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SUMMARY

In this paper we derive a new dynamic friction force model for the longitudinal
road/tire interaction for wheeled ground vehicles. The model is based on a dynamic
friction model developed previously for contact-point friction problems, called the Lu-
Gre model [7]. By assuming a contact patch between the tire and the ground we
develop a partial differential equation for the distribution of the friction force along
the patch. An ordinary differential equation (the lumped model) for the friction force
is developed based on the patch boundary conditions and the normal force distribution
along the contact patch. This lumped model is derived to closely approximate the dis-
tributed friction model. Contrary to common static friction/slip maps, it is shown that
this new dynamic friction model is able to accurately capture the transient behaviour
of the friction force observed during transitions between braking and acceleration. A
velocity-dependent, steady-state expression of the friction force vs. the slip coefficient
is also developed that allows easy tuning of the model parameters by comparison with
steady-state experimental data. Experimental results validate the accuracy of the new
tire friction model in predicting the friction force during transient vehicle motion. It
is expected that this new model will be very helpful for tire friction modeling as well
as for anti-lock braking (ABS) and traction control design.
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1 INTRODUCTION

The problem of predicting the friction force between the tire and the ground
for wheeled vehicles is of enormous importance to automotive industry. Since
friction is the major mechanism for generating forces on the vehicle, it is ex-
tremely important to have an accurate characterization of the magnitude (and
direction) of the friction force generated at the ground/tire interface. However,
accurate tire/ground friction models are difficult to obtain analytically. Subse-
quently, in the past several years, the problem of modeling and predicting tire
friction has become an area of intense research in the automotive community. In
particular, ABS and traction control systems rely on knowledge of the friction
characteristics. Such systems have enhanced safety and maneuverability to such
an extend, that they have become almost mandatory for all future passenger
vehicles.

Traction control systems reduce or eliminate excessive slipping or sliding
during vehicle acceleration and thus enhance the controllability and maneuver-
ability of the vehicle. Proper traction control design has a paramount effect on
safety and handling qualities for passenger vehicles. Traction control aims to
achieve maximum torque transfer from the wheel axle to forward acceleration.
Similarly, anti-lock braking systems (ABS) prohibit wheel lock and skidding dur-
ing braking by regulating the pressure applied on the brakes, thus increasing
lateral stability and steerability, especially during wet and icy road conditions.
As with the case of traction control, the main difficulty in designing ABS sys-
tems is the nonlinearity and uncertainty of the tire/road models. In either case,
the friction force at the tire/road interface is the main mechanism for converting
wheel angular acceleration or deceleration (due to the motor torque or braking)
to forward acceleration of deceleration (longitudinal force). Therefore, the study
of the friction force characteristics at the road/tire interface is of paramount im-
portance for the design of ABS and/or traction control systems. Moreover, tire
friction models are also indispensable for accurately reproducing friction forces
for simulation purposes. Active control mechanisms, such as ESP, TCS, ABS,
steering control, active suspension, etc. may be tested and optimized using
vehicle mechanical 3D simulators with suitable tire/road friction models.

A common assumption in most tire friction models is that the normalized
tire friction µ

µ =
F

Fn
=
Friction force
Normal force

is a nonlinear function of the normalized relative velocity between the road and
the tire (slip coefficient s) with a distinct maximum; see Fig. 1. In addition, it is
understood that µ also depends on the velocity of the vehicle and road surface
conditions, among other factors (see [6] and [15]). The curves shown in Fig. 1
illustrate how these factors influence the shape of µ.

The curves shown in Fig. 1 are derived empirically, based solely on steady-
state (i.e., constant linear and angular velocity) experimental data [15, 3] in a
highly controlled laboratory environment or using specially designed test vehi-
cles. Under such steady-state conditions, experimental data seem to support
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Figure 1: Typical variations of the tire/road friction profiles for different road surface
conditions (a), and different vehicle velocities (b). Curves given by Harned et al. [15].

the force vs. slip curves of Fig. 1. In reality, the linear and angular velocities
can never be controlled independently and hence, such idealized steady-state
conditions are not reached except during the rather uninteresting case of cruis-
ing with constant speed. The development of the friction force at the tire/road
interface is very much a dynamic phenomenon. In other words, the friction
force does not reach its steady-state value shown in Fig. 1 instantaneously, but
rather exhibits transient behavior which may differ significantly from its steady-
state value. Experiments performed in commercial vehicles, have shown that
the tire/road forces do not necessarily vary along the curves shown Fig. 1, but
rather “jump” from one value to another when these forces are displayed in
the µ − s plane [25]. In addition, in realistic situations, these variations are
most likely to exhibit hysteresis loops, clearly indicating the dynamic nature of
friction.

In this paper, we develop a new, velocity-dependent, dynamic friction model
that can be used to describe the tire/road interaction. The proposed model
has the advantage that is developed starting from first principles based on a
simple, point-contact dynamic friction model [7]. The parameters entering the
model have a physical significance allowing the designer to tune the model pa-
rameters using experimental data. The proposed friction model is also velocity-
dependent, a property that agrees with experimental observations. A simple
parameter in the model can also be used to capture the road surface character-
istics. Finally, in contrast to many other static models, our model is shown to
be well-defined everywhere (even at zero rotational or linear vehicle velocities)
and hence, is appropriate for any vehicle motion situations as well as for control
law design. This is especially important during transient phases of the vehicle
operation, such as during braking or acceleration.
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2 STATIC SLIP/FORCE MODELS

In this paper we consider the simplified motion dynamics of a quarter-vehicle
model. The system is then of the form

mv̇ = F (1)
Jω̇ = −rF + u , (2)

where m is 1/4 of the vehicle mass and J , r are the inertia and radius of the
wheel, respectively. v is the linear velocity of the vehicle, ω is the angular
velocity of the wheel, u is the accelerating (or braking) torque, and F is the
tire/road friction force. For the sake of simplicity, only longitudinal motion

u, u,

Wheel with
lumped friction F

r

F
Fn

v

Fn

ωω

r

F

v

L

O
p

ζ
dF

Wheel with
distributed friction F

Figure 2: One-wheel system with lumped friction (left), and distributed friction
(right).

will be considered in this paper. The lateral motion and well as combined
longitudinal/lateral dynamics are left for future investigation. The dynamics of
the braking and driving actuators, suspension dynamics, etc. are also neglected.

