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Abstract We present a real-time hardware-in-the-loop (HIL) simulation environment

for the validation of a new hierarchical path planning and control algorithm for a small

fixed-wing UAV. The complete control algorithm is validated through on-board, real-

time implementation on a small autopilot having limited computational resources. We

present two distinct real-time software frameworks for implementing the overall control

architecture, including path planning, path smoothing, and path following. We empha-

size, in particular, the use of a real-time kernel, which is shown to be an effective and

robust way to accomplish real-time operation of small UAVs under non-trivial scenar-

ios. By seamless integration of the whole control hierarchy using the real-time kernel,

we demonstrate the soundness of the approach. The UAV equipped with a small autopi-

lot, despite its limited computational resources, manages to accomplish sophisticated

unsupervised navigation to the target, while autonomously avoiding obstacles.

Keywords Path planning and control · Hardware-in-the-loop simulation (HILS) ·

UAV

1 Introduction

Autonomous, unmanned ground, sea, and air vehicles have become indispensable both

in the civilian and military sectors. Current military operations, in particular, depend

on a diverse fleet of unmanned (primarily aerial) vehicles that provide constant and

persistent monitoring, surveillance, communications, and–in some cases–even weapon

delivery. This trend will continue, as new paradigms for their use are being proposed by

military planners. Unmanned vehicles are also used extensively in civilian applications,

such as law enforcement, humanitarian missions, natural disaster relief efforts, etc.
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During the past decade, in particular, there has been an explosion of research re-

lated to the control of small unmanned aerial vehicles (UAVs). The major part of

this work has been conducted in academia,24,25,5, 3, 4, 10, 13,23,15,14 since these plat-

forms offer an excellent avenue for students to be involved in the design and testing of

sophisticated navigation and guidance algorithms.17

The operation of small-scale UAVs brings about new challenges that are absent in

their large-scale counterparts. For instance, autonomous operation of small-scale UAVs

requires both trajectory design (planning) and trajectory tracking (control) tasks to be

completely automated. Given the short response time scales of these vehicles, these are

challenging tasks using existing route optimizers. On-board, real-time path planning

is especially challenging for small UAVs, which may not have the on-board computa-

tional capabilities (CPU and memory) to implement some of the sophisticated path

planning algorithms proposed in the literature. In fact, the effect of limited computa-

tional resources on the control design of real-time, embedded systems has only recently

received some attention in the literature.1,29 The problem is exacerbated when a low-

cost micro-controller is utilized as an embedded control computer.

Autonomous path planning and control for small UAVs imposes severe restrictions

on control algorithm development, stemming from the limitations imposed by the on-

board hardware and the requirement for real-time implementation. In order to over-

come these limitations it is imperative to develop computationally efficient algorithms

that make use of the on-board computational resources wisely.

Due to the stringent operational requirements and the hardware restrictions im-

posed on the small UAVs, a complete solution to fully automated, unsupervised, path

planning and control of UAVs remains a difficult undertaking. Hierarchical structures

have been successfully applied in many cases in order to deal with the issue of com-

plexity. In such hierarchical structures the entire control problem is subdivided into

a set of smaller sub-control tasks (see Fig. 1). This allows for a more straightforward

design of the control algorithms for each modular control task. It also leads to simple

and effective implementation in practice.27,2, 28

In this paper, a complete solution to the hierarchical path planning and control

algorithm, recently developed by the authors in Refs. [30,16,21], is experimentally val-

idated on a small-size UAV autopilot. The control hierarchy consists of path planning,

path smoothing, and path following tasks. Each stage provides the necessary commands

to the next control stage in order to accomplish the goal of the mission, specified at

the top level. The execution of the entire control algorithm is demonstrated through

a realistic hardware-in-the-loop (HIL) simulation environment. All control algorithms

are coded on a micro-controller running a real-time kernel, which schedules each task

efficiently, by taking full advantage of the provided kernel services. We describe the

practical issues associated with the implementation of the proposed control algorithm,

while taking into consideration the actual hardware limitations.

We emphasize the use of a real-time kernel for implementing the overall control

architecture. A real-time operating system (RTOS) provides the user with great flexi-

bility in building complex real-time applications,11 owing to the ease in programming,

error-free coding, and execution robustness. We note in passing that currently there

exist many real-time kernels employed for real-time operation of UAVs. They differ in

the kernel size, memory requirements, kernel services, etc. Some of these real-time ker-

nels can be adopted for small micro-controller/processor.6,12 An open source real-time

Linux is used for flight testing for UAVs.8 In this work we have used the MicroC/OS-

II,26 which is ideal for the small microcontroller of our autopilot.
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Fig. 1 Block diagram of the hierarchy of proposed control algorithm.

