal axis, the wheel spin axis, and the torque producing axis, respectively, so that êtj = êgj × êsj .
The matrices A� ∈ R

3×N collect these unit vectors such that A� � [e�1, · · · , e�N ], with � = g, s or
t. All the vectors and matrices in (1) are expressed in a body-fixed frame located at the center of
rotation of the spacecraft platform.

For any vector x = (x1, x2, x3)T ∈ R
3, the notation [x×] denotes the skew-symmetric matrix

[x×] �

⎡
⎢⎣ 0 −x3 x2

x3 0 −x1

−x2 x1 0

⎤
⎥⎦ ,

whereas, for a vector x ∈ R
N the notation [x]d ∈ R

N×N denotes the diagonal matrix having as
elements the components of the vector x, that is,

[x]d � diag(x1, · · · , xN ).

Note that As = As(γ) and At = At(γ) and thus, both matrices As and At are functions of the
gimbal angles. Consequently, the inertia matrix J = J(γ) is also a function of the gimbal angles
γ, whereas the matrix BI is constant. The time variation of the inertia matrix is reflected in the
first term of (1). This variation of the inertia matrix due to the changes of the gimbal angles is
typically small in practice (at least for small size wheels), and could have been neglected in the
following developments without sacrificing much of the rigor. Nonetheless, in the present paper we
have chosen to keep the first term in (1), mainly for the sake of completeness.

III. Kinematics

Euler parameters16 were chosen to describe the attitude of the spacecraft. The Euler parameters
are defined in terms of the Euler principal unit vector â and angle Φ as follows

q0 = cos
Φ
2

, q̄ = [ q1 q2 q3 ] = â sin
Φ
2

.

The Euler parameter vector is given by q � [ q0 q̄ ]T ∈ R
4×1. The differential equation that

governs the attitude kinematics in terms of the Euler parameter vector is given by16,17

q̇0 = −1
2 q̄Tω, ˙̄q = 1

2

⎡
⎢⎣ q0 −q3 q2

q3 q0 −q1

−q2 q1 q0

⎤
⎥⎦

⎡
⎢⎣p

q

r

⎤
⎥⎦ � 1

2Q(q)ω. (3)
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For the following developments it will be useful to introduce the additional variable η0 � 1− q0.
It can be easily verified that η0 satisfies the differential equation

η̇0 = −q̇0 =
1
2
q̄Tω. (4)

IV. Gravity Disturbance Adaptive Cancellation

The term in the right-hand-side of (1) represents the gravity torque owing to the misalignment
between the mass center and the center of rotation of the spacecraft simulator platform. Although
the spacecraft facility used in this work was carefully balanced prior to each experiment in order to
faithfully represent a zero-g environment, nonetheless, perfect balancing is impossible. Therefore,
there always exists a gravity torque that tends to deteriorate the performance. Since the total
weight of the experimental platform is about 100 Kg, even a misalignment of 0.1 mm will result in a
constant disturbance torque of approximately 100 mNm. This gravity torque has to be compensated
by the controller in order to achieve accurate (better than 0.1 deg) three-axis attitude hold. A
dynamic state-feedback stabilizing control law was therefore implemented to identify and cancel
this disturbance torque.

The gravity torque acting on the spacecraft is given as

�ge = mg�r × n̂0 = −n̂0 × mg �r (5)

where �r is the position vector from the center of rotation of the platform to the center of mass and
n̂0 is the inertial unit vector along the local vertical (Z-axis of inertial frame is pointing downwards).
When expressed in the body frame the gravity torque therefore takes the form ge = −mg[n×

0 ] r.
If we rearrange Eq. (1) by moving all terms involving the gimbal rates and accelerations onto

the right-hand side, one obtains

Jω̇ + [ω×]BIω + mg [n×
0 ] r =

− J̇ω − AgIcgγ̈ − AtIws[Ω]dγ̇ − [ω×]
(

GI(γ)ω + AgIcgγ̇ + AsIwsΩ
)
,

(6)

where we have split the inertia term into the constant term BI and a time-varying term GI(γ) as
follows

GI(γ) � As(γ)IcsA
T
s (γ) + At(γ)IctA

T
t (γ) + AgIcgA

T
g . (7)

In order to proceed, we introduce the following notation, where v = [ v1 v2 v3 ]T denotes any
three-dimensional vector. Specifically, we can write

BI v = ΓT
1 (v)ϑ1, (8)

where,

ΓT
1 (v) �

⎡
⎢⎣v1 v2 v3 0 0 0

0 v1 0 v2 v3 0
0 0 v1 0 v2 v3

⎤
⎥⎦ , ϑ1 � [ Ix Ixy Ixz Iy Iyz Iz ]T.

