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Abstract We present a novel tree balancing constraint that
is slightly stronger than the well-known 2-to-1 balancing con-
straint used in octree data structures (Tu and O’hallaron, Bal-
anced refinement of massive linear octrees. Tech. Rep. CMU-
CS-04-129. Carnegie Mellon School of Computer Science,
Pennsylvania, 2004). The new balancing produces a lim-
ited number of local cell connectivity types (stencils): 5 for
a quadtree and 21 for an octree. Using this constraint, we
interpolate the data sampled at cell centers using weights
pre-computed by interpolation or by generating interpola-
tion codes for each stencil. In addition, we develop a parallel
tree adjustment algorithm, and show that the imposed bal-
ancing constraint is satisfied even when the tree is adjusted
in parallel. We also show that the adjustment has high paral-
lelization performance. We finally apply the new balancing
scheme to level set image segmentation and smoke simula-
tion problems.
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1 Introduction

Continued increase in media image resolution is powered by
the rapid advances in computing technologies, which allow
us to enjoy highly detailed visual effects in entertainment
films, or to confidently analyze detailed medical images. In
many cases, the quality of digital content depends on solv-
ing systems of partial differential equations (PDEs), such
as when using level set methods to solve fluid equations on
high-resolution grids.

It is well known that the memory and computational cost
barriers of high-resolution grids can be overcome by adaptive
octree or quadtree grids that use high resolution only at those
locations demanding high accuracy.

Tree grids store data samples such as velocity, level set
values, density, etc. at the centers or the corners of the
grid cells. In corner sampling, data structures for corners
are needed. This not only complicates implementation but
also consumes a significant amount of memory, often over-
whelming the memory occupied by the data samples them-
selves. For example, suppose we want to represent a 32 bit
scalar-valued field using an octree. Since there are 8 corners
per cell, and since corners are shared amongst cells, corner
sampling would require 8 corner indices (or pointers) (8 ×
32 or 64 bits) per cell. In this case, each cell occupies 8 or
16 times larger memory space than the samples themselves.
In contrast, storing the samples at the cell centers does not
need corner indices or pointers. We simply need two indices
for parents and the first child to represent the tree.

Since corner samples do not have parents or children, it
is difficult to average finer level samples and then store the
average at a coarser level. Therefore, corner sampling does
not favor multi-resolution processing such as those encoun-
tered in multi-grid or pyramid algorithms. Another difficulty
is that corner samples do not have a sampling area or volume
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Fig. 1 The new balancing yields only 15 quadtree stencils, only 5 of
which are unique under rotational and reflection symmetry

Fig. 2 The new balancing yields only 255 octree stencils, only 21 of
which are unique under rotational and reflection symmetry

defined in a natural way. In contrast, a cell-centered sample
represents a node in a quadtree/octree structure, naturally.1

This is useful in performing multi-resolution region-based
level set segmentation [7], since one can average image col-
ors or any other statistics in a low-resolution cell that spans
multiple image pixels. On the other hand, storing samples at
the cell centers makes interpolation hard.

In this paper, we solve this problem by introducing a novel
tree constraint that greatly simplifies the number of local con-
nectivity types. The new constraint forces a leaf’s same-depth
neighbors to be leaves or have leaf children, as illustrated in
Fig. 1. This new constraint is, in some sense, a strong 2-to-1
balancing scheme since the 2-to-1 ratio of cell resolutions is
applied not only to adjacent cells, but slightly beyond. There-
fore, tree resolution varies more smoothly than for a 2-to-1
balanced tree. This produces solution fields (such as smoke
and level set fields) that vary more smoothly compared to tra-
ditional 2-to-1 balanced trees [31]. To satisfy the new balanc-
ing constraint in quadtrees, only 15 local connectivity types
(stencils) are produced. Using rotational symmetry, we can
further reduce this down to only five types. In the octree case,
255 stencils are possible, but by grouping all rotational sym-
metries, we obtain only 21 stencil types as shown in Fig. 2.
Thanks to this constraint, we could restrict the number of
stencils small. For each interpolation stencil, we develop an
interpolation procedure in Sect. 3.

In many applications, trees are used to handle very large
amounts of data. Recent computers with multiple cores and a
large amount of memory, for example 12 physical cores and
48 GB of memory, are becoming in general use. Therefore,
shared memory model parallel processing of large octree data

1 Whereas the term “node” means a corner of a cell in the previous
paper [16], we use the term as a tree node in a quadtree/octree structure.
In addition, the term is equivalent to “cell” in our cell-centered tree.

is nowadays feasible. In general, the tree adjustment stage is
not trivially parallelizable since tree balancing constraints
tend to introduce new challenges. For example, subdivid-
ing a cell may require subdividing its neighbors to satisfy
the constraint. Since another thread may be processing each
neighbor, deleting a cell may be deferred; see, for instance,
[35]. In this case, it is unclear whether the resulting mesh
will satisfy the imposed constraints or not, since a cell and
its neighbors can be adjusted by multiple threads, each of
which performs the adjustment without knowing the out-
come(s) of other threads. In addition, adjusting trees implies
up-sampling or down-sampling of the data, which should be
performed in an order-independent manner to produce deter-
ministic behavior regardless of the number of threads used.
To address these issues, in Sect. 3, we develop a multi-pass
parallel tree adjustment algorithm, and show that the algo-
rithm maintains the new balancing constraints.