2 Hierarchical Path Planning and Control Algorithm

In this section, we briefly describe a hierarchical path planning and control algorithm,

which has been recently developed by the authors, and which takes into account the

limited computational resources of the on-board autopilot.

Figure 1 shows the overall control hierarchy. It consists of path planning, path

smoothing, path following, and the low level autopilot functions. At the top level of

the control hierarchy, a wavelet-based, multiresolution path planning algorithm30,21

is employed to compute an optimal path from the current position of the vehicle to

the goal. The path planning algorithm utilizes a multiresolution decomposition of the

environment, such that a coarser resolution is used far away from the agent, whereas

fine resolution is used in the vicinity of the agent. The result is a topological graph of

the environment of known a priori complexity. The algorithm then computes a path

with the highest accuracy at the current location of the vehicle, where is needed most.

Figure 2 illustrates this idea. In conjunction with the adjacency relationship derived

directly from the wavelet coefficients,21 a discrete cell sequence (i.e., channel) to the

goal destination is generated by invoking the A∗ graph search algorithm.9,7

The discrete path sequence is subsequently utilized by the on-line path smoothing

layer to generate a smooth reference path, which incorporates path templates com-

prised of a set of B-spline curves.22 The path templates are obtained from an off-line

optimization step, so that the resulting path is ensured to stay inside the prescribed

cell channel. The on-line implementation of the path smoothing algorithm finds the

corresponding path segments over a finite planning horizon with respect to the current

position of the agent, and stitches them together, while preserving the smoothness of

the composite curve.

After a local smooth reference path is obtained, a nonlinear path following control

algorithm20 is applied to asymptotically follow the reference path constructed by the

path smoothing step. Assuming that the air speed and the altitude of the UAV are

constant, a kinematic model is utilized to design a control law to command heading

rate. Subsequently, a roll command to follow the desired heading rate is computed by
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(a) (b)

Fig. 2 Demonstration of multi-resolution decomposition of the environment (left) using square
cells induced by the use of Haar wavelets (right). The current location of the agent (vehicle)
is at the center of the red square (high-resolution region). The dynamics are included in the
high-resolution region.

taking into account the inaccurate system time constant. Finally, an autopilot with

on-board sensors that provides feedback control for the attitude angles, air speed, and

altitude, implements the low-level inner loops for command following to attain the

required roll angle steering, while keeping the altitude and the air speed constant.

As shown in Fig. 1, at each stage of the hierarchy, the corresponding control com-

mands are obtained from the output of the previous stage, given the initial environment

information (e.g., a two dimensional elevation map). With the goal position specified

by the user, this hierarchical control algorithm allows the vehicle to accomplish its

mission of reaching the goal destination, while avoiding obstacles.

3 Experimental Test-bed

3.1 Hardware description

A UAV platform based on the airframe of an off-the-shelf R/C model airplane has been

developed to implement the hierarchical path planning and control algorithm described

above. The development of the hardware and software was done completely in-house.

The on-board autopilot is equipped with a micro-controller, sensors and actuators, and

communication devices that allow full functionality for autonomous control. The on-

board sensors include angular rate sensors for all three axes, accelerometers along all

three axes, a three-axis magnetic compass, a GPS sensor, and absolute and differential

pressure sensors. An 8-bit micro-controller (Rabbit RCM-3400 running at 30 MHz with

512 KB ROM and 512 KB Flash ROM) is the core of the autopilot. The Rabbit RCM-

3400 is a low-end micro-controller with limited computational throughput (as low as

7 [µsec] for floating-point multiplication and 20 [µsec] for computing a square root)

compared to a generic high performance 32 bit micro-processor. This micro-controller

provides data acquisition, data processing, and manages the communication with the

ground station. It also runs the estimation algorithms for attitude and absolute position

and the low-level control loops for the attitude angles, air speed, and altitude control. A

detailed description of the UAV platform and the autopilot can be found in Refs. [17,18].
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3.2 Hardware-in-the-loop simulation environment

A realistic hardware-in-the-loop simulation (HILS) environment has been developed

to validate the UAV autopilot hardware and software operations utilizing Matlabr

and Simulinkr. A full 6-DOF nonlinear aircraft model is used in conjunction with a

linear approximation of the aerodynamic forces and moments, along with gravitational

(WGS-84) and magnetic field models for the Earth. Detailed models of the sensors and

actuators have also been incorporated. Four independent computers are used in the

hardware-in-the-loop simulation (HILS), as illustrated in Fig. 3. A 6-DOF simulator,

a flight visualization computer, the autopilot micro-controller, and the ground station

computer console are involved in the HIL simulation. Further details about the HILS

set-up can be found in Ref. [19].