Furthermore, we have

[v×] BIv = ΓT
2 (v)ϑ1, (9)

4 of 17

American Institute of Aeronautics and Astronautics



where,

ΓT
2 (v) �

⎡
⎢⎣ 0 −v1v3 v1v2 −v2v3 v2

2 − v2
3 v2v3

v1v3 v2v3 v2
2 − v2

1 0 −v1v2 −v1v3

−v1v2 v2
1 − v2

3 −v2v3 v1v2 v1v3 0

⎤
⎥⎦ .

Finally, we let
mg [v×] r = ΓT

3 (v)ϑ2 (10)

where ΓT
3 (v) � [v×] and

ϑ2 � mg [ rx ry rz ]T. (11)

Next, we let u denote all the terms involving the gimbal. That is,

u � −J̇ω − AgIcgγ̈ − AtIws[Ω]dγ̇ − [ω×]
(

GI(γ)ω + AgIcgγ̇ + AsIwsΩ
)

(12)

Then, using (8)-(11) one obtains the following simplified form of the equation of motion

ω̇ = −J−1
(
ΓT

2 (ω)ϑ1 + ΓT
3 (n̂0)ϑ2 − u

)
. (13)

The proof of the following Theorem can be found in Ref. 14.

Theorem 1 (Ref. 14) Consider the following dynamic state feedback control law

u = −k1q̄ − k2ω − ΓT(q, ω)ϑ̂ − 1
2

(
GI(γ)Q(q)ω + J̇ q̄ + J̇ω

)
(14)

with update law
˙̂
θ = KΓ(q, ω)(q̄ + ω) (15)

where,

Γ(q, ω) =

[
Γ1( ˙̄q) − Γ2(ω)

−Γ3(n̂0)

]
,

and where ϑ̂ �
[
ϑ̂1 ϑ̂2

]
is the estimate of the unknown vector ϑ, k1, k2 are positive numbers, and

K is positive definite matrix. Then the closed-loop system of Eqs. (3) and (12)-(15) is globally
asymptotically stable about the equilibrium point [ η0 q̄ ω ] = 0.

The control of Theorem 1 will be used to stabilize the spacecraft platform in the experiments.

V. The CMG Steering Equation

The steering equation for a cluster of N CMGs is obtained by equating the expressions (14) and
(12), and then arranging terms with respect to both the gimbal rate γ̇ and the gimbal acceleration
γ̈ as follows

k1q̄ + k2ω + ΓT(q, ω)ϑ̂ + 1
2

(
GI(γ)Q(q)ω + J̇ q̄ + J̇ω

)
= J̇ω + AgIcgγ̈ + AtIws[Ω]dγ̇ + [ω×]

(
GI(γ)ω + AgIcgγ̇ + AsIwsΩ

)
.

(16)

By defining

B � AgIcg, (17a)
Dγ̇ � AtIws[Ω]dγ̇ + [ω×]AgIcgγ̇ + 1

2 J̇ω − 1
2 J̇ q̄, (17b)

Lr � k1q̄ + k2ω + ΓT(q, ω)ϑ̂ + [ω×]
(

GI(γ)ω + AsIwsΩ
)
− 1

2
GI(γ)Q(q)ω, (17c)
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the CMG steering equation becomes,
Bγ̈ + Dγ̇ = Lr. (18)

Note that the time derivative of the total inertia matrix J in (17b) may be obtained as follows15

J̇ = Gİ = At[γ̇]d(Ics − Ict)AT
s + As[γ̇]d(Ics − Ict)AT

t . (19)

