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Controllers for Unicycle-Type Wheeled Robots:
Theoretical Results and Experimental Validation

ByungMoon Kim and Panagiotis Tsiotre8enior Member, IEEE

Abstract—Mobile robots offer a typical example of systems with ative study