Computer

Wireless RF Modem

HIL Bridge
(RS232)
BinaryStates

Control

autopilot

Visualization
(UDP)

Flight 
Dynamics 
Simulator

Flight 
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Visualization
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;High-level controller

;RS232 Simulink library
;Real-time Simulink execution
;Bi-directional communication

Fig. 3 High fidelity hardware-in-the-loop simulation (HILS) environment for rapid testing of
the path planning and control algorithm.

4 Real-time Software Environment

The software architecture of the on-board autopilot is shown in Fig. 4. It is comprised of

several blocks, called tasks, which are allotted throughout different functioning layers

such as the application level, the low level control, the data processing level, and

the hardware level. The tasks at the hardware level, or hardware services, interact

with the actual hardware devices to collect data from the sensors, communicate with

the ground station, and issue commands to the DC servo motors. The middleware

tasks on top of the hardware services provide the abstraction of the inbound and

outbound data, by supplying the processed data on a globally shared data bus or by

extracting data from the global bus to the corresponding hardware services. Utilizing

the processed data on the globally shared data bus, the lower level control layer achieves

the basic control functions such as estimation of the attitude angles, estimation of

the absolute position, and implementation of the inner loop PID controllers. Finally,

three application tasks, which correspond to path planning, path generation, and path

following, are incorporated to implement the hierarchical control architecture described
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Fig. 4 Software architecture of the on-board autopilot system of the fixed-wing UAV.

in Section 2. The hierarchical control structure dictates all application tasks, in the

sense that completion of the upper level task (event triggered) initiates the execution

of a lower level task (event processed). This is shown by red dashed arrows in Fig. 4

each representing an event signal. In Fig. 4, besides exchanging the data via the global

shared data bus, each task is managed by a global management bus, used for triggering

execution of tasks, initializing/modifying system parameters, etc.

The task management, also called task scheduling, is the most crucial component

of a real-time system. It seamlessly integrates the multiple “tasks” in this real-time

software application. In practice however, a processor can only execute one instruction

at a time; thus multitasking scheduling is necessitated for embedded control system

implementations where several tasks need to be executed while meeting real-time con-

straints. Using multitasking, more than one task, such as control algorithm implemen-

tation, hardware device interfaces and so on, can appear to be executed in parallel.

However, the tasks need to be prioritized based on their importance in the software

flow structure so that the multitasking kernel correctly times their order of operation,

while limiting any deadlocks or priority inversions.

4.1 Cooperative scheduling method: Initial design

For the initial implementation, we developed a near real-time control software environ-

ment that is based predominately on the idea of cooperative scheduling. Cooperative

scheduling is better explained by a large main loop containing small fragments of codes

(tasks). Each task is configured to voluntarily relinquish the CPU when it is waiting,

allowing other tasks to execute. This way, one big loop can execute several tasks in

parallel, while no single task is busy waiting.

Like most real-time control problems, we let the main loop begin while waiting

for a trigger signal from a timer, as shown by the red arrows in Fig. 5. In accordance

with the software framework of Fig. 4, we classify the tasks into three groups: routine
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Fig. 5 A real-time scheduling method combining cooperative and naive preemptive multi-
tasking.

tasks, application tasks, and non-periodic tasks. The routine tasks are critical tasks re-

quired for the UAV to perform minimum automatic control. In our case these consist of

the tasks of reading analog/GPS sensors (DAQ), signal processing (PROC), estimation

(ESTI), inner loop control (CNTR), and servo driving (SERVO). The sampling period

Ts is carefully chosen to ensure the completion of the routine tasks and allow the mini-

mum sampling period to capture the fastest dynamics of the system. In order to attain

real-time scheduling over all other tasks besides the routine tasks, a sampling period

of Ts = 50 [msec], or a sampling rate of 20 [Hz], was used. On the other hand, some of

the application tasks require substantial computation time and resources, as they deal

with the more complicated, high level computational algorithms such as path planning

(PPLAN), path generation (PGEN), and path following (PFOL). In particular, the path

planning algorithm in Ref. [21] turns out to have a total computation time greater

than the chosen sampling period. As a result, and in order to meet the real-time con-

straints, we fragmentized the execution of the computationally intensive task, PPLAN

into several slices of code execution, each with a finite execution time Tplan. The finite

execution time is selected a priori by taking into account both Ts and the (estimated)

total execution time of the routine tasks. The objective is to maximize the CPU us-

age to complete the task PPLAN as soon as possible, while meeting the criterion for

real-time operation. Finally, non-periodic tasks such as communication (COMM) and

user application (USER) are executed whenever the CPU becomes available, ensuring a

minimum idling time of duration ∆T idle
min to allow the CPU to wait for other triggering

signals.