Thus, the D matrix can be written as

D = AtIws[Ω]d + [ω×]AgIcg

+
[
(es1e

T
t1 + et1e

T
s1)(ω − q̄) · · · (esNeT

tN + etNeT
sN )(ω − q̄)

]
(Ics − Ict)

(20)

It turns out that the norm of the matrix B = AgIcg is quite small, relative to the norm of D
in (18). Moreover, in order to take full advantage of the torque amplification property of CMGs,
the gimbal commands are need to be given at the gimbal rate (as opposed to gimbal acceleration)
level.1 Therefore, we may neglect the term Bγ̈ and write in lieu of (18) the steering equation

Dγ̇ = Lr. (21)

The objective of a CMG steering law is to solve this equation for γ̇, given any value of Lr.

VI. Overview of CMG Steering Laws

The matrix D in (21) has dimension 3×N . Its maximal rank is 3 and whenever it has maximal
rank, equation (21) can be solved as

γ̇ = DT(DDT)−1Lr. (22)

This is the basic form of most steering logics, and it is known as the Moore-Penrose (MP) solution.1

Notice that since the system (21) is underdetermined (typically N ≥ 3) there are more than one
solutions. The MP solution (22) is the one that minimizes

min
γ̇

‖γ̇‖2 subject to Dγ̇ = Lr. (23)

The CMG singular states are defined as those for which the rank of the matrix D is less than
three in Eq. (21). At those singular states the matrix DDT is not invertible and the steering law
(22) fails to produce the required torque. Note that the linear system (22) has a solution if and
only if the vector Lr is in the range space of the matrix D, which is always the case if rankD = 3.
If, however, rankD < 3 there exist torque vector directions (those which are normal to the range
space of D) that cannot be met. In other words, no set of gimbal commands γ̇ can produce a
torque along this direction. Moreover, in the vicinity of the singular states the magnitude of the
gimbal rate γ̇ becomes excessive, thus violating the gimbal rate constraints.

Clearly, the MP steering law fails when the rank of matrix D is less than three. In fact, it can
be shown11 that the solution (22) drives the gimbal angles towards singular configurations. Hence,
this steering law is of limited use on a real system, unless it is augmented by some other steering
logic that accommodates for the singularities. A steering logic is expected to provide singularity
avoidance and/or escape, while producing the desired commanded torque as accurately as possible.

For all the reasons alluded to above, several modifications have been proposed to the baseline
steering law (22) in the literature. Three of the most popular and effective ones are summarized
next.
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A. Singularity Robust (SR) steering logic8,18

The difficulty with the baseline MP steering law in (22) is that near, or at a singularity, it is
impossible to produce the desired torque using finite gimbal rates. The Singularity Robust (SR)
steering law8 is a modified version of the MP solution, and it was originally developed in Ref. 18.
The main idea is to add an extra parameter to the pseudo-inverse of D when the system is close to
the singularity, in order to keep the matrix D well-conditioned and invertible. The addition of this
singularity avoidance parameter ensures finite gimbal rates in the vicinity of singularity. Using the
SR steering logic it is possible to avoid (or transit through) singularities, albeit at the expense of
some torque errors.

The SR solution is given by

γ̇ = DT(DDT + αI3)−1Lr � D†Lr (24)

It can be shown that this expression solves the following minimization problem11

min
γ̇

{1
2
α‖γ̇‖2 +

1
2
‖Dγ̇ − Lr‖2}.

In (24) the parameter α is chosen to be small or zero away from the singular states and it takes
a nonzero value at the singular states. A common choice is α = α0 exp(−det(DDT)), where the
constant α0 is chosen by the designer. This steering logic is easy to implement online, but exhibits
gimbal lock8 in cases when the requested torque direction is parallel to the singular direction, that
is, when DT Lr = 0. In these cases the commanded gimbal rate is zero and the gimbal is locked at
the same position.

B. Singular Direction Avoidance (SDA) steering logic9

The idea behind the SR steering logic was to add some (small) avoidance parameter to the MP
solution, so that the calculated gimbal rates are finite. In Ref. 9 the authors have proposed a
different approach to deal with the singularity problem. Starting from the observation that the
singularity of the matrix is determined by its smallest singular value, they have proposed to modify
only this value close to singularity, as opposed to all three singular values as in (24). This approach
has the benefit of ensuring a smaller torque error than the SR method.