The most common tire friction models used in the literature are those of
algebraic slip/force relationships. They are defined as one-to-one (memoryless)
maps between the friction F , and the longitudinal slip rate s, which defined as

s =




sb =
rω

v
− 1 if v > rω, v �= 0 for braking

sd = 1− v

rω
if v < rω, ω �= 0 for driving

(3)

The slip rate results from the reduction of the effective circumference of
the tire as a consequence of the tread deformation due to the elasticity of the
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tire rubber [19]. This, in turn, implies that the ground velocity v will not be
equal to rω. The absolute value of the slip rate is defined in the interval [0, 1].
When s = 0 there is no sliding (pure rolling), whereas |s| = 1 indicates full
sliding/skidding. It should be pointed out that in this paper we always define
the relative velocity as vr = rω − v. As a result, the slip coefficient in (3) is
positive for driving and negative for braking. This is somewhat different than
what is done normally in the literature, where the relative velocity (and hence
the slip s) is kept always positive by redefining vr = v − rω in case of braking.
Since we wish our results to hold for both driving and braking, we feel that it is
more natural to keep the same definition for the relative velocity for both cases.
This also avoids any inconsistencies and allows for easy comparison between the
braking and driving regimes.

The slip/force models aim at describing the shapes shown in Fig. 1 via static
maps F (s) : s �→ F . They may also depend on the vehicle velocity v, i.e. F (s, v),
and vary when the road characteristics change.

One of the most well-known models of this type is Pacejka’s model (see,
Pacejka and Sharp [21]), also known as the “Magic Formula.” This model has
been shown to suitably match experimental data, obtained under particular
conditions of constant linear and angular velocity. The Pacejka model has the
form1

F (s) = c1 sin(c2 arctan(c3s− c4(c3s− arctan(c3s)))) , (4)

where the c′is are the parameters characterizing this model. These parameters
can be identified by matching experimental data, as shown in Bakker et al. [3].

Another static model is the one proposed by Burckhardt [6]. The tire/road
friction characteristic is of the form

F (s, v) =
(
c1(1− e−c2s)− c3s

)
e−c4v , (5)

where c1, · · · , c4 are some constants. This model has a velocity dependency,
seeking to match variations like the ones shown in Fig. 1(b).

Kiencke and Daiss [16] neglect the velocity-dependent term in equation (5)
and after approximating the exponential function in (5), they obtain the follow-
ing expression for the friction/slip curve

F (s) = ks
s

c1s2 + c2s+ 1
, (6)

where ks is the slope of the F (s) vs. s curve at s = 0, and c1 and c2 are properly
chosen parameters.

Alternatively, Burckhardt [5] proposes a simple, velocity-independent three-
parameter model as follows

F (s) = c1(1− e−c2s)− c3s . (7)

1In the formulas that follow, it is assumed that s ∈ [0, 1]. Hence these formulas give the
magnitude of the friction force. The sign of F is then determined from the sign of vr = rω−v.
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All the previous friction models are highly nonlinear in the unknown param-
eters, and thus they are not well-adapted to be used for on-line identification.
For this reason, simplified models like

F (s) = c1
√
s− c2s (8)

have been proposed in the literature.
It is also well understood that the “constant” c′is in the above models, are not

really invariant, but they may strongly depend on the tire characteristics (e.g.,
compound, tread type, tread depth, inflation pressure, temperature), on the
road conditions (e.g., type of surface, texture, drainage, capacity, temperature,
lubricant, etc.), and on the vehicle operational conditions (velocity, load); see,
for instance the discussion in [20].

3 LUMPED DYNAMIC FRICTION MODELS

The static friction models of the previous section are appropriate when we have
steady-state conditions for the linear and angular velocities. In fact, the experi-
mental data used to validate the friction/slip curves are obtained using special-
ized equipment that allow independent linear and angular velocity modulation
so as to transverse the whole slip range. This steady-state point of view is rarely
true in reality, especially when the vehicle goes through continuous successive
phases between acceleration and braking.

As an alternative to the static F (s) maps, different forms of dynamic models
can be adopted. The so-called “dynamic friction models” attempt to capture the
transient behaviour of the tire-road contact forces under time-varying velocity
conditions. Generally speaking, dynamic models can be formulated either as
lumped or as distributed models, as shown in Fig. 2. A lumped friction model
assumes a point tire-road friction contact. As a result, the mathematical model
describing such a model is an ordinary differential equations that can be easily
solved by time integration. Distributed friction models, on the other hand,
assume the existence of a contact patch between the tire and the ground with
an associated normal pressure distribution. This formulation results in a partial
differential equation, that needs to be solved both in time and space.

A number of dynamic models have been proposed in the literature that can
be classified under the term “dynamic friction models.” One such model, for
example, has been proposed by Bliman et al. in [4]. In that reference the friction
is calculated by solving a differential equation of the following form

ż = |vr|Az +Bvr

F (z, vr) = Cz + sgn(vr)D (9)

The matrix A is required to be Hurwitz of dimension either one or two, with
the latter case being more accurate. Another lumped dynamic model that can
be used to accurately predict the friction forces during transients is the LuGre
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friction model [9]. The derivation of this model is discussed in great detail in
Section 4. Before doing that, we next present two examples of frequently used
dynamic friction models, the so-called “kinematic model” and the “Dahl model”.
This will allow us to motivate our introduction in Section 4 of a new distributed
(and later in Section 5 of an average lumped) friction model. In addition, it
will be shown that these two commonly used lumped models are not able to
reproduce the steady-state characteristics, similar to those of Pacejka’s “Magic
Formula.”

3.1 Kinematic-Based Models

These models are derived from the idealization of a contact point deformation
and from kinematic considerations (velocity relations between the points that
concern the tire deformations). Their derivation follows semi-empirical consid-
erations and assumes that the contact forces result from the product of the tire
deformation and the tire stiffness.

An example of a two-dimensional model characterizing the lateral force and
the aligning moment, can be found in [18]. A brush model for the longitudinal
tire dynamics has been derived in [10, 2].

v

r

F

F
n

ω
v

Base Frame

ζ1

ζ0

x

deformed point

undeformed point

q

Figure 3: View of the contact area with the position of the undeformed contact point
ζ0, and the point ζ1 that deforms under longitudinal shear forces during a brake phase.

For simplicity, next we only discuss the braking case. The traction case
follows a similar development, with an appropriate definition of z. In that case,
the relaxation length may be defined as the wheel arc length required to build
friction.

A model for the longitudinal dynamics in [10] is derived by defining the
normalized longitudinal slip z as

z =
ζ1 − ζ0
ζ0

(10)
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where ζ1 locates a hypothetical element which follows the road, and it defines
the distance from the deformed wheel point to a forward point q. ζ0 locates a
hypothetical element which in undeformed under longitudinal shear forces, and
defines the distance from the undeformed wheel point (i.e. center of the wheel’s
rotational axis) to a forward point q as shown in Fig. 3. The undeformed point
ζ0 and the forward point q are moving at the same ground speed v, thus the
distance ζ0 is constant with respect to the moving point q. The length ζ0 is
known as the longitudinal relaxation length.