Figure 6 shows a pseudo-code implementation of the cooperative scheduling scheme.

Each costate implements the cooperative scheduling, while the slice statement im-

plements the naive preemptive scheduling, which preempts the CPU over the finite

execution window ∆Tplan.

4.2 Preemptive scheduling method: Final design

Given the a priori knowledge of the required tasks to be executed, in conjunction

with an approximate knowledge of the total execution time, the use of costate blocks
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main() {
while (1) {

costate {
Wait for timer(Ts);
Task DAQ;

Task PROC;

Task ESTI;

if (event(PFOL)) Task CNTR;

Task SERVO;

}
costate {

if (event(PGEN)) Task PFOL;

}
costate {

if (event(PPLAN)) Task PGEN;

}
costate {

Task COMM;

Task PARAM;

Task USER;

}
if (∆T idle > ∆Tplan) {

slice (∆Tplan, Task PPLAN);
}

}
}

Fig. 6 Pseudo-code implementation of the combined cooperative/preemptive scheduling
scheme for the hierarchical path planning and control algorithm.

was shown to be an effective implementation of cooperative scheduling in the previ-

ous section. However, it is often a painstaking job for a programmer to meticulously

synchronize and schedule all tasks in the application, many of which may have unpre-

dictable execution time. Alternatively, it is possible to design a cooperative scheduler

using conservative timing estimates for the corresponding tasks in a manner similar to

that of Sec. 4.1. However, such an approach will result in poor performance in terms

of the overall completion time. With a conservative estimate of execution times for

the routine tasks, the portion allotted for the execution of the computationally expen-

sive tasks remains fixed regardless whether the CPU remains idle for the rest of the

sampling period. This implies that the CPU does not make full use of its capacity,

thus delaying the execution of the overall tasks by a noticeable amount of time. The

throughput of the computationally intensive tasks may be improved by employing a

preemptive multitasking scheduler.26 Since the kernel has full access to CPU timing, it

can allot the CPU resources to the lower level tasks whenever the higher level tasks

relinquish their control. This effectively minimizes the CPU idle time and reduces the

task completion time. In the next section we present an alternative framework for im-

plementing the hierarchical path planning and control algorithm shown in Sec. 2 using

a preemptive real-time kernel, namely, MicroC/OS-II.

The MicroC/OS-II is known to be a highly portable, low on memory, scalable,

preemptive, real-time operating system (RTOS) for small microcontrollers.26 Besides

being a preemptive task scheduler which can manage up to 64 tasks, the MicroC/OS-II

also provides general kernel services such as semaphores, including mutual exclusion

semaphores, event flags, message mailboxes, etc. These services are especially helpful

for a programmer to build a complex real-time software system and integrate tasks
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Table 1 List of tasks created by the real-time kernel.

ID Alias Description Priority
1 HILS Tx Sending back servo commands to the simulator 11
2 HILS Rx Reading sensor/GPS packets from the simulator 12
3 COMM Rx Uplink for user command from the ground station 13
4 COMM Proc Parsing the user command 14
5 ESTI Atti Attitude estimation task 15
6 ESTI Nav Absolute position estimation task 16
7 CNTR Inner loop control task 17
8 PFOL Nonlinear path following control task 18
9 COMM Tx Downlink to the ground station 19
10 PGEN Path generation task using B-spline templates 20
11 PMAN Control coordination task 21
13 PPLAN Multiresolution path planning task 23
12 STAT Obtaining run-time statistics 22

seamlessly. Its use also simplifies the software structure by utilizing a state flow concept.

The MicroC/OS-II allows small on-chip code size of the real-time kernel. The code size

of the kernel is no more than approximately 5 to 10 kBytes,26 adding a relatively small

overhead (around 5.26 %) to the current total code size of 190 kBytes for our case.

4.2.1 Real-time software architecture

Real-time software programming begins with creating a list of tasks. In this work we

emphasize the real-time implementation of the path planning and control algorithm

using a hardware-in-the-loop simulation. This requires new tasks to deal with the

additional HILS communication. The simulator transmits the emulated sensor data

to the micro-controller via serial communication. Hence, the sensor/GPS reading task

(DAQ) is substituted with the sensor data reading task (HILS Rx), which continuously

checks a serial buffer for incoming communication packets. Similarly, the servo driving

task (SERVO) is replaced by the command writing task (HILS Tx), which sends back

PWM servo commands to the simulator. On the other hand, the communication task

COMM is subdivided into three different tasks according to their respective roles, such

as a downlink task for data logging (COMM Tx), an uplink task for user command

(COMM Rx), and a user command parsing task (COMM Proc). In addition, we create

a path management (PMAN) task which coordinates the execution of the path planning

and control algorithm, thus directly communicating with PPLAN, PGEN, and PFOL,

respectively. Finally, a run-time statistics checking task (STAT) is created in order to

obtain run-time statistics of the program such as CPU usage and the execution time

of each task. These can be used to benchmark the performance of the real-time kernel.