The SDA method starts with the singular value decomposition19 of the matrix D

D = USV T,

where

S =

[
Σr×r 0r×(4−r)

0(3−r)×r 0(3−r)×(4−r)

]
,

and where Σr×r = diag[σ1, · · · , σr], and U and V are unitary matrices of compatible dimension.
The SDA steering logic is given by

γ̇ = V S‡
SDAUTLr � D‡Lr, (25)

where,

S‡
SDA =

⎡
⎢⎢⎢⎢⎣

1
σ1

0 0
0 1

σ2
0

0 0 σ3

σ2
3+α

0 0 0

⎤
⎥⎥⎥⎥⎦ . (26)
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The singularity avoidance parameter α is chosen such that

α = α0 exp(−kσσ̄2
3) (27)

where, σ̄3 �
√

(N/3)(σ3/hws) is a nondimensional variable normalized with respect to the mag-
nitude of the flywheel momentum hws, so that the response of the system is independent of the
system size. The constants α and kσ are selected as desired.

In Ref. 9 it was shown that adding the singularity avoidance parameter only to the smallest
singular value when the singularity is approached, ensures not only finite gimbal rates, but also a
smaller torque error than the SR steering logic. This result follows easily from (26).

C. Off-Diagonal Singularity Robust (o-DSR) steering logic4

Most recently, a new singularity avoidance steering logic was proposed by Wie in Ref. 4. Wie
modifies the SR steering logic with the utilization of a weighting matrix with nonzero off-diagonal
elements, instead of the use of a diagonal matrix. This steering logic is derived from the following
minimization problem

min
γ̇

{(Dγ̇ − Lr)TP(Dγ̇ − Lr) + γ̇TQγ̇}, (28)

where,

P−1 ≡ V = α

⎡
⎢⎣ 1 ε3 ε2

ε3 1 ε1

ε2 ε1 1

⎤
⎥⎦ > 0,

and

Q−1 ≡ W =

⎡
⎢⎢⎢⎣

W1 α α α

α W2 α α

α α W3 α

α α α W4

⎤
⎥⎥⎥⎦ > 0.

The singularity avoidance parameter α and the modulation function εi have the following form

α = α0 exp(−µdetDDT), εi = ε0 sin(ωt + φi).

The positive definite weighting matrices P, Q (or, V and W) in conjunction with the choice of
α0 and ε0 must be carefully chosen such that DTPLr �= 0 and W �= I4 to obtain tolerable torque
errors and gimbal rates while they are needed to escape all types of singularities and/or avoid
singularity encounters.

The solution of (28) yields the steering law

γ̇ = D#Lr, (29)

where,

D# = [DTPD + Q]−1DTP

= Q−1DT[DQ−1DT + P−1]−1

= WDT[DWDT + V]−1.

It was demonstrated throughout several examples in Ref. 4 that different values of Wi and/or
non-zero off-diagonal elements are required to be able to escape all types of singularities including
the external singularities. With the o-DSR steering logic, when the system becomes nearly singular,
deliberate dither signals of increasing amplitude are effectively generated to provide an effective
means for explicitly avoiding singularity encounters. However, it was shown that with the o-DSR
steering logic, it rather approaches the singular states, and subsequently rapidly transits through
the unavoidable singularities whenever needed.
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VII. Description of Experimental Facility

A. Spacecraft Platform

The experimental facility used to implement the steering laws of the previous section is based on
a three-axial air bearing, located at the Dynamics and Control Systems Laboratory of the School
of Aerospace Engineering at the Georgia Institute of Technology, and shown in Fig. 1. The facility
provides three rotational degrees of freedom as follows: ±30 deg about x and y axes (horizontal)
and 360 deg about the z axis (vertical). It was designed to support advanced research in the
area of nonlinear spacecraft attitude dynamics and control. The spacecraft platform is made of a

Figure 1. The Georgia Tech three-axial spacecraft simulator.

cylindrical aluminum structure, and it is equipped with a variety of actuators and sensors: a set of
cold-gas thrusters, four variable-speed control moment gyros (which can operate either in reaction
wheel or CMG mode), a two-axis sun sensor, a three-axis magnetometer, a three-axis rate gyro, and
an inertial measurement unit (IMU). An onboard computer and wireless ethernet connection with
the host computer allow high-speed communication and real-time implementation of the control
algorithms.