The novel contributions presented in this paper are: (1)
an easy-to-implement center-sampled tree scheme without
additional data structure, which naturally suitable for multi-
resolution applications; (2) a new 2-to-1 balancing constraint
providing significant performance gain; (3) a highly scalable
parallel algorithm for tree-balancing on shared memory sys-
tem that enforces this new constraint.

1.1 Previous work

Storing values at cell corners has been used for implicit repre-
sentation of shapes using distance fields [12,14,33,34], med-
ical volume image segmentation [2], or in numerical PDE
solvers [13,16,20]. In these works, samples stored at the cell
centers are not interpolated. Only samples stored at the cor-
ners are interpolated.

Interpolation or approximation for a center-sampled tree
has also studied previously. In [18], samples were first inter-
polated at the corners of a cell, which introduced smoothing,
and then interpolated at any location in the cell similarly to
the corner sampling case. However, the final value computed
at the cell center may be different from the center samples.
Consequently, this is best characterized as an approximation,
rather than an interpolation scheme. Another approach is to
use triangulation/tetrahedralization [30]. These are expen-
sive operations of complexity order O(n log n). Complexity
may be reduced to O(n) using precomputed stencils, but this
approach still needs a triangular or tetrahedral mesh, thus
requiring additional memory along with complex computa-
tions to find the specific triangle or tetrahedron that contains
the sample point. In contrast, in this paper, we develop a
method to interpolate cell-centered samples without using
triangulation or tetrahedralization.

Often, when cell-centered samples are used, interpolation
across different resolution levels is simply avoided. Instead,
uniform resolution is forced at those locations requiring
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interpolation [3,10,36]. To prevent large accuracy jumps
caused by large resolution differences, trees are often con-
strained by 2-to-1 balancing that allows only one level dif-
ference between adjacent cells [16,31]. Although balancing
appears to be adding complexity and producing a larger num-
ber of cells (some authors indeed do not use balancing con-
straints at all [8,13,19–21]), the disadvantages of adding con-
straints are compensated: while constraints complicate the
tree adjustment stage, they simplify interpolation, differenti-
ation, finding the neighborhood, and many other operations.
In addition, the increase in the number of cells due to bal-
ancing is often insignificant, since 2-to-1 balancing coarsens
cells to one level, which already reduces the number of cells
down to 1/8. This leaves small room for improvement by
coarsening to even lower resolution cells.

Parallelization of balanced trees has also been studied
previously. In [35], the modification of nodes in the tree
is deferred for later steps. In this paper, we use a similar
approach. However, since we introduce a new balancing
scheme, it is unclear whether this balancing scheme is not
hampered by the parallelization. In Sect. 3, we show this is
indeed true.

Parallelization of balanced tree adjustment for non-shared
memory models has been studied in [31]. In the non-shared
memory model case, the 2-to-1 balancing constraint intro-
duces another problem: recursive refinement to neighbors
causes ripples that propagate outside the domain of a proces-
sor core. In [31], after observing that ripple sets are typically
small, the ripple region is loaded into the memory and then
processed. In contrast, in the shared memory case, where
entire domain is loaded in the main memory, ripples are not
problematic.

The preliminary version of this work was presented in
[15]. In the current article, we give a significantly improved
exposition of the technique as well as extend the technique:
(1) The analysis of the proposed tree-balancing constraint
is now more rigorous, and as a result, greatly simplifies the
number of local connectivity types (stencils), from 255 to 21
only, in octree data structures. (2) By developing a new paral-
lel tree adjustment algorithm, and proving that the constraint
is satisfied even when the tree is modified in parallel, we
improve the scalability of the algorithm and its applicability.
(3) In addition, we perform a new large-scale smoke simu-
lation experiment to demonstrate that the proposed method
has high parallelization performance.

2 Octree/quadtree constraints

While trees with constraints have been used in the past, little
attention has been paid to the number of resulting stencils.
In this paper, we observe that a tree grid with a small num-
ber of stencils may allow the design of the interpolation of

cell-center samples. Based on this idea, we develop a new
constraint that yields a small number of stencils.

2.1 Octree/quadtree constraints

Our first goal is to limit the number of stencils. To this end,
we propose the following constraint:

Leaf cell’s same-depth neighbors are

{
leaves, or
parents of leaves.

(1)

Same-depth neighbors are illustrated in Fig. 3: in (a), the cells
L and E have same-depth neighbors marked by S. In (b), (c),
and (d), the green cell’s same-depth neighbors are the blue
cells.

Note that (1) implies:

1. A leaf’s same-depth neighbor may not exist in all direc-
tions. For example, in Fig. 3a, the leaf L has neighbors
C that are leaves, but have depth one less than L .

2. A cell’s same-depth and coarser neighbors enclose the
cell, constructing the Moore neighborhood.

3. A coarser neighbor of a leaf should only be one resolu-
tion coarser. For example, in Fig. 3a, leaf L has coarser
neighbors C , which have only one depth less. This can be
seen by applying (1) to C . Since C’s same-depth neigh-
bor should be the parent of the leaf L , and must not be a
parent of any non-leaf, C can only be one level coarser
than L .

(a) (b)

(c) (d)

Fig. 3 a a quadtree connectivity that satisfies constraint (1). The leaves
L and E have same-depth neighbors, denoted by S. Since S are leaves
or have leaf children only, L satisfies the constraint (1). In contrast, the
stencils in b, c, and d are not valid, since the green cell’s same-depth
neighbors are the three blue cells, one of which contains a non-leaf child
(in d, for example, the lower right child is not a leaf, but has four red
children)
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4. 2-to-1 balancing is guaranteed. Only one depth difference
between adjacent cells is possible. For example, in Fig. 3c
the green and the red cells have depths differing by two.
This is not allowed, since the green cell’s same-depth
neighbors (the blue cells) that contain the red cells are
not parents of leaves, hence (1) is violated.