Table 1 lists all tasks created in the real-time kernel.

The MicroC/OS-II manages up to 64 distinct tasks, the priorities of which must

be uniquely assigned. Starting from zero, increasing numbers impose lower priorities

to be assigned to corresponding tasks. In particular, because the top and bottom ends

of the priority list are reserved for internal kernel use, application tasks are required

to have priorities other than a priority level in this protected range. Following an

empirical convention of priority assignment, we assign the critical tasks with high pri-

orities because they usually involve direct hardware interface. In order to minimize

degradation of the overall performance of the system, the hardware related tasks may
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need proper synchronization with the hardware, hence demanding immediate atten-

tion. It follows that routine tasks that are required for the UAV to perform minimum

automatic control such as ESTI Atti, ESTI Nav, and CNTR are given lower priorities.

Finally, application-specific tasks such as PFOL, PGEN, and PPLAN are given even

lower priorities. This implies that these tasks can be activated whenever the highest

priority tasks relinquish the CPU. Table 1 shows the assigned priority for each task.

Note that the task COMM Tx is assigned with a lower priority because this task is less

critical to the autonomous operation of the UAV.

Having the required tasks created, we proceed to design a real-time software frame-

work by establishing the relationships between the tasks using the available kernel ser-

vices: A semaphore is utilized to control access to a globally shared object in order

to prevent it from being shared indiscriminately by several different tasks. Event flags

are used when a task needs to be synchronized with the occurrence of multiple events

or relevant tasks. For inter-task communication, a mailbox is employed to exchange a

message in order to convey information between tasks.

Figure 7 illustrates the overall real-time software architecture for the autopilot. In

the diagram two binary semaphores are utilized for two different objects corresponding

to the wireless modem and a reference path curve, respectively. Any task that requires

getting access to those objects needs to be blocked (by semaphore pending) until the

corresponding semaphore is either non-zero or is released (by semaphore posting). Con-

sequently, only one task has exclusive access to the objects at a time, which allows data

compatibility among different tasks. The event flags are posted by the triggering tasks

and are consumed by the pending tasks, allowing synchronization of two consecutive

tasks. Note that an event from the HILS Rx triggers a chain of routine tasks for pro-

cessing raw sensor data (ESTI Atti, ESTI Nav) and control implementation (CNTR).

A global data storage is used to hold all significant variables that can be referenced

by any task, while the global flags declaration block contains a number of event flag

groups used for synchronization of tasks. Each mailbox can hold a byte-length message

which is posted by a sender task with information indicated next to the data flow arrow

symbol. Each task receiving the message will empty the mailbox and wait for another

message to be posted. These mailboxes are employed to pass the results of one task to

another task. It should be noted that when the task PMAN triggers the task PPLAN,

the results of subsequent tasks are transmitted via mailboxes in the following order:

(PPLAN → PGEN → PMAN → PFOL).

4.2.2 Benefits of using a real-time kernel

Robustness: The real-time kernel provides many error handling capabilities during

deadlock situations. We have been able to resolve all possible deadlocks using the timing

features of the Semaphore-Pend or Flag-Pend operations. The kernel provides time-out

signals in the semaphore and flag calls with appropriate generated errors. These are

used to handle the unexpected latency or deadlock in the scheduling operation.

Flexibility and ease of maintenance: The entire architecture for the autopilot

software has been designed, while keeping in mind the object-oriented requirements

for an applications engineer. The real-time kernel provides an easy and natural way to

achieve this goal. The architecture has been designed to keep the code flexible enough

to allow adding higher level tasks, like the ones required to process and execute the

multi-resolution wavelet path planning algorithm. All this can be achieved without
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Fig. 7 The complete real-time software architecture for the path planning and control of the
onboard UAV.

engrossing into the system level intricacies of handling and programming a micro-

controller/microprocessor. The flexibility of the architecture also makes it extremely

efficient to debug faults in low-level, mid-level or high-level tasks, without having to

re-code/interfere with the other tasks.

5 Hardware-in-the-loop Simulation Results

In this section we present the results of the hierarchical path control algorithm using

a small micro-controller in a real-time hardware-in-the-loop simulation environment.