Differentiating z in (10) with respect to time, and noticing that ζ̇0 = |v|,
ζ̇1 = sgn(v)rω, we get2

1
σ

dz

dt
= vrsgn(v)− |v|z (11)

F = h(z) (12)

where v is the linear velocity, vr = rω − v is the relative velocity, and the
friction force F is defined by the function h(z) that describes the stationary
slip characteristics. In the simplest case, h(z) is given by a linear relationship
between the longitudinal slip and the tire (linear) stiffness k,

h(z) = kz

The constant 1/σ = ζ0 is called the relaxation length, and can be defined as the
distance required to reach the steady-state value of F

Fss = h(zss) = kzss = k
rω − v

v
= ks

after a step change of the slip longitudinal velocity, s = sb = vr/v = (rω−v)/v.
The role of the relaxation length 1/σ in equation (11), can be better understood
by rewriting this equation in terms of the spatial coordinate η,

η(t) =
∫ t

0

|v(τ)|dτ

rather than as a time-differential equation, i.e.,

1
σ

dz

dt
=

1
σ

dz

dη

dη

dt
= vrsgn(v)− |v|z (13)

1
σ

dz

dη
= −z + vr

v
= −z + s (14)

Equation (14) can thus be seen as a first order spatial equation with the sliding
velocity s as its input. It thus becomes clear that σ represents the spatial
constant of this equation.

As pointed out in [10], this model works well for high speeds, but it generates
lightly damped oscillations at low speeds. The reason for this is that at quasi-
steady-state regimes, z is close to its steady-state value (z ≈ s) , and the friction

2In this expression both positive and negative v are considered.
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F is dominated by its spring-like behaviour (F ≈ kz), resulting in a lightly
damped mechanical system. Additional considerations are necessary to make
this model consistent for all possible changes in the velocity sign. This restricts
the usefulness of this model for tire friction analysis and control development.
Reference [10] actually provides a twelve-step algorithm for implementing this
model in simulations.

3.2 The Dahl Model

The Dahl model [11] was developed for simulating control systems with friction.
The starting point of Dahl’s model is the stress-strain curve in classical solid
mechanics [22] and [23]; see Fig. 4. When subject to stress, the friction force

Displacement

Friction

v > 0 v < 0

Fc

Figure 4: Friction force as a function of displacement for the Dahl’s model.

increases gradually until rupture occurs. Dahl modeled the stress-strain curve
by a differential equation. Let xr be the relative displacement, vr = dxr/dt
be the relative velocity, F the friction force, and Fc the maximal friction force
(Coulomb force). Dahl’s model then takes the form,

dF

dxr
= σ0

(
1− F

Fc
sgn(vr)

)β

(15)

where σ0 is the stiffness coefficient and β is a parameter that determines the
shape of the stress-strain curve. The value β = 1 is most commonly used.
Higher values will give a stress-strain curve with a sharper bend. The friction
force |F | will never be larger than Fc if its initial value is such that |F (0)| < Fc.
When integrating (15) for step changes of vr, a monotonic growing of F (t)
can be observed. Therefore, Dahl’s model cannot exhibit a maximum peak, as
suggested by Pacejka’s “Magic Formula.”

It is also important to remark that in this model the friction force is only a
function of the displacement and the sign of the relative velocity. This implies
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that the evolution of the friction force in the F − xr plane will only depend
on the sign of the velocity, but not on the magnitude of vr. This implies rate-
independent hysteresis loops in the F − xr plane [4].

To obtain a time-domain model, Dahl observed that,

dF

dt
=

dF

dxr

dxr

dt
=

dF

dxr
vr = σ0

(
1− F

Fc
sgn(vr)

)β

vr (16)

For the case β = 1, the model (16) can be written as

dF

dt
= σ0(vr − F

Fc
|vr|) (17)

or in its state model description,

dz

dt
= vr − σ0

z

Fc
|vr| (18)

F = σ0z (19)

with z being the relative displacement. Note the difference in the interpretation
of z between the kinematic and Dahl models. In the Dahl model z represents
the actual relative displacement, where in the kinematic model it represents the
normalized relative displacement. Moreover, whereas in (18) the coefficient of z
depends on the relative velocity vr, in the kinematic model (11) it depends on
the vehicle velocity v.

Introducing the relative length distance ηr as,

ηr(t) =
∫ t

0

|vr(τ)|dτ,

the Dahl model becomes

1
σ0

dF

dηr
= − 1

Fc
F + sgn(s) (20)

where we have used the fact that sgn(vr) = sgn(s). In this coordinate, the
Dahl model behaves as a linear, space-invariant system with the sign of the
longitudinal slip velocity as its input. The motion in the F − ηr plane is thus
independent of the magnitude of the slip velocity.

3.3 Comparison Between Kinematic and Dahl Models

It is also instructive to compare the kinematic model and the Dahl model. First,
note that the steady-state values for each model are,

F kin
ss = ks, FDahl

ss = Fcsgn(s)

Since |s| ≤ 1, then k and Fc represent the maximum values that friction can
take. In steady state, the kinematic model predicts a linear behaviour with
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respect to s, whereas the Dahl model predicts a discontinuous form with values
in the set [−Fc, Fc].

In the neighborhood of vr = 0, both models predict similar linearized pre-
sliding (spring-like) behaviour,

F kin
ss ≈ kσηr, FDahl

ss ≈ σ0ηr (21)

Nonetheless, there are some differences when comparing the complete dynamic
equations of both models. To this end, consider the particular form h(z) = kz
in equation (12). Then the spatial representations of both models in the η, and
the ηr coordinates are given as,

1
σ0

dFDahl

dηr
= − 1

Fc
FDahl + sgn(s) (22)

1
kσ

dF kin

dη
= −1

k
F kin + sgn(s) (23)

Let Fc = k, and σ0 = kσ, then both models looks similar. Note however that
they are defined in different coordinates. This changes the interpretation that
may be given to the relaxation length constant: Fcσ0 describes the relaxation
length of the Dahl model with respect to the relative (sliding) distance, whereas
1/σ represents the relaxation length of the kinematic model defined with respect
to the absolute (total) traveled longitudinal distance.

Note also that both of these models do not exhibit a maximum for values
|s| < 1, as suggested by experimental data and also by Pacejka’s formula. How-
ever, the kinematic model can be modified by redefining the function h(z) in
(12) so as to produce a steady-state behaviour similar to the one predicted by
the “Magic Formula” [2].

3.4 The Lumped LuGre Model

The LuGre model is an extension of the Dahl model that includes the Stribeck
effect (see, [7]). This model will be used as a basis for further developments for
the final model proposed in this paper. The lumped, LuGre model as proposed
in [9], and [8] is given as,

ż = vr − σ0|vr|
g(vr)

z (24)

F = (σ0z + σ1ż + σ2vr)Fn (25)

with
g(vr) = µc + (µs − µc)e−|vr/vs|α (26)

where σ0 is the rubber longitudinal lumped stiffness, σ1 the rubber longitudinal
lumped damping, σ2 the viscous relative damping, µc the normalized Coulomb
friction, µs the normalized static friction, (µc ≤ µs), vs the Stribeck relative
velocity, Fn the normal force, vr = rω−v the relative velocity, and z the internal
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friction state. The constant parameter α is used to capture the steady-steady
friction/slip characteristic3.