5. Only one depth difference is allowed between a cell and
the neighbor’s children. For example, the red cells in
Fig. 3d violate (1) even though resolution changes by
one between all neighboring pairs.

As a result, the constraint (1) produces a small number
of stencils, which for a quadtree are illustrated in Fig. 1. In
all quadtree nodes represented by cells, we can find the four
neighboring same-depth nodes that are either leaf nodes or
have four leaf children. Since each of the four nodes can have
children, there can be 16 different cases. However, if all of the
four nodes have leaves, then the stencil is equivalent to the
case in which all of the four nodes are leaves. Therefore, there
are 15 different local stencils. Similarly, for an octree, we can
always find eight nodes that are either leaf nodes or have leaf
children. Therefore, there exist 255 different stencils. The
number of stencils can be further reduced down to 21 by
removing symmetric cases. Thus, only a small number of
stencils are possible.

The implementation of a tree adjustment algorithm satis-
fying (1) is not trivial. In particular, note that if we refine a
cell, the resulting cell may break the constraints until neigh-
bors are refined. In addition, the adjustment must be indepen-
dent of the order the tree nodes are visited. In addition—and
more importantly—the adjustment algorithm should be eas-
ily parallelizable. To meet these goals, we develop an effi-
cient, yet simple-to-implement, tree adjustment strategy in
Sect. 4.2.

3 Interpolation on quadtree and octree grids

3.1 Interpolation

In an octree or a quadtree with the constraint (1) applied, we
consider how to interpolate cell-centered data. We use axis-
aligned interpolation boxes. In the interpolation subroutine,
we first find an interpolation box that contains the sample,
compute the values at the corners of the interpolation box, and
then perform bilinear or trilinear interpolation. For example,
in Fig. 4a or b, suppose we want to interpolate values at the Y
mark. By comparing the coordinates at Y and the coordinates
of the neighboring cell centers, we immediately know that
bilinear interpolation can be done in the shown green box, and
we can perform bilinear interpolation with the four samples
at the red corners of the green box.

To interpolate at the point marked by X in Fig. 4a, we
split the blue box as shown by the black dotted lines. This

(a) (b) (c)

Fig. 4 Various interpolation boxes and their sub-boxes. The red cir-
cles are cell centers that hold sample values, which are interpolated to
thegreen circlesduring the interpolation. At the points Y in a and b,
bilinear interpolation is performed in the small green boxes that contain
Y. At the point X in a, bilinear interpolation is performed in the lower-
left sub-box of the blue box. At the point Z in c, bilinear interpolation
is performed in the centered sub-box of the blue box

step produces the three sub-boxes shown in Fig. 4a. Again,
by comparing the coordinates of the point X and the dotted
lines, we can identify the sub-box that contains the point X .
However, to perform bilinear interpolation in this sub-box,
we must compute the interpolated value at the green circles in
Fig. 4a as weighted sums of the values at the red circles. We
simply pre-compute these interpolation weights for the green
markers for all the 15 or 255 different box types for quadtree
or octree, respectively. In this way, we can quickly compute
the values at the green circles. Now we have all values at the
four corners of the sub-box that contains the interpolation
point. Finally, we can perform bilinear interpolation in each
sub-box. The interpolation steps are as follows, for example,
at X or Z :

1. Consider the location marked by X in Fig. 4a. Since the
location is in the upper right corner of the cell, we look at
the neighbors at the right and upper sides and choose the
blue interpolation box. In contrast, if we want to interpo-
late at the point Z in Fig. 4c, which is in the lower left
inside the smaller cell that contains Z , we cannot simply
look at the lower left neighbors. Instead, we look at the
lower left neighbors of the parent.

2. Check whether the four cells at the four corners of the
interpolation box are leaves or not. Then, for the point X
in Fig. 4a, we can identify that the connectivity type is
the third one in Fig. 1.

3. From the relative location inside the blue interpolation
box, we identify the sub-box that contains the inter-
polation point. Using the pre-computed interpolation
weight table entry that corresponds to the stencil, we
can compute the interpolated values at the corners of the
sub-box.

4. By performing bilinear interpolation in the interpolation
sub-box, we can compute the interpolated value.

This interpolation is continuous, since interpolation
(sub-)boxes do not overlap, and interpolations are consistent
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Fig. 5 A snapshot of a level set in the middle of segmentation of the
background image with various blue shapes. Red and blue lines are
isocontours (the zero level set {φ = 0} on red lines, i.e., the interfaces).
Level set values sampled at cell centers are interpolated continuously.
This continuous interpolation produces smooth contour lines, which are
continuous across differently sized cells

at the (sub-)box boundaries. See Fig. 5 for an interpolation
example. As shown in this figure, interpolation is continuous
across different resolutions. In particular, the interpolated
contours of the zero level set {φ = 0}, i.e., the interfaces,
shown with red lines, are a high quality curve, which are
efficiently represented by the proposed adaptive grid.