The details of the implementation are discussed in the sequel.

5.1 Simulation scenario

The environment is a square area containing actual elevation data of a US state, of

dimension 128×128 units, which corresponds to 9.6×9.6 km. Taking into account the

available memory of the micro-controller, we choose the range and granularity of the

fine and coarse resolution levels. Cells at the fine resolution have dimensions 150×150

meters, which is slightly larger than the minimum turning radius of the UAV. The

minimum turn radius is approximately calculated for the vehicle flying at a constant

speed of VT = 20 [m/sec] with a bounded roll angle of |φ| ≤ 30◦, resulting in a minimum

turn radius of Rmin ≈ 70 [m].
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Fig. 8 Illustration of the real-time implementation of the proposed hierarchical path control
algorithm.

The objective of the UAV is to generate and track a path from the initial posi-

tion to the final position while circumventing all obstacles above a certain elevation

threshold. Figure 8 illustrates the detailed implementation of the proposed path plan-

ning and control algorithm. Initially, the UAV is loitering around the initial position

p0 until a local path segment from p0 to pa is computed (Step A,B). Subsequently,

the path following controller is engaged to follow the path (Step C,D). At step D, the

UAV replans to compute a new path from the intermediate location pa to the goal,

resulting in the second local path segments from pa to pb. The first and second path

segments are stitched by a transient B-spline path assuring the continuity condition at

each intersection point (marked by black squares). This process iterates until the final

position pf is reached (Step H), when the UAV engages to loitering around the goal

location.

5.2 Simulation results

Figure 9 shows the simulation results of the hierarchical path control implementation.

Specifically, the plots on the right show the close-up view of the simulation. The chan-

nels are drawn by solid polygonal lines. The actual trajectory followed by the UAV is

also shown. The UAV smoothly follows the reference path while avoiding all possible

obstacles outside these channels. Finally, the UAV reaches the final destination in a

collision-free manner, as seen in Fig. 9(d).
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Fig. 9 Hardware-in-the-loop simulation results of the hierarchical path control implementa-
tion. The plots on the right show the close-up view of the simulation. At each instant, the
channel where the smooth path segment from the corresponding path template has to stay,
is drawn by polygonal lines,. The actual path followed by the UAV is drawn on top of the
reference path.
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Fig. 10 Real-time kernel run-time statistics: CPU usage and number of context switches.

5.3 Real-time kernel run-time statistics

In order to evaluate the performance of the real-time software framework, we have used

several distinct metrics that are available within the real-time kernel.

The amount of time for which the CPU is utilized by the kernel and task execution

can be retrieved from the CPU usage metric, which is the percentage of the duty

cycle of the CPU, provided by the real-time kernel at every second. When high CPU

demanding tasks such as PPLAN and PGEN get activated, a higher percentage of CPU

usage implies quicker completion of these tasks. Consequently, a higher percentage of

CPU usage implies higher performance and efficiency. Figure 10(a) shows this metric

during the simulation. It is noticed that for most of the time the CPU usage is about

40 %, however, when a new path segment needs to be calculated (see Step D and F in

Fig. 8), it goes up to nearly 100 %, until the tasks PPLAN and PGEN are completed

and can provide a new reference curve.

Context switches are performed when the real-time scheduler needs to switch from

the current task to a different task. Each context switch is comprised of storing the

current CPU register, restoring the CPU register from the stack of the new task,

and resuming execution of the new task’s code. Subsequently, this operation adds

overhead to the existing application, which should be kept at a minimum. The number

of context switches per second is provided by the real-time kernel and helps keep

track of the system overhead. Although the performance of the real-time kernel should

not be justified by this number, this metric can be interpreted as an indication of

the health status of the real-time software. In other words, increased overhead may

cause the scheduler to delay switching and make tasks be activated out of their proper

timing due to this latency. If this happens, the number of context switches represents

the system overhead, hence the health status of the system. Figure 10(b) shows the

number of context switches per second during our experiments. Given the sampling

period of Ts = 50 [msec], we notice that the average number of context switches

per each sampling period is approximately seven. This indicates that the overhead

is relatively small, taking into account the number of routine tasks that should be

completed during each sampling period.
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Fig. 11 Real-time kernel run-time statistics: CPU ratio vs. Mean tasks execution time

Individual task execution time is measured during run-time, by referencing a hook

function OSTaskSwHook() when a context switching is performed. This function cal-

culates the elapsed CPU time of the preempted task and updates a task-specific data

structure with this information. Subsequently, when a statistics hook function is called

by the real-time kernel, each task execution time TETi(k) is added together to get the

total execution time of all tasks. On the other hand, the CPU ratio of different tasks,

i.e., the percentage of time actually consumed by each task, is computed as follows,

πi(k) =
TETi(k)

∑N
i=1 TETi(k)

× 100 [%], (1)

where πi(k) denotes a percentage of time consumed by ith task at kth time. Figure 11(a)

shows the run-time CPU ratio. Different colors are used to distinguish between different

tasks, as depicted by the colorbar on the right side of each figure.