In contrast to the Dahl model, the lumped LuGre model does exhibit a
maximum friction for |s| ≤ [0, 1], but it still displays a discontinuous steady-
state characteristic, at zero relative velocity. Nevertheless, by letting the internal
bristle deflection z depend on both the time and the contact position ζ along the
contact patch, it is possible to show that this model will have the appropriate
steady-state properties. This is discussed next.

4 THE LUGRE DISTRIBUTED MODEL

Distributed models assume the existence of an area of contact (or patch) between
the tire and the road, as shown in Fig. 2. This patch represents the projection
of the part of the tire that is in contact with the road. With the contact patch is
associated a frame Op, with ζ-axis along the length of the patch in the direction
of the tire rotation. The patch length is L.

4.1 Brief Review of Existing Models

Distributed dynamical models, have been studied previously, for example, in the
works of Bliman et al. [4]. In these models, the contact patch area is discretized
to a series of elements, and the microscopic deformation effects are studied in
detail. In particular, Bliman at al. [4] characterize the elastic and Coulomb
friction forces at each point of the contact patch, and they give the aggregate
effect of these distributed forces by integrating over the whole patch area. They
propose a second order rate-independent model (similar to Dahl’s model), by
applying the point friction model (9) to a rubber element situated at ζ at time
t. By letting z(ζ, t) denote the corresponding friction state, they obtain the
partial differential equation

∂z
∂t + rω ∂z

∂ζ = |vr|Az +Bvr, z(ζ, 0) = z(0, t) = 0 (27)

F (t) = Fn

L

∫ L

0
Cz(ζ, t) dζ (28)

They also show that, under constant v and ω, there exists a choice of parameters
A, B and C that closely match a curve similar to the one characterizing the
“Magic Formula.”

In [25] van Zanten et al. use a distributed brush model. The contact patch
is described by a brush-type model where the displacement of each bristle is

3The model in (25) differs from the point-contact LuGre model in [7] in the way that
the function g(v) is defined. Here we propose to use α = 1/2 instead of α = 2 as in the
LuGre point-contact model in order to better match the pseudo-stationary characteristic of
this model (map s �→ F (s) ) with the shape of the Pacejka’s model.
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characterized by the state zi, i = 1, . . . , N . The discretized version of this
model, in its simplest form, is given by

dzi

dt
= v − ωr − zi − zi−1

L/N
ωr (29)

F =
N∑

i=1

cizi (30)

where N is the number of discrete elements (bristles) and ci is the stiffness of
the bristle. The imposed boundary condition dz1/dt = 0 implies that the bristle
at the beginning of the contact area has no displacement.

4.2 Distributed LuGre Model

One can also extend the point friction model (24)-(25) to a distributed friction
model along the patch by letting z(ζ, t) denote the friction state (deflection) of
the bristle/patch element located at the point ζ along the patch at a certain
time t. At every time instant z(ζ, t) provides the deflection distribution along
the contact patch. The model (24)-(25) can now be written as

d z

dt
(ζ, t) = vr − σ0|vr|

g(vr)
z (31)

F =
∫ L

0

dF (ζ, t) , (32)

with g(vr) defined as in (26) and where

dF (ζ, t) =
(
σ0 z(ζ, t) + σ1

∂z

∂t
(ζ, t) + σ2vr

)
dFn(ζ, t) ,

where dF (ζ, t) is the differential friction force developed in the element dζ and
dFn(ζ, t) is the differential normal force applied in the element dζ at time t.
This model assumes that the contact velocity of each differential state element
is equal to vr.

Assuming a steady-state normal force distribution dFn(ζ, t) = dFn(ζ) and
introducing a normal force density function fn(ζ) (force per unit length) along
the patch, i.e.,

dFn(ζ) = fn(ζ)dζ

one obtains the total friction force as

F (t) =
∫ L

0

(σ0z(ζ, t) + σ1
∂z

∂t
(ζ, t) + σ2vr)fn(ζ)dζ (33)

Noting that4 ζ̇ = |rω|, and that
d z

dt
(ζ, t) =

∂z

∂ζ

∂ζ

∂t
+
∂z

∂t
,

4It is assumed here that the origin of the ζ-frame changes location when the wheel velocity
reverses direction, such that ζ̇ = rω, for ω > 0, and ζ̇ = −rω, for ω < 0.
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we have that equation (31) describes a partial differential equation, i.e.

∂ z

∂ζ
(ζ, t) |rω|+ ∂ z

∂t
(ζ, t) = vr − σ0|vr|

g(vr)
z(ζ, t) (34)

that should be solved in both in time and space. More details on the derivation
of this distributed friction model are given in Appendix A.

4.3 Steady-State Characteristics

The time steady-state characteristics of the model (31)-(32) are obtained by
setting ∂ z

∂ζ (ζ, t) ≡ 0 and by imposing that the velocities v and ω are constant.
Enforcing these conditions in (34) results in

∂z(ζ, t)
∂ζ

=
1

|ωr|
(
vr − σ0|vr|

g(vr)
z(ζ, t)

)
(35)

At steady-state, v, ω (and hence vr) are constant, and (35) can be integrated
along the patch with the boundary condition z(0, t) = 0. A simple calculation
shows that

zss(ζ) = sgn(vr)
g(vr)
σ0

(
1− e−

σ0
g(vr) | vr

ωr |ζ) = c2(1− ec1ζ) (36)

where

c1 = − σ0

g(vr)

∣∣∣ vr

ωr

∣∣∣ , c2 = sgn(vr)
g(vr)
σ0

(37)

Notice that when ω = 0 (locked wheel case) the distributed model, and hence
the steady-state expression (36) collapses into the one predicted by the standard
point-contact LuGre model. This agrees with the expectation that for a locked
wheel the friction force is only due to pure sliding.

The steady-state value of the total friction force is calculated from (33)

Fss =
∫ L

0

(σ0zss(ζ) + σ2vr)fn(ζ)dζ (38)

To proceed with the calculation of Fss we need to postulate a distribution for the
normal force fn(ζ). The typical form of the normal force distribution reported
in the literature [24, 19, 14, 13], is shown in Fig. 5. However, for the sake of
simplicity, other forms can be adopted. Some examples are given next.