3.2 Implementation and performance

We have implemented the proposed interpolation in three
different ways. The first method (Method I) performs the
interpolation in a single function, in which we compute the
stencil type and sub-box location, and then perform the bilin-
ear interpolation using interpolation weights, which are pre-
computed for each stencil and sub-box. This method can be
implemented using a code shorter than Method II or III, but
needs a large weight table to handle all cases. The second
method (Method II) does not use a weight table to handle all
cases, but rather uses individual interpolation functions for
all stencil types (15 for quadtree and 255 for octree). Since
interpolation weights are embedded in the code, and the han-
dling of each stencil type is hard-coded, the code is more
optimal than the one of Method I. However, code size can be
large in the octree case, and the instruction cache miss rate
can be high. Therefore, we designed a third method (Method
III) that reduces the code size using rotational symmetry.
To this end, we first map the interpolation coordinates to 5
or 21 stencil types, and then perform the interpolation for
each of them, similarly to Method II. Since we have 5 or
21 types only, instead of 15 or 255, the resulting code size
and the number of branches are greatly reduced. As shown
in Fig. 6, Methods II and III show the best interpolation per-
formance. Method II is better in the quadtree case. In the
octree case, Method II is slightly better than Method III in
cache-warmed case, but Method III is better than Method II

Fig. 6 Interpolation
performance for different
stencils. X-axis locations are 15
quadtree (left) and 21 octree
(right) stencils. The
performance is measured using
Xeon 2.66 GHz CPU
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for random sampling. For warm-up the cache, we measured
the second interpolation at the same location.

We tested the proposed interpolation scheme in a smoke
advection setting with CFL = 4. Since CFL is large, a large
number of semi-Lagrangian samples are located outside the
cell. This requires traversing to a parent that contains the
semi-Lagrangian sample and then traverse down to a leaf
that contains the sample. Thus, on average, 4.69 levels were
traversed in the smoke advection test. Interestingly, since
expensive stencil types are rather rare in practice, the inter-
polation time per sample was 167 nanoseconds on average.
This is about 11 times slower than in the uniform grid case.
The result for trilinear interpolation on uniform 3D array
was 15 nanoseconds (cache-warmed case). In a similar 2D
test, we achieved 11 nanoseconds for bilinear interpolation
on a 2D uniform grid. Since we achieved about 50 nanosec-
onds for quadtree interpolation, it is seen that interpolation
on quadtrees is about five times slower than uniform grid
interpolation.

All the previously quoted results are with the same (or
fewer) depth neighbors precomputed. Specifically, we pre-
computed four neighbors in the quadtree and six neighbors
in the octree. We also precomputed the interpolation stencil
type per cell. The neighbor table consumes four or six inte-
gers for a quadtree or an octree node, respectively. Stencil
types require half or a single byte per quadtree or octree node,
respectively. We can save memory overhead by computing
the neighbors and the interpolation stencil type on-the-fly
inside the interpolation routine. This adds an additional tree
traversal cost to parents and children. By computing neighbor
and stencil types on-the-fly, we obtained 236 nanoseconds.
With only stencil types precomputed, we obtain 218 nanosec-
onds, and with only neighbors precomputed, we obtained 177
nanoseconds. With both the neighbors and stencil types, we
obtained 167 nanoseconds.

We precomputed neighbors and stencil types for fluid sim-
ulations since the additional memory required for neighbors
and stencil types is relatively insignificant since the simu-
lation needs space for multiple scalar and vector variables,
temporary variables, and sparse matrices. In contrast, to rep-
resent a single scalar field such as in a level set case, one
may choose not to use precomputed neighbors to reduce the
memory cost.

4 Tree adjustment

Recall that explicit time integration of PDEs is known to be
trivially parallelizable, especially on regular grids. However,
this is no longer true for adaptive grids; in fact, this is an area
of active research [25]. For adaptive grids, the first problem
is to decompose the tree domain so that each processor core
gets a similar number of nodes to process. This problem can

be solved by mapping all tree nodes into an 1D sequence and
then decompose that sequence in equal length [24,26]. Once
the domain is decomposed, the grid adjustment step must be
parallelized. Parallel grid adjustment is not trivial since each
core must refine/coarsen a grid cell, while maintaining the
tree constraints, for which a CPU core must check neigh-
boring grid cells and refine them, if necessary. However, the
neighboring grid cell may have been assigned to a different
CPU core, and hence must not be refined or coarsened while
the other CPU core is working on that cell.

4.1 Criteria for refining and coarsening

Mesh resolutions can be computed in various ways depend-
ing on the application. In level set applications, the resolution
may be a function of distance to the interface, and/or the cur-
vature at the interface; in smoke simulations, the resolution
can be a function based on smoke density and density gradi-
ent. Based on a criterion that fits the application needs, one
can compute the desired tree depth ddesired at every leaf node.
Then, one can refine the tree so that every leaf node satisfies
d ≥ ddesired.

4.2 Refining and coarsening with constraints

The algorithm coarsens a cell only if the balancing constraint
is not violated. On the other hand, if the desired grid resolu-
tion at a cell’s center is greater than the current resolution of
the cell, we always refine that cell, and force the constraints
by refining its neighbors, if necessary. Thus, we refine a cell
whenever the cell needs higher grid resolution, but coarsen a
cell only if the constraint (1) is satisfied after the coarsening.