Finally, the execution time of each task over the given sampling period Ts =

50 [msec] is calculated as follows,

TETi(k) =
TETi(k)

(tk − tk−1)/Ts
[msec], (2)

where tk denotes the actual time of the kth statistical sample. Equation (2) basically

calculates the mean value of the execution time of the ith task over one sampling

period. This metric is updated at every statistical sample. As shown in Fig. 11(b), this

metric helps us check if the total sum of execution times of different tasks exceeds the

given sampling period Ts.

6 Conclusions

We have implemented a hierarchical path planning and control of a small UAV on the

actual hardware platform. Using a high fidelity hardware-in-the-loop (HIL) simulation

environment, the proposed hierarchical path planning and control algorithm has been

validated through the on-line, real-time implementation on a small autopilot. By inte-

grating the control algorithms for path planning, path smoothing, and path following
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under two real-time/near real-time implementations, it has been demonstrated that the

UAV equipped with a small autopilot having limited computational resources manages

to accomplish the mission objective of reaching the goal destination, while avoiding

obstacles. Emphasizing the use of a real-time kernel, we have discussed the implemen-

tation issues utilizing the kernel services, which allows flexibility of task management,

robustness of code execution, etc. Provided with quantitative metrics, we have shown

that the real-time kernel successfully accomplishes real-time operation of a small UAV

for a non-trivial, realistic, path planning scenario.

Acknowledgements Partial support for this work has been provided by NSF award no.
CMS-0510259 and NASA award no. NNX08AB94A.

References

1. Balluchi, A., Berardi, L., Di Benedetto, M., Ferrari, A., Girasole, G., Sangiovanni-
Vincentelli, A.L.: Integrated control-implementation design. In: Proceedings of the 41st
IEEE Conference on Decision and Control, pp. 1337–1342. Las Vegas, NV (2002)

2. Beard, R.W., McLain, T.W., Goodrich, M., Anderson, E.P.: Coordinated Target Assign-
ment and Intercept for Unmanned Air Vehicles. IEEE Transactions on Robotics and
Automation 18, 911–922 (2002)

3. Bellingham, J., Richards, A., How, J.: Receding horizon control of autonomous aerial
vehicles. In: Proceedings of the American Control Conference, pp. 3741–3745. Anchorage,
AK (2002)

4. Bortoff, S.A.: Path planning for UAVs. In: Proceedings of the American Control Confer-
ence, pp. 364–368. Chicago, IL (2000)

5. Chandler, P., Pachter, M.: Research Issues in Autonomous Control of Tactical UAVs. In:
Proceedings of the American Control Conference, pp. 394–398. Philadelphia, PA (1998)

6. Christophersen, H.B., Pickell, R.W., Neidhoefer, J.C., Koller, A.A., Kannan, S.K., John-
son, E.N.: A compact guidance, navigation, and control system for unmanned aerial ve-
hicles. Journal of Aerospace Computing, Information, and Communication 3(5), 187–213
(2006)

7. Gelperin, D.: On the optimality of A∗. Artificial Intelligence 8(1), 69–76 (1977)
8. Hall, C.: On board flight computers for flight testing small uninhabited aerial vehicles. In:

The 2002 45th Midwest Symposium on Circuits and Systems, vol. 2, pp. II–139 – II–143
(2002)

9. Hart, P., Nilsson, N., Rafael, B.: A formal basis for the heuristic determination of minimum
cost paths. IEEE Tans. Sys. Sci. and Cyb. 4, 100107 (1968)

10. Jang, J., Tomlin, C.: Autopilot design for the Stanford DragonFly UAV: validation through
hardware-in-the-loop simulation. In: AIAA Guidance, Navigation, and Control Conference,
pp. AIAA 2001–4179. Montreal, Canada (2001)

11. Jang, J., Tomlin, C.: Design and Implementation of a Low Cost, Hierarchical and Modular
Avionics Architecture for the DranfonFly UAVs. In: AIAA Guidance, Navigation, and
Control Conference and Exhibit. Monterey, CA (2002). AIAA 2002-4465