• Constant norm distribution. A simple result can be derived if we assume
uniform load distribution, as done in [9] and [12]. For uniform normal
load

fn(ζ) =
Fn

L
, 0 ≤ ζ ≤ L (39)
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Figure 5: Typical normal load distribution along the patch; taken from [14].

and one obtains,

Fss =
(
sgn(vr)g(vr)

[
1− Z

L
(1− e−L/Z)

]
+ σ2vr

)
Fn (40)

where

Z =
∣∣∣ωr
vr

∣∣∣ g(vr)
σ0

(41)

• Exponentially decreasing distribution. In this case, the decrease of the
normal load along the patch shown in Fig. 5 is approximated with an
exponentially decreasing function

fn(ζ) = e−λ( ζ
L )fn0, 0 ≤ λ, 0 ≤ ζ ≤ L (42)

where fn(0) = fn0 denotes the distributed normal load at ζ = 0. This
particular choice will become clear later on, when we reduce the infinite
dimension distributed model to a simple lumped one having only one state
variable. Moreover, for λ > 0 we have a strictly decreasing function of fn.
With the choice (42) one obtains

Fss = σ0c2k1

(
1− e−λ + k2e

(−λ+CL) + k2

)
+ σ2vrk1(1− e−λ) (43)

where
k1 =

fn0L

λ
and k2 =

λ

c1L− λ

The details of these calculations are given in Appendix B. The value of
fn0 can be computed from λ,L and the total normal load Fn acting on



16 Canudas-de-Wit, Tsiotras, Velenis, Basset and Gissinger

the wheel shaft. That is,

Fn =
∫ L

0

fn(ζ) dζ = fn0

∫ L

0

e−
λ
L ζ dζ

= −L

λ
fn0

[
e−

λ
L ζ

]L

0
= −L

λ
fn0

(
e−λ − 1)

=
L

λ
fn0

(
1− e−λ

)
(44)

which yields,

fn0 = Fn
λ

(1− e−λ)L
(45)

• Distributions with zero boundary conditions. As shown in Fig. 5, a realistic
force distribution has, by continuity, zero values for the normal load at
the boundaries of the patch. Several forms satisfy this constraint. Some
possible examples proposed herein are given below:

fn(ζ) =
3Fn

2L

[
1−

(
ζ − L/2
L/2

)2
]

parabolic (46)

or,

fn(ζ) =
πFn

2L
sin(πζ/L) sinusoidal (47)

or,

fn(ζ) =
γ2L2 + π2

πL(e−γL + 1)
exp−γζ sin(πζ/L) sinusoidal/exponential

(48)

where Fn denotes the total normal load.

4.4 Relation with the Magic Formula

The previously derived steady-state expressions, depend on both v and ω. They
can also be expressed as a function of s and either v or ω. For example, for the
constant distribution case, we have that Fss(s), can be rewritten as:

• Driving case. In this case v < rω, see also (3), and the force at steady-state
is given by

Fd(s) = sgn(vr)Fng(s)
(
1 +

g(s)
σ0L|s| (e

−σ0L|s|
g(s) − 1)

)
+ Fnσ2rωs (49)

with g(s) = µc + (µs − µc) e−|rωs/vs|α , for some constant ω, and s = sd.
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• Braking case. Noticing that the following relations hold between the brak-
ing sb and the driving sd slip definitions,

rωsd = vsb, sd =
sb

sb + 1

the steady-state friction force for the braking case can be written as

Fb(s) = sgn(vr)Fng(s)
(
1 +

g(s)|1 + s|
σ0L|s| (e−

σ0L|s|
g(s)|1+s| − 1)

)
+ Fnσ2vs

(50)
where g(s) = µc+(µs −µc) e−|vs/vs|α , for constant v, and s = sb; see also
(3).

Remark: Note that the above expressions depend not only on the slip s, but
also on either the vehicle velocity v or the wheel velocity ω, depending on the
case considered (driving or braking). Therefore static plots of F vs. s can only
be obtained for a specified (constant) velocity. This dependence of the steady-
state force/slip curves on vehicle velocity is evident in experimental data found
in the literature. Nonetheless, it should be stressed here that it is impossible to
reproduce such a curves form experimental data obtained from standard vehi-
cles during normal driving conditions, since v and ω cannot be independently
controlled. For that, specially design equipment is needed. Figure 6(a) shows
the steady-state dependence on the vehicle velocity for the braking case, using
the data given in Table 1.
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Figure 6: Static view of the distributed LuGre model with uniform force distribution
(braking case) under: (a) different values for v, (b) different values for θ with v =
20 m/s = 72 Km/h. These curves show the normalized friction µ = F (s)/Fn, as a
function of the slip velocity s.
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Table 1: Data used for the plots in Fig. 6

Parameter Value Units
σ0 181.54 [1/m]
σ2 0.0018 [s/m]
µc 0.8 [-]
µs 1.55 [-]
vs 6.57 [m/s]
L 0.2 [m]

4.5 Dependency on Road Conditions

The level of tire/road adhesion, can be modeled by introducing a multiplicative
parameter θ in the function g(vr). To this aim, we substitute g(vr) by

g̃(vr) = θg(vr) ,

where g(vr) is the nominal known function given in (26). Computation of the
function F (s, θ), from equation (50) as a function of θ, gives the curves shown
in Fig. 6(b). These curves match reasonably well the experimental data shown
in Fig. 1(a), for several coefficients of road adhesion using the parameters shown
in Table 1. Hence, the parameter θ, can suitably describe the changes in the
road characteristics.

We also note that the steady-state representation of equations (49) or (50)
can be used to identify most of the model parameters by fitting this model to ex-
perimental data. These parameters can also be used in a simple one-dimensional
lumped model, which can be shown to suitably approximate the (average) so-
lution of the partial differential equation (31) and (32). This approximation is
discussed next.

5 AVERAGE LUMPED MODEL

It is clear that the distributed model captures reality better than the lumped,
point contact model. It is also clear that in order to use the distributed model
for control purposes it is necessary to choose a discrete number of states to
describe the dynamics for each tire. This has the disadvantage that a possibly
large number of states is required to describe the friction generated at each tire.
Alternatively, one could define a mean friction state z̄ for each tire and then
derive an ordinary differential equation for z̄. This will simplify the analysis
and can also lead to much simpler control design synthesis procedures for tire
friction problems.

To this end, let us define

z̄(t) ≡ 1
Fn

∫ L

0

z(ζ, t)fn(ζ)dζ (51)
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where Fn is the total normal force, given by

Fn =
∫ L

0

fn(ζ) dζ

Thus,

˙̄z(t) =
1
Fn

∫ L

0

∂z

∂t
(ζ, t)fn(ζ)dζ (52)

Using (34) we get

˙̄z(t) =
1
Fn

∫ L

0

(
vr − σ0|vr|

g(vr)
z(ζ, t)− ∂z(ζ, t)

∂ζ
|ωr|

)
fn(ζ)dζ

= vr − σ0|vr|
g(vr)

z̄(t)− |ωr|
Fn

∫ L

0

∂z(ζ, t)
∂ζ

fn(ζ)dζ

= vr − σ0|vr|
g(vr)

z̄(t)− |ωr|
Fn

[
z(ζ, t)fn(ζ)

]L

0
+

|ωr|
Fn

∫ L

0

z(ζ, t)
∂fn(ζ)
∂ζ

dζ

The term in the square brackets describes the influence of the boundary con-
ditions, whereas the integral term accounts for the particular form of the force
distribution.