B. CMG Actuators

In the experiments presented in this paper only the CMG actuators were used to provide torques on
the spacecraft. There are four CMG modules on the facility, mounted in the pyramid configuration
with a skew angle of 54.7 deg. The CMG module is shown in Fig. 2. Each CMG module has two
brushless DC motors. One of the motors controls the gimbal, while the other controls the wheel.
A potentiometer measures the rotation angle of the gimbal axis. The gimbal rate signal is also
available to the user via a separate I/O channel. The gimbal motor operates in gimbal rate mode
via an internal PID servo loop torquing the gimbal according to a gimbal rate command. The
gimbal is allowed to rotate within ±100 deg and the maximum achievable gimbal rate is limited
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to ±25 deg/sec. The wheel motor is coupled directly (no gearbox) to a momentum wheel and it
can provide torques along the wheel spin axis (when used in reaction wheel or VSCMG mode). In
CMG mode this motor operates at a constant speed (maximum 4000 rpm). The wheel speed is
controlled by an internal PID servo loop according to a specified angular momentum magnitude.
Each CMG generates a maximum output torque of 768 mNm along the CMG output axis, which
is orthogonal to both the gimbal and spin axes, with a maximum sustained angular momentum of
1.759 Nms.

Figure 2. Main components of the CMG module.

During the experiments the magnitude of the angular momentum of each CMG hws was fixed
to 0.6597 Nms, which corresponds to a wheel speed of 1500 rpm. The detailed physical data of
each CMG are listed in Table 1.

Table 1. CMG Physical Data

Item Value Units
Iws diag[0.0042, 0.0042, 0.0042, 0.0042] kg-m2

Ics diag[0.0146, 0.0146, 0.0146, 0.0146] kg-m2

Icg diag[0.0082, 0.0082, 0.0082, 0.0082] kg-m2

Ict diag[0.0121, 0.0121, 0.0121, 0.0121] kg-m2

Pyramid skew angle 54.7 deg
hws 0.6597 Nms

Gimbal angle range ±100 deg
Gimbal rate limit ±25 deg/sec

C. Communication, Computer and Electronics

An industrial embedded computer (ADLink NuPRO-775 Series) is used for data acquisition, data
recording, and controller implementation via the MATLAB xPC Target Environment� with Em-
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bedded Option.20 The main CPU is based on the Intel Pentium� III 750MHz processor with
on-board memory 128MB DRAM and 128MB disk-on-chip, and it allows the user real-time data
acquisition, processing, and data recording. The connection to a host computer is achieved in the
xPC Target Environment via wireless Ethernet LAN connection. The wireless LAN router (DLink
DI-713P) and the USB adapter (DLink DWL-120) make it possible to transfer data at speeds up
to 11Mbps.

The target computer system has three data acquisition interface cards. Two analog input cards
(PCI-6023E from National Instruments) are used to measure the analog voltages from the rate gyro,
magnetometer, and sun sensor. Another analog output card (PCI-6703 from National Instruments)
is used to control the CMGs.

A detailed description of the design and construction of this experimental spacecraft simulator
facility, including the specifications for all sensors and actuators can be found in Ref. 21.

VIII. Simulation and Experimental Results

In this section we present the results from the experimental validation of the steering logics
along with the dynamic state feedback stabilizing control law presented in the previous sections.
The control objective in all experiments was three-axis attitude control to the zero orientation
(stabilization). In order to make a reasonable and fair comparison between each steering logic,
the initial conditions of attitude angles and the body angular velocity were chosen to be the same
for all experiments. Specifically, the spacecraft was initially at rest at an orientation described by
the Euler parameter vector q(t) = [0.96, 0.047,−0.051, 0.271]. The objective was to reorient the
spacecraft to the zero attitude using only the four CMGs as the torque generating devices. The
initial gimbal angles were set to zero to allow for maximum travel before they reach their natural
limits of ±100 deg.