Suppose a cell C is a leaf-parent with all children having
ddesired < d, and hence C may be coarsened. In this case, to
check if C can be coarsened or not, as shown in Fig. 9, we
check whether a cell’s same-depth neighbors are leaves or
leaf-parents. As illustrated in Fig. 7, if a cell C has a same-
depth neighbor L that is a leaf, then C can be coarsened
without breaking the constraint, since L has depth lower or
the same as C . Therefore, children of C can be merged, mak-
ing C a leaf cell. On the other hand, if C has a same-depth
neighbor PL that is a leaf-parent, C can also be coarsened

(a) (b) (c)

Fig. 7 In a and b, the cell C can be coarsened since the same depth
neighbors are leaves or parents of leaves. In c, the cell C cannot be
coarsened since a same depth neighbor Np has a non-leaf child
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(a) (b) (c)

(f)(e)(d)

Fig. 8 a To satisfy the constraints (1), when a leaf L is refined, we
must refine the cells NP that are non-leaf neighbors of PL (the parent
of L). b Neighbors of L before refining L and NP . c Neighbors of L
after refining L and NP . d–f are other examples

(i.e., the children of C can be merged) since the depth dif-
ference between C and the children of PL will be one. In
contrast, in Fig. 7c, the cell C cannot be coarsened, since the
same-depth neighbors NP are not a leaf or a leaf-parent.

In contrast to coarsening, we always refine a leaf L if
higher grid resolution is needed (ddesired > d). To enforce the
constraints, we must force-refine the neighbors. As illustrated
in Fig. 8, let PL be the parent of L . When L is refined, we
refine PL ’s same or lesser-depth leaf neighbors. As shown
in Fig. 10, the refinement is recursively applied, i.e., when
we refine a neighbor of PL , we refine the neighbors of the
parents of PL ’s neighbor. Therefore, at each recursion, forced
refinement depth decays by one.

Note that we refine only one depth at a grid adjustment
pass. This is a negligible limitation of the algorithm since
PDE solvers take a large number of time steps, while the
depth of the tree is a small number, such as 10 for a 10243-
equivalent grid. If the coarsest resolution is 5, at a location
where the highest resolution is desired the maximum depth
can be reached in 5 time steps since we simply perform the
adjustment every time step.

With the algorithm in Fig. 9, we coarsen cells only if same-
depth neighbors are leaves or leaf-parents. After coarsening,
the new leaf has same-depth neighbors that are leaves or leaf
parents, still satisfying (1). We now show that (1) holds after
a tree is refined by Fig. 10.

Theorem 1 (Tree Constraint) Let a tree T0 satisfy the bal-
ancing constraint (1). Let T1 be T0 refined by the algorithm
in Fig. 10. Then, T1 satisfies (1).

Proof Suppose we are refining a leaf L . Let the set of leaves
in the neighborhood of a cell C be N (C) = {leaves in region
covered by C and C’s same-or-lesser depth neighbors}. For

Fig. 9 By coarsening only if same-depth neighbors are leaves or have
leaf children, the tree does not break the balancing constraint. Refer to
Sect. 5.1.4 for deferred deletion strategy for parallelization

Fig. 10 By refining current cell and recursively force-refining parent’s
leaf neighbors, the tree holds the balancing constraint by Theorem 1

example, in Fig. 8a or d, N (PL) is the set of all leaves in the
domain.

Let PL be the parent of L . Since PL is a leaf parent, PL

cannot have a coarser leaf neighbor (see Fig. 8a or d). In addi-
tion, leaves inside PL have the same depth as L . Therefore,

for all leaves C ∈N (PL), depth(C)=
⎧⎨
⎩

depth(L) − 1, or
depth(L), or
depth(L) + 1.

(2)

After L is refined by the algorithm in Fig. 10, all leaves
C ∈ N (PL) with depth(C) = depth(PL ) = depth(L)−1 will
be refined. Therefore, all leaves in N (PL) will have depth
greater or equal to L , i.e., after refinement,

for all leaves C ∈N (PL), depth(C)=
{

depth(L), or
depth(L) + 1.

(3)

For example, in Fig. 8c and f, all leaves have depth the same
as or one more than L .

Let NCL be a leaf neighbor of CL . Since NCL ∈ N (PL),
(3) is applied:

depth(NCL ) =
{

depth(L) = depth(CL) − 1, or
depth(L) + 1 = depth(CL).

(4)

Therefore, if depth(NCL ) = depth(CL ), NCL has the same-
depth leaf CL , and if depth(NCL ) = depth(CL ) − 1, then
NCL has the same-depth neighbor L that is a leaf-parent. In
addition, CL has the same or one lesser depth leaf neighbors
only. Therefore, CL ’s same depth neighbors are leaves or leaf
parents. Thus, the constraint (1) is satisfied between CL and
its neighbors.
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5 Parallel and consistent tree adjustment
with continuous interpolation

In this section, we develop a tree adjustment algorithm that
is easy to be parallelized and has consistent adjustment that
is independent of the tree-visit order. In addition, the values
at refined cells are obtained by continuous interpolation.

For parallelization, a computational domain should be
mapped to a one-dimensional list by space filling curves
(SFC) [26]. The list is then divided and assigned to multiple
threads. We list the tree nodes in the depth first order, and
then divide the list by the number of threads. Since computa-
tions are performed on leaf-only, we divide the list in multiple
ways so that decomposed domains contain the same number
of leaves.

5.1 Parallel and consistent mesh adjustment

Cell-centered trees can be coarsened by merging children, or
refined by subdividing a cell into children. Since such adjust-
ments should satisfy the balancing constraint that requires
reading from neighborhoods, and since subdividing requires
interpolation at each child’s center, the mesh adjustment step
is a computationally expensive step, often becoming a perfor-
mance bottleneck. Therefore, parallel refinement can greatly
improve the overall performance. However, the mesh adjust-
ment step is not trivial to be parallelized. When a cell is
refined, the cell may require refining a neighboring cell,
which may belong to a different core, and conversely, a core
may delete a cell that another core is processing. To resolve
this difficulty, we use a multi-pass adjustment strategy, rather
than adjusting the tree in a single pass. An important ques-
tion is whether the constraint (1) is satisfied or not after the
parallel refinement.