12. Jang, J.S., Liccardo, D.: Small uav automation using MEMS. IEEE Aerospace and Elec-
tronic Systems Magazine 22(5), 30–34 (2007)

13. Jang, J.S., Tomlin, C.: Longitudinal stability augmentation system design for the Drag-
onFly UAV using a single GPS receiver. In: AIAA Guidance, Navigation, and Control
Conference. Austin, TX (2003). AIAA 2003-5592

14. Jang, J.S., Tomlin, C.J.: Design and implementation of a low cost, hierarchical and modular
avionics architecture for the dragonfly uavs. In: AIAA Guidance, Navigation, and Control
Conference and Exhibit. Monterey, CA (2002)

15. Johnson, E.N., Proctor, A.A., Ha, J., Tannenbaum, A.R.: Development and Test of Highly
Autonomous Unmanned Aerial Vehicles. Journal of Aerospace Computing, Information,
and Communication 1, 486–500 (2004)

16. Jung, D.: Hierarchical path planning and control of a small fixed-wing UAV: Theory and
experimental validation. Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA (2007)



17

17. Jung, D., Levy, E.J., Zhou, D., Fink, R., Moshe, J., Earl, A., Tsiotras, P.: Design and
development of a low-cost test-bed for undergraduate education in uavs. In: Proceedings
of the 44th IEEE Conference on Decision and Control, pp. 2739–2744. Seville, Spain (2005)

18. Jung, D., Tsiotras, P.: Inertial attitude and position reference system development for
a small uav. In: AIAA Infotech at Aerospace. Rohnert Park, CA (2007). AIAA Paper
07-2768

19. Jung, D., Tsiotras, P.: Modelling and hardware-in-the-loop simulation for a small un-
manned aerial vehicle. In: AIAA Infotech at Aerospace. Rohnert Park, CA (2007). AIAA
Paper 07-2763

20. Jung, D., Tsiotras, P.: Bank-to-turn control for a small uav using backstepping and pa-
rameter adaptation. In: International Federation of Automatic Control (IFAC) World
Congress. Seoul, Korea (2008)

21. Jung, D., Tsiotras, P.: Multiresolution on-line path planning for small unmanned aerial
vehicles. In: American Control Conference. Seattle, WA (2008)

22. Jung, D., Tsiotras, P.: On-line path generation for small unmanned aerial vehicles using B-
spline path templates. In: AIAA Guidance, Navigation and Control Conference. Honolulu,
HI (2008). AIAA Paper 2008-7135

23. Kaminer, I., Yakimenko, O., Dobrokhodov, V., Lim, B.A.: Development and Flight Testing
of GNC Algorithms Using a Rapid Flight Test Prototyping System. In: AIAA Guidance,
Navigation, and Control Conference and Exhibit. Monterey, California (2002)

24. Kingston, D., Beard, R.W., McLain, T., Larsen, M., Ren, W.: Autonomous Vehicle Tech-
nologies for Small Fixed Wing UAVs. In: 2nd AIAA Unmanned Unlimited Conference and
Workshop and Exhibit. Chicago, Illinois (2003)

25. Kingston, D.B., Beard, R.W.: Real-Time Attitude and Position Estimation for Small UAVs
Using Low-Cost Sensors. In: AIAA 3rd Unmanned Unlimited Technical Conference, Work-
shop and Exhibit. Chicago, IL (2004)

26. Labrosse, J.J.: MicroC/OS-II - The Real-Time Kernel, 2 edn. CMPBooks, San Francisco,
CA (2002)

27. McLain, T., Chandler, P., Pachter, M.: A Decomposition Strategy for Optimal Coordina-
tion of Unmanned Air Vehicles. In: Proceedings of the American Control Conference, pp.
369–373. Chicago, IL (2000)

28. McLain, T.W., Beard, R.W.: Coordination variables, coordination functions, and cooper-
ative timing missions. Journal of Guidance, Control, and Dynamics 28(1), 150–161 (2005)

29. Palopoli, L., Pinello, C., Sangiovanni-Vincentelli, A.L., Elghaoui, L., Bicchi, A.: Synthesis
of robust control systems under resource constraints. In: HSCC ’02: Proceedings of the
5th International Workshop on Hybrid Systems: Computation and Control, pp. 337–350.
Springer-Verlag, London, UK (2002)

30. Tsiotras, P., Bakolas, E.: A Hierarchical On-Line Path Planning Scheme using Wavelets.
In: Proceedings of the European Control Conference, pp. 2806–2812. Kos, Greece (2007)


	Introduction
	Hierarchical Path Planning and Control Algorithm
	Experimental Test-bed
	Real-time Software Environment
	Hardware-in-the-loop Simulation Results
	Conclusions