The gains of the feedback stabilizing control law were chosen as k1 = 15, k2 = 40, and K = I9

to achieve good performance. The singularity avoidance parameters for each steering law were
carefully chosen to faithfully represent the singularity avoidance capability of each one, and to
fairly compare the produced torque. The following parameters were used:

• SR steering logic

α = 0.1 exp(−det(DDT))

• SDA steering logic

α = 0.1 exp(−0.5 k2
σ)

• o-DSR steering logic

W = diag[1, 2, 2, 3]
α = 0.1 exp(−0.5 det(DDT))
εi = sin(t + φi), where {φ1, φ2, φ3} = {0, π/2, π}

Figures 3-5 show the experimental results of the stabilization to the zero orientation. Fig-
ures 3(a), 4(a) and 5(a) show the Euler parameter vector history. The final values of the quaternion
vector are kept to zero within 10−4, which corresponds to final Euler angles of less than 0.05 deg.
Figure 6 shows the final values of Euler angles for each case.

Also in Figures 3-5 the results from the numerical simulations obtained via a high fidelity
Simulink� model of the whole spacecraft dynamics are shown for comparison. This model includes
the details of all subsystems. Each subsystem model was constructed from the specifications of
the actual components and it was identified experimentally. Particular attention was given to the
parameter identification of the motors and the PID servo loops. Also, the gravity vector location
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was estimated and included in the model via a separate set of experiments. Details on the parameter
identification and the construction of the numerical simulation model can be found in Ref. 21.

Figures 3-5 show a very similar performance for all three steering laws. The attitude and angular
velocity histories are nearly identical. This implies that all three steering logics are successful in
delivering the requested stabilizing torque. In addition, the agreement between the numerical
simulations and the experimental results is excellent. The actual history of the quaternion and
the angular velocity is remarkably identical to the one predicted by the numerical simulations. At
the scale shown, the gimbal rate control inputs are also very close, but a small difference between
the numerical prediction and the actual value creates a drift over time, shown in the gimbal angle
histories of Figures 3(c), 4(c) and 5(c). This discrepancy can be attributed to the erroneous gravity
vector estimation used in the numerical simulations. Note, in particular, that at the initial stages
of the maneuver (less than 10 sec), when most of the torque produced is used for stabilization, the
agreement between experiments and simulation in the gimbal angle history is very good. As the
spacecraft settles to its final rest orientation, the compensation of the gravity torque dominates the
total produced torque. An error in the estimation of the gravity torque thus leads to an error to
the torque produced, and hence also to an error in the applied gimbal rates and resulting gimbal
angles. At any rate, the dynamic state feedback control law accomplishes its stabilization task by
successfully compensating the disturbance torque, regardless of the values of the gimbal angles.

As seen in Figures 3(f), 4(f) and 5(f), starting from a specific attitude the gimbal angles are
initially steered towards the singular states. All three steering logics perform the transition through
the singularity states at the vicinity of t=4 sec. Note that the SR and SDA steering logics failed
to perform a rapid transition through the second singularity near t=35 sec. Figures 3(f), 4(f), and
5(f) show that the SR and SDA steering laws take about 35 seconds in order to transit the second
singularity. On the other hand, the o-DSR steering logic transits through the second singularity
faster, while staying away from the singularities for all future times.

Finally, Figures 3(e), 4(e) and 5(e) show the differences between the requested torque from the
adaptive control law, Lr, and the actual produced torque Lc = D�γ̇ delivered by the CMG cluster
where � = †,‡, and #, respectively. For all cases, the requested torque is very close to the torque
produced by the steering logic. To better discern the differences between the three steering logics
the torque errors were calculated as follows

Lre = ‖Lr − Lc‖2 (30)

Figure 7(b) shows that the torque error reaches its maximum during initialization, when the gimbals
are at rest. This is due to the fact that the requested torque cannot be produced instantaneously
because of the gimbal dynamics that induce a delayed response to the gimbal rate commands.
Furthermore, this figure, along with Figure 7(a), also shows that the new off-Diagonal Singularity
Robust steering logic has the best overall performance with good avoidance/transition through
singularities and the smallest torque error.