5.1.1 Pass 1: criteria evaluation

In the first pass, each thread scans its domain, computes
ddesired and marks cells as merge if d > ddesired, or refine
if d < ddesired. When we mark a cell as refine, we also visit
this cell’s neighbors by the algorithm in Fig. 10, and if a
neighbor must be refined to satisfy the constraint, we mark
the neighbor as refine as well. Of course, this procedure may
continue to distant neighbors until no cell violates the con-
straints, as shown in Fig. 10. This recursion normally occurs
in a small number of cells [31], but this recursion makes
each thread mark cells in other thread’s domain. Thus, cells
near the domain boundary may be marked multiple times by
different threads. However, this does not cause any problem
since marking is a write-only operation. Therefore, the first
pass is trivial to be parallelized. Once this pass is done, we
can refine/coarsen the cells.

5.1.2 Pass 2: data interpolation and child generation

The second pass is to perform the interpolation and create
new children nodes or subcells. Therefore, this pass is also
trivial to be parallelized. In this pass, we do not yet insert
the nodes to the tree. This is an important part of the algo-
rithm that allows us to perform a consistent and continuous
interpolation. Otherwise, if we insert newly created nodes in
the second pass, the tree balancing constraint may be tem-
porarily broken until we refine all neighbors to reinforce the
constraints. The dilemma is that we cannot subdivide neigh-
boring cells using the continuous interpolation. Even if we
can solve this problem, interpolated values at new cells will
depend on the order in which we visit tree nodes, since inter-
polation will use values at the new cells. Then, interpolation
results will change slightly in a non-deterministic manner
due to parallelization. Therefore, we propose to use a sepa-
rate third pass that actually inserts the children generated in
the second pass to the tree.

5.1.3 Pass 3: insertion of children

In this pass, we insert the new children nodes generated from
pass 2 to the tree. After this pass, the tree is finally modi-
fied (refined). The question is whether the above three-stage
refinement passes 1, 2, and 3, each of which is performed in
parallel, still maintain the constraint (1) or not. We now show
this is indeed true.

Theorem 2 Let a tree T0 satisfy the constraint (1). Let the
tree T1 be T0 refined by the three-stage refinement passes 1,
2, and 3. Then, T1 satisfies (1).

Proof Suppose a leaf L0 meets the refinement condition
d < ddesired. We want to refine L0. In addition, we search
the neighborhood of L0 to refine neighboring cells denoted
by L N0 , L N1 , ..., to enforce the constraints (Theorem 1). Let
the set of all such cells we want to refine by

R0 = {L0, L N0 , L N1 , . . . , L Nm }. (5)

Similarly, suppose that another leaf L1 satisfies the refine-
ment criteria d < ddesired. For this leaf, we can also find
R1 that contains all leaves that must be refined to satisfy
the constraints. We can continue this process and imagine
all Ri for all Li , where i = 0, 1, 2, . . . , n. Notice that
each Ri is computed from the tree T0, and Ri and R j may
overlap.

The first pass is to compute all the cells that must be
refined, i.e., the first pass computes R from

R = R0

⋃
R1

⋃
· · ·

⋃
Rn . (6)

Note that, in the first pass, cells belonging to an overlap,
for example Ri

⋂ R j , will be marked twice, but this is not
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Fig. 11 When a leaf L is refined, if L’s neighbor NL is not force
refined, then depth(NL ) ≥ depth(L)

different from being marked once. At the end of the first pass,
we only know R, and do not have any information on Ri .

We now want to show that refining all cells in R satisfies
the constraint (1). First, note that for an arbitrary j , refining
cells in R j satisfies the constraint by construction (Theorem
1). However, since some neighbors of R j can be refined by
Rk for some k, the question is whether R j

⋃ Rk still satisfies
the constraints (1) or not.

Consider a leaf L ∈ R j (e.g., the cell L in Fig. 8b or e).
Suppose that a neighbor of L , denoted by NL , is refined by
Rk only, i.e., NL /∈ R j and NL ∈ Rk . Since NL /∈ R j , the
depth of NL should be the same as or one more than the depth
of L as illustrated in Fig. 11. When NL and L are refined, we
have

depth(CNL ) =
{

depth(CL), or
depth(CL) + 1,

(7)

where CL and CNL are the new children of L and NL , respec-
tively. Thus, CL ’s same depth neighbor will be NL (leaf-
parent) or NL ’s children (leaves), and CNL ’s neighbor will
be CL . Therefore, cells refined by Rk does not violate the
constraint (1) for the cells in R j . Since j and k are arbitrary,
the constraint (1) is still satisfied after all cells in R j

⋃ Rk

are refined. Since we can union R j
⋃ Rk with any other Ri

for any i still holding the constraint (1), refining cells in the
union set R satisfies the constraint (1).

Thus, the constraint (1) is satisfied by Theorem 2. More-
over, since each pass 1, 2, or 3 depends only on T0, and not
on any intermediate results in the pass, the refinement passes
1, 2, and 3 are order independent. Therefore, the refinement
passes 1, 2, and 3 are also trivial to be parallelized, and pro-
duce consistent results. We experimentally verify the balanc-
ing constraint while a massive tree with more than 40 million
cells is adjusted, creating 7.2 million cells and deleting 4.4
million cells.