From (33) the friction force is

F (t) =
∫ L

0

(
σ0 z(ζ, t) + σ1

∂z

∂t
(ζ, t) + σ2vr

)
fn(ζ) dζ

= (σ0z̄(t) + σ1 ˙̄z(t) + σ2vr) Fn

As a general goal, one wishes to introduce normal force distributions, that
leads to the following form for the lumped LuGre model,

˙̄z(t) = vr − σ0|vr|
g(vr)

z̄(t)− κ(t)|ωr|z̄(t) (53)

F (t) = (σ0z̄(t) + σ1 ˙̄z(t) + σ2vr)Fn (54)

where κ(t) is defined as:

κ(t) =
1

Fn z̄

{[
z(ζ, t)fn(ζ)

]L

0
−

∫ L

0

z(ζ, t)
∂fn(ζ)
∂ζ

dζ

}
(55)

and Fn as above. When comparing this model with the point contact LuGre
model (24)-(25), it is clear that κ captures the distributed nature of the former
model. It is also expected that κ > 0, so that the map vr(t) �→ F (t) preserves
the passivity properties of the point contact LuGre model [7, 1].

For the case of normal load distributions with zero boundary conditions we
have fn(0) = fn(L) = 0 and equation (55) yields

κ(t) = −
∫ L

0
z(ζ, t)f ′

n(ζ)dζ∫ L

0
z(ζ, t)fn(ζ)dζ

(56)

where f ′
n(ζ) = ∂fn(ζ)/∂ζ.
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5.1 Influence of the Force Distribution on κ(t)

Depending on the postulated normal force distribution density function, several
expressions for the average lumped model can be developed. For instance, κ
may be a constant, an explicit or an implicit function of the mean friction state
z̄. We study some of these forms next.

Parabolic Distribution
For a parabolic normal force distribution fn(ζ) is given by (46). In order to

compute κ from (56) we now make the assumption that z(ζ, t) is a separable
function of ζ and t, namely, z(ζ, t) = ϕ(ζ)θ(t) for some (time-independent)
deflection function ϕ(ζ), 0 ≤ ζ ≤ L and some (space-independent) time function
θ(t), t ≥ 0. From the discussion in Section 4.2 ϕ(ζ) can be interpreted as
the deflection of the bristle along the patch at position ζ. We impose the
boundary condition that ϕ(0) = 0, since there is no deflection for the first
bristle element. Under the reasonable assumption that the deflection of the
bristles builds gradually along the patch, we postulate that ϕ(ζ) = ζ and hence

κ = −
∫ L

0
ϕ(ζ)θ(t)f ′

n(ζ)dζ∫ L

0
ϕ(ζ)θ(t)fn(ζ)dζ

= −
∫ L

0
ϕ(ζ)f ′

n(ζ)dζ∫ L

0
ϕ(ζ)fn(ζ)dζ

= −
∫ L

0
ζf ′

n(ζ)dζ∫ L

0
ζfn(ζ)dζ

(57)

A direct calculation gives that

∫ L

0

ζfn(ζ)dζ = Fn
L

2
and

∫ L

0

ζf ′
n(ζ)dζ = −Fn (58)

where fn(ζ) as in (46). Finally,

κ =
2
L

(59)

A more realistic model will assume that the deflection builds gradually but the
rate of deflection build-up is reduced along the patch. This effect can be modeled
by choosing ϕ(ζ) = ζ

1
2 . Using such a ϕ and repeating the previous steps, one

computes that

κ =
7
6
1
L

≈ 1.1667 1
L

(60)

A more accurate estimate of κ can be computed assuming that the contact
patch is divided into two separate regions, the adhesive region where friction
gradually builds up, and the sliding region where the friction force has reached
its maximum [24]. The adhesive region can be modeled by linear bristle deflec-
tion. In the sliding region the deflection of the bristles has reached a maximum.
Therefore, we can choose the deflection function as ϕ(ζ) = b sat(ζ/b), where
0 < b < 1 is a parameter that determines the transition between the sliding and
adhesive regions of the contact patch. Using this expression for ϕ and tracing
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the same steps as before, one obtains the following value of κ as a function of
the parameter b

κ =
2b(3− 2b)

L (b3 − 2b2 + 2) (61)

This expression is shown in Fig. 7(a). A comparison of several candidates for
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Figure 7: (a): Variation of κL with b. Realistically, b varies between 0.3 ≤ b ≤ 0.9.
(b): Comparison of bristle deflection distribution function ϕ(ζ) along the patch for

ϕ1 = ζ
1
2 , ϕ2(ζ) = ζ, ϕ3(ζ) = b sat(ζ/b).

the bristle deflection function ϕ are shown in Fig. 7(b). Several other choices
of the bristle deflection function ϕ(ζ) and the normal load distribution function
fn(ζ) can be used, yielding similar results. For most cases it is reasonable to
chose κ in (53) to be a constant, somewhere in the range 1/L ≤ κ ≤ 2/L.

Exponentially Decreasing Distribution
Assuming (42) along with z(0, t) = 0 one obtains

κ(t) =
1

Fn z̄

[
z(ζ, t)e−λ(ζ/L)fn0

]L

0
+

1
Fnz̄

∫ L

0

z(ζ, t)
λ

L
e−λ(ζ/L)fn0 dζ

=
1

Fnz̄
z(L, t)e−λfn0 +

λ

L
(62)

Next, recall that we require λ ≥ 0. For large values of λ it is possible to ignore
the term containing z(L, t) in the equation above, and approximate κ(t) by a
constant

κ =
λ

L
, with 0 ≤ λ (63)

Uniform Normal Distribution
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The case of the uniform normal distribution can be viewed as a special case
of (42) with λ = 0. In this case fn(ζ) = fn0 = Fn/L and we obtain the following
expression

κ(t) =
1

Fnz̄
z(L, t)fn0 =

1
Lz̄

z(L, t) (64)

Deur [12] proposed that the boundary condition for the last element z(L, t) be
approximated by a linear expression of the average deflection z̄,

z(L, t) ≈ κ0(t)z̄ (65)

resulting in the relation,

κ(t) =
κ0(t)
L

(66)

The function κ0(t) in (65) is chosen in [12] so that the steady state solutions of
the total friction force for the average/lumped model in (53)-(54), and the one
of the distributed model (40) are the same. This approximation results in the
following expression for κ0

κ0 = κ0(Z) =
1− e−L/Z

1− Z
L (1− e−L/Z)

(67)

In [12] it is also shown that, such a κ0 belongs to the range 1 ≤ κ0(t) ≤ 2 for all
t ≥ 0. Often, a constant value for κ0 ∈ [1, 2] can be chosen, without significantly
changing the steady states of the distributed and lumped models. This can be
verified from Fig. 8. Interestingly, this range of κ0 is in agreement with the
results of a parabolic normal load distribution; see Fig. 7(a).

Next, we present plots of the steady-state friction force as a function of
the slip coefficient for the distributed model with uniform (Fig. 8(a)) and non-
uniform normal load distribution (Fig. 8(b)), along with the steady-state plots of
both average models.The parameters used for both models are shown in Table 2.
All steady-state plots were made for constant vehicle velocity v = 20m/ sec
and patch length L = 0.2m. For comparison, a fit with Pacejka’s “Magic
Formula” in (4) is also shown. The constants for Pacejka’s formula were chosen
as: c1 = 1, c2 = 2, c3 = 0.1, c4 = 1.

Table 2: Parameters used for Fig. 8.

Parameter Uniform Load Non-uniform Load
σ0 395.86 m−1 548.75 m−1

σ2 0.0012 sec /m 0.0022 sec /m
µc 0.93 0.93
µs 1.127 1.292
vs 4.553 m/ sec 3.7245 m/ sec
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Figure 8: Steady-state plots assuming: (a) uniform normal load distribution using
the approximation from [12] with κ0 = 1.2, and (b) the non-uniform normal load
distribution given in (42) with λ = 3.

6 EXPERIMENTAL RESULTS

In this section we briefly present the measurements collected during three brak-
ings of a specially equipped test vehicle. The measurements for the three brak-
ings were taken under the same vehicle operational and road conditions. We
have used this data to identify the parameters of the average/lumped LuGre
tire friction model. We then used these parameters to validate the dynamic
friction model by comparing the time histories of the friction force predicted by
our model with the friction force measured during the experiments.

6.1 Testbed Car Description

The friction data were collected using the “BASIL” car which is a laboratory
vehicle based on a Renault Mègane 110 Kw. The car is equipped with several
sensors to study the behaviour of the vehicle during braking and traction phases.
These sensors are (see Fig. 9):

• an optical cross-correlation sensor that measures the transverse and lon-
gitudinal vehicle velocities

• a basic inertial measurement unit with a piezoelectric vibrating gyroscope
that measures the yaw rate; a separate sensor measures the roll velocity

• a magnetic compass that provides directional information
• two acceleration sensors that measure the longitudinal and lateral accel-
erations
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• an ABS-system used to derive – via suitable signal processing – the wheels’
velocities; the ABS system was not enabled during the experiments, it was
used only as a wheel velocity sensor

• a differential GPS (DGPS) system used to locate the vehicle and compute
its trajectory with great accuracy (less than one centimeter); this allows
repeated experiments at the same road location

• other specific-purpose sensors (not described herein) used to measure the
throttle angle (which reflects the command acceleration) and collector
pressure (which reflects the braking command)

Figure 9: Sensors and measurement parameters.

For these experiments, a Wheel Force Transducer (WFT) was installed at
center of the rim of the front right wheel (FRW) to measure the dynamic forces
and moments acting between the road and the vehicle at the wheel center. Its
inertial effects are small and hence they were neglected. This sensor gives the
complete wrench in real time, namely the forces Fxc, Fyc, Fzc and the moment
Mz. These are shown in Fig. 10. Although the WFT does not measure directly
the friction forces and moments on the tire itself, it is assumed that the rim and
tire dynamics can be neglected so that the forces and moments expressed at the
contact patch (according to ISO 8855 specifications) can be calculated from the
forces and moments at the wheel center via a simple coordinate transformation;
see right drawing of Fig. 10. Such additional rim/tire dynamics can be added
to the overall model, if desired. Since our main objective is to show the ability
of the proposed friction model to capture the overall complex behaviour of
the friction force and moment characteristics acting on the vehicle, it was not
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deemed necessary to incorporate such higher order dynamics. Although more
accurate, such an approach would unnecessarily dilute from the main results of
this paper.

A schematic of the completely equipped “BASIL” vehicle, along with the
corresponding measurement parameters is given in Fig. 9.

Figure 10: View of the equipped wheel with the Wheel Force Transducer (WFT);

variables measured and axis systems used are according to ISO 8855 specifications.

Rim and wheel dynamics are neglected so that the FWT forces are related to the

actual forces at the contact patch via a simple coordinate transformation.

Experimental procedure
For safety reasons, trials were carried out on a straight, undeformed, flat

and dry road. Before the braking phase, the following conditions where met:

• zero vertical load transferred
• slip velocity closed to zero
• steering wheel angle closed to zero
• Fx approximately constant and as small as possible

Most of these conditions may be reached (or approached) by removing the trac-
tion torque in the front wheels. For this, the driver releases the clutch for
approximately two seconds, until the vehicle’s speed decreases to a pre-specified
value. Then, the test driver starts the braking phase and brakes strongly until
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the grip limit of the front wheels is reached. Finally, he releases the brake pedal
and the front wheels reach again normal grip conditions (small value of slip ve-
locity). Then, the driver accelerates again to repeat the same sequence several
times. Three such braking phases were performed and the results were stored
in a file for subsequent analysis.

6.2 Collected Data

The collected data obtained from the experiments are shown in Figs. 11 and 12.
Figure 11 shows a snapshot of the measurements of the braking pressure, the
longitudinal speed of the vehicle and the front right wheel (FRW) velocity, for
the three braking phases. Figure 12 shows the calculated forces Fxw, Fyw, Fzw

at the contact patch, the calculated camber angle γ and the lateral acceleration
Gt, for the test conditions specified above. The forces Fxw, Fyw, Fzw are derived
from the projection of the measured forces Fxw, Fyw, Fzw in the C−frame onto
the W−frame and they account for the camber and toe angle deviations (see
Fig. 10).

The values of Fyw andGt clearly show the low lateral excitation of the vehicle
during braking. The peaks exhibited by these profiles are probably due to the
geometrical characteristics of the suspension system that result in nonzero wheel
camber angles and, in particular, to the toe angle compliance.

Figure 11: Braking experiments: measurements of the braking pressure, the longi-

tudinal speed of the vehicle and the FRW velocity.
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Figure 12: Braking experiments: time-profiles of the forces Fxw, Fyw, Fzw, the

camber angle γ and the lateral acceleration Gt.