IX. Summary and Conclusions

In this article we have experimentally compared several CMG steering laws proposed in the
literature. Specifically, three singularity avoidance control laws based on the pseudo-inverse ap-
proach were tested and validated in a realistic, three-axial spacecraft simulator having a cluster of
four CMGs in a pyramid configuration. An adaptive control law was implemented to stabilize the
spacecraft platform, while at the same time cancelling the unknown gravity disturbance torque.
The three steering logics were compared in terms of their torque error committed during singularity
avoidance. All methods performed very well, with the new off-Diagonal Singularity Robust steering
control law showing the best overall performance avoiding the singularities, while generating the
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Figure 3. Experimental and simulated results for a reorientation maneuver utilizing the Singularity
Robust (SR) steering logic.
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Figure 4. Experimental and simulated results for a reorientation maneuver utilizing the Singularity
Direction Avoidance (SDA) steering logic

14 of 17

American Institute of Aeronautics and Astronautics



0 10 20 30 40 50 60 70 80 90 100
−0.02

0

0.02

0.04

0.06

Time [sec]

q 1
: Experiment
: Simulation

0 10 20 30 40 50 60 70 80 90 100
−0.06

−0.04

−0.02

0

0.02

Time [sec]

q 2

: Experiment
: Simulation

0 10 20 30 40 50 60 70 80 90 100
−0.1

0

0.1

0.2

0.3

Time [sec]

q 3

: Experiment
: Simulation

(a) Quaternion parameter

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

Time [sec]

p 
[d

eg
/s

ec
]

: Experiment
: Simulation

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1

1.5

Time [sec]

q 
[d

eg
/s

ec
]

: Experiment
: Simulation

0 10 20 30 40 50 60 70 80 90 100
−6

−4

−2

0

2

Time [sec]

r 
[d

eg
/s

ec
]

: Experiment
: Simulation

(b) Body angular rate

0 20 40 60 80 100
−40

−20

0

20

40

60

80

Time [sec]

γ 1 [d
eg

]

: Experiment
: Simulation

0 20 40 60 80 100
−20

0

20

40

60

80

Time [sec]

γ 2 [d
eg

]

: Experiment
: Simulation

0 20 40 60 80 100
−20

−10

0

10

20

30

40

Time [sec]

γ 3 [d
eg

]

: Experiment
: Simulation

0 20 40 60 80 100
−20

0

20

40

60

80

Time [sec]

γ 4 [d
eg

]

: Experiment
: Simulation

(c) Gimbal angles

0 20 40 60 80 100
−30

−20

−10

0

10

20

30

: Experiment
: Simulation

0 20 40 60 80 100
−30

−20

−10

0

10

20

30

: Experiment
: Simulation

0 20 40 60 80 100
−30

−20

−10

0

10

20

30
: Experiment
: Simulation

0 20 40 60 80 100
−20

−10

0

10

20

30

: Experiment
: Simulation

Time [sec]Time [sec]

Time [sec]Time [sec]

γ̇
1

[d
eg

/s
ec

2
]

γ̇
2

[d
eg

/s
ec

2
]

γ̇
3

[d
eg

/s
ec

2
]

γ̇
4

[d
eg

/s
ec

2
]

(d) Gimbal angular rates

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

Time [sec]

L rx

: Experiment
: Simulation

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

Time [sec]

L ry

: Experiment
: Simulation

0 10 20 30 40 50 60 70 80 90 100
−2

0

2

4

Time [sec]

L rz

: Experiment
: Simulation

(e) Requested torque with respect to body frame

0 10 20 30 40 50 60 70 80 90 100
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Time [sec]

de
tD

D
’

: detDD (Ex)
: detDD (Sim)

(f) Singularity measure: detDDT

Figure 5. Experimental and simulated results for a reorientation maneuver utilizing the off-Diagonal
Singularity Robust (o-DSR) steering logic.
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