5.1.4 Pass 4: coarsening

Finally, in the fourth pass, we scan the tree to coarsen cells
that are marked ‘merge’ in the first pass. In the fourth pass,
we check if the merging violates the constraints or not.

Consider a cell C marked merge and its neighbor N , which
is also marked merge. Note that merging children of C do
not require clearing the merge mark for N . Therefore, while

a thread is checking for the constraint (1) for a cell and merg-
ing its children, any other thread can merge any cells. Thus,
merging is also trivial to be parallelized. However, unlike the
refinement step, coarsening may not be order independent if
cells are merged in each thread, since after coarsening a cell,
i.e., merging its children, a neighboring cell that could not be
merged due to the constraint (1) may be merged. Moreover,
in practice, we found that deleting children nodes in each
thread can invalidate the domain decomposition data struc-
ture that contains starting and ending nodes for each thread.
In addition, since deletion should enter a critical section in
the memory manager, contention occurs. Therefore, during
merging, we only do computations such as averaging chil-
dren’s sample values and store them to the parent. During
coarsening a cell, we do not delete its children; instead, we
just collect indices to cells to be deleted in an array dedicated
to each thread, and then delete the cells later in serial in the
main thread. This eliminates the need of a critical section,
and simplifies the parallelization domain handling. In addi-
tion, the deletion becomes order independent. For example,
we acquired exactly the same number of cells created and
deleted always and regardless of the number of threads. See
the Sect. 5.2 below.

In summary, actual tree adjustments are performed at the
final two passes. This multi-pass strategy plays an essential
role: it makes the adjustment independent of the order we
visit the tree, it keeps the tree connectivity unchanged while
the continuous interpolation is performed, and it makes par-
allelization easy and consistent.

5.2 Results

We have evaluated the performance of the parallel refine-
ment in smoke simulations shown in Fig. 12. The left image
is start, and the right image is five frames later. Note that in
the right image, smoke has risen slightly. We measure the
computation time for these five frames. We used a machine
with two Intel Xeon X5650 2.67GHz processors (12 cores).
As shown in Table 1, we obtain a speedup factor of 9.2, which
is similar to the speedup factors obtained for embarrassingly
parallel semi-Lagrangian advection (CIR) steps. The simu-
lation started from 42,771,176 cells. During the five simu-
lation steps, 7,176,624 cells are created and 4,402,472 cells
are deleted. Since the algorithm is independent of the num-
ber of threads, the number of cells created and deleted do not
depend on the number of threads.

6 Applications

6.1 Segmentation using level sets

Since their introduction [22,23,28], level sets have been used
in a large number of applications, including image segmen-
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Fig. 12 The first and the last (five frames later) smoke simulation
frames used for the parallel refinement benchmark. The grid resolution
is equivalent to 1,0243 with 42.77 million cells. During the simulation,
7.2 million cells are created and 4.4 million cell are deleted. Tree con-
nectivity and smoke field require 5.2 and 167 MB, respectively, in disk
without compression

Table 1 Computation times and speedup factors for parallel adjustment
of an octree grid during five smoke simulation frames (Fig. 12) on a 12
core machine

Threads Octree
adjustment

Velocity
advection

Smoke
Advection

Time
(s)

Speed
up

Time
(s)

Speed
up

Time
(s)

Speed
up

1 29.04 1.00 47.60 1.00 41.83 1.00

2 14.57 1.99 24.05 1.98 21.07 1.98

3 10.62 2.74 16.53 2.88 14.34 2.92

4 8.18 3.55 12.84 3.71 11.14 3.75

5 6.62 4.39 10.78 4.42 9.19 4.55

6 5.74 5.06 9.20 5.17 7.83 5.35

7 4.94 5.87 8.05 5.91 6.80 6.16

8 4.43 6.55 7.23 6.58 6.10 6.85

9 3.95 7.36 6.62 7.19 5.56 7.52

10 3.62 8.01 6.11 7.79 5.08 8.23

11 3.39 8.57 5.60 8.50 4.64 9.02

12 3.14 9.24 5.32 8.94 4.39 9.52

The time for multi-pass adjustment is smaller than a simple scalar field
(smoke) CIR advection

tation, which is performed either using edge-based level set
methods [5,17], or region-based level set methods [7]. While
edge-based methods are used to segment a feature that has
a well-defined boundary, region-based methods can be used
when a feature in an image has statistics that are different
from the background. Examples of such statistics are inten-

sity [7], texture [4], or motion [9]. Region-based level set
methods can also be used to segment vector-valued images
[6], or to segment an image into more than two regions using
multi-phase level sets [4,32]. In particular, region-based level
set segmentations are suitable to adaptive tree grids since a
tree node can contain statistics inside the cell. Therefore,
we choose to work with region-based level set segmentation
methods.