6.3 Parameter Identification

The experimental data consists of measurements of the longitudinal slip s, fric-
tion coefficient µ, and linear velocity v. We also know the sampling frequency
of the measurements which allows us to re-construct the complete time vector
history. The data used consists of three distinct brakings, shown in Fig. 12.
Braking #1 consists of all data collected between 80 and 83.5 sec, Braking #2
consists of all data collected between 97 and 100 sec, and Braking #3 consists
of the data collected approximately between 115 and 118 sec; see also the top
plot of Fig. 12. First, we compared the (µ, s, v) steady-state solution of the dis-
tributed dynamical LuGre model at the mean velocity of one of the experiments
(Braking #2) with the friction coefficient µ given by the experiments. We then
used the s−µ plot of Braking #2 to identify the parameters for the steady state
solution. We plotted the corresponding µ vs. slip curves and determined the
parameters of the model (σ0, σ2, µs, µc and vs). By comparing the time histories
of the friction force given by our model, with the ones given by the experiments
we can determine the rest of the parameters (e.g., σ1).

In order to identify the model parameters the lsqnonlin command ofMat-

lab was used by fitting the 3-D (µ,s,v) steady-state solution of the distributed
model to the data of Braking #2. The command lsqnonlin solves an associated
nonlinear least squares problem. The previous analysis was done for uniform
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Figure 13: Three-dimensional plots of the corresponding (µ,s,v) curves for the col-
lected data and the estimated predicted steady-state LuGre average lumped model,
with α = 2.

normal load distribution with κ0 = 1 and 2 (case (i)), and with varying κ0 (case
(ii)). The case with exponential normal distribution (42) gives the same results
as the ones in Fig. 14 and hence it is omitted. In all cases the patch length was
chosen as L = 0.2m. The results of the identification algorithm are shown in
Table 3.

Table 3: Data used for the plots in Figs 14-15.

Parameter Value
σ0 178 m−1

σ1 1 m−1

σ2 0 sec /m
µc 0.8
µs 1.5
vs 5.5 m/ sec

The comparison between the experimental results and the simulation results
using the LuGre dynamic friction model for the three cases are shown in Figs. 14-
15.

These figures indicate that our proposed model captures very well both
steady-state and transient friction force characteristics.
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7 CONCLUSIONS

In this paper we have revisited the problem of characterizing the friction at the
tire/surface interface for wheeled vehicles. We have reviewed the major models
used in the literature, namely, static, dynamic, lumped and distributed models.
We have shown that static friction models are inadequate for describing the
transient nature of friction build-up. Dynamic friction models are necessary to
capture such transients during abrupt braking and acceleration phases. We pro-
pose a new dynamic friction model that accurately captures friction transients,
as well as any velocity-dependent characteristics and tire/road properties. The
model is developed by extending the well-known LuGre point friction model to
the case of a contact patch at the tire/surface interface. Experimental results
suggest that the proposed model, although simple, is accurate for analyzing
tire friction. It is expected that this model will be useful both for simulation
purposes, as well as for control design of ABS and TCS systems. Finally, it
should be pointed out that although only the friction force along the longitudi-
nal direction is addressed in this paper, the friction force for lateral/cornering
or combined longitudinal/lateral motion can also be modeled using the ideas of
this paper.
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Figure 14: Experimental and simulation results. Case (i): constant κ0 = 1, 2.
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Figure 15: Experimental and simulation results. Case (ii): varying κ0.
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APPENDIX A: DISTRIBUTED MODEL DERIVATION

Let z(ζ, t) denote the friction state (deflection) of the bristle/patch element
located at the point ζ along the patch at a certain time t and consider the total
deflection of this element between two time instances t and t+dt. Since the time
interval dt the element has moved to the location ζ + dζ, and using (24)-(25),
we have that (see also Fig. 16)

z(ζ + dζ, t+ dt)− z(ζ, t) = (vr − σ0|vr|
g(vr)

z(ζ, t)) dt

The total deflection is given by dz = z(ζ + dζ, t+ dt)− z(ζ, t). Since

dz =
∂z

∂ζ
dζ +

∂z

∂t
dt

substituting in the previous equation, one obtains

∂z

∂t
(ζ, t) +

∂z

∂ζ
(ζ, t)

dζ

dt
= vr − σ0|vr|

g(vr)
z(ζ, t)

Using the fact that dζ/dt = |ωr| we have the following partial differential equa-
tion for the internal friction state along the patch

∂z

∂t
+
∂z

∂ζ
|ωr| = vr − σ0|vr|

g(vr)
z
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Figure 16: Derivation of distributed friction model along the contact patch.

The friction force generated at the patch can be computed from

F (t) =
∫ L

0

dF (ζ, t)

where dF (ζ, t) is the friction force developed in the element of length dζ, located
at position ζ of the patch, at time t and given by the point LuGre model as

dF (ζ, t) =
(
σ0z(ζ, t) + σ1

∂z

∂t
(ζ, t) + σ2vr

)
fn(ζ)

where fn(ζ) is the normal force density function (normal force per unit length)
along the patch. The total friction force at the patch, can thus be computed as
follows

F (t) =
∫ L

0

(σ0z(ζ, t) + σ1
∂z

∂t
(ζ, t) + σ2vr)fn(ζ) dζ

APPENDIX B: DECREASING NORMAL FORCE
DISTRIBUTION EQUATION

In this appendix we give the details for deriving equation (43). Starting from
(38) and assuming (42) we get for the first term in (38)

∫ L

0

σ0zss(ζ)fn(ζ) dζ = σ0

∫ L

0

c2(1− ec1ζ)fn0e
−λ( ζ

L )dζ

= σ0c2fn0

∫ L

0

(1− ec1ζ)e−
λ
L ζdζ

= σ0c2fn0

[
− L

λ
e−

λ
L ζ − L

c1L− λ
e(c1− λ

L )ζ
]L

0

= σ0c2fn0

(
−L

λ
e−λ − L

c1L− λ
e(c1L−λ) +

L

λ
+

L

c1L− λ

)
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= σ0c2fn0
L

λ

(
1− e−λ − λ

c1L− λ
e(c1L−λ) +

λ

c1L− λ

)

= σ0c2fn0
L

λ

(
1− e−λ +

λ

c1L− λ
(1− e(c1L−λ))

)

Similarly, for the second term in (38) we have that

∫ L

0

σ2vrfn(ζ)dζ = σ2vr

∫ L

0

fn(ζ)dζ = σ2vr

∫ L

0

e−λ( ζ
L )fn0dζ

= −σ2vrfn0

[L
λ
e−λ( ζ

L )
]L

0
= σ2vrfn0

[L
λ
− L

λ
e−λ

]
= σ2vr

fn0L

λ
(1− e−λ)

Finally,

Fss = σ0c2k1

(
1− e−λ + k2e

(λ+c1L) + k2

)
+ σ2vrk1(1− e−λ)

where the constants k1 and k2 are given by

k1 =
fn0L

λ
and k2 =

λ

c1L− λ