Each cell-centered sample can represent the image statis-
tics of all image pixels in the cell, which can be stored in
the image pyramid. This allows us to perform segmentation
in various resolutions, adaptively adjusted to the size of the
region and curvatures. The grid is refined using level set and
curvature as:

ddesired =dmax−
(

φ

σdmax
+ Cmax

π/2
tan−1

(
tan

(
1

Cmax

)
κC

κ

))
,

(8)

where Cmax, dmax, σ , and κC are user defined parameters.
Cmax is the maximum coarseness at interface. We choose
Cmax = 3, 4, or 5. dmax is the maximum tree depth, σ is the
thickness of interface within which the tree is refined and
outside which the tree always tries to be coarsened as long
as the constraint (1) is not violated. We choose σ to be a few
maximum resolution grid cells. Finally, κC is a parameter
we choose to be 0.5dcell, where dcell is the width of the cell.
κ = ∇· ∇φ

||∇φ|| is the curvature computed at cell centers. In this
way, at locations with high curvature, κC/κ becomes small.
When φ → 0 (near interface) and κ → ∞ (high curvature),
the tree is refined to higher resolution, i.e., ddesired → dmax.

Figure 13 shows the segmentation result on a 2D image.
As shown in Figs. 5 and 13, the level set interfaces remained
smooth during the image segmentation processes, without
developing any artifacts.

Figure 14 shows the segmentation result for a volumet-
ric cell image taken from the CCDB site (http://ccdb.ucsd.
edu). Since the cell shape has high curvature regions, cells are
refined to high depths. As a result, a naive integration with
maximum tree depth of 9 took a very long time (30 min).
By segmenting in a low resolution first, and then mov-
ing to higher resolutions, the segmentation time is reduced
to approximately 40 sec on an Intel Q6600 CPU. Further
speedups may be achieved when combined with narrow band
methods [1].

Note that the number of segmentation time steps at each
resolution is manually chosen. A future direction would be
to evaluate the convergence properties at interface locations,
and then, for the region that achieved convergence, to stop the
computation, and for the region that has not yet converged,
to automatically unlock higher resolutions with smaller time
steps.

To visualize the 3D level set interface, we used the dual-
grid marching cube idea [27]. Owing to the limited number of
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Fig. 13 Segmentation of a 512×512 image with grid resolutions high
only at high curvature interfaces

Fig. 14 Segmentation of a cell image data of size 512 × 512 × 64
took about 30 min by naively solving the PDE. The segmentation time
can be reduced to 40 s (Intel Q6600 CPU) by first segmenting in a low
resolution and then moving on to higher resolutions. Images a–d are
segmentation results in 64 × 64 × 8, 128 × 128 × 16, 256 × 256 × 32,
and 512 × 512 × 64 resolutions, respectively. Volume data shown in e
are courtesy of CCDB (http://ccdb.ucsd.edu)

stencils, it is straightforward to generate the dual-grid cubes,
which may have some edges or faces collapsed to a point.

6.2 Smoke simulation

Simulation of smoke is ample in modern films and is a prob-
lem studied broadly in the graphics community, e.g., [11,29].

In this paper, we perform the smoke simulation by solving
the Navier–Stokes and smoke equations using the operator
splitting and pressure projection [29]

u̇ = −u · ∇u + μ∇2u + 1

ρ
∇ P + f, (9)

ṡ = −u · ∇s + μs∇2s, (10)

on the adaptive grid we have developed in this paper. In the
previous equations, u is velocity, P is pressure, ρ is fluid
density, μ,μs are the viscosities and smoke diffusion coef-
ficients, f is a force term that includes gravity and artificial
smoke buoyancy force, and s is the smoke density. We use the
sample perturbation approach [16] to construct pressure and
diffusion matrices. The grid is refined using smoke density
as follows:

ddesired = Cs dmax |∇s| + Ds
s(1 − s)

1 + 100s2 . (11)

Here, we chose Cs = 0.1. The second term is introduced
simply to tune the adjustment behavior in low density regions
where |∇s| is too small. We have used Ds = 44.25. We
rendered the smoke with a ray tracer that samples the octree
grid using the proposed interpolation. The uncompressed tree
consumes 5 to 500 MB in disk depending on the number of
cells. The smoke field samples consume 4 bytes per cell, and
the tree connectivity consumes one bit per cell that represents
whether the cell is a leaf or not. If a uniform grid is used, 8GB
will be needed for smoke samples.

The smoke simulation and ray tracing results are shown
in Fig. 15. The simulation time step is 1/30. The simulation
for 20 s (600 frames) took 8 h to finish.

7 Discussion and conclusions

The new 2-to-1 balancing constraint would create smoother
variation in node depth and as a result, produces slightly
smoother solution fields. This, however, would not make a
significant difference compared to the original 2-to-1 bal-
ancing scheme in the aspect of visual quality. The biggest
advantage of the new constraint is simply that the tree stencil
is limited to a small number of cases. This is suitable for vari-
ety of applications using multi-grid or pyramid approaches
since we can explore directly interpolating tree center sam-
pled data. To our knowledge, no prior art achieved this. Only
two related works [18,30] are to tetrahedralize entire domain,
and approximation (not interpolating) using corner locations.

We developed a new tree balancing scheme that results in
only a few stencils. For each stencil, we pre-compute the
interpolation weights and the required procedures, which
allows us to interpolate data sampled at cell centers. We
believe that other operations such as tetrahedralization of
the domain can be precomputed or simplified. In addition,
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Fig. 15 Smoke simulation and ray tracing using an octree grid: 16 × 32 × 16 uniform array of roots, each of which is refined up to 6 levels. This
grid is equivalent to 1,024 × 2,096 × 1,024 resolution

we developed new algorithms that adjust trees in parallel,
and showed that the proposed balancing constraints are sat-
isfied by the parallel adjustment. Finally, we applied the tree
balancing and parallel adjustment algorithms to smoke sim-
ulation and image segmentation problems, and showed that
the trees work well for such applications, and scale well with
the number of processors.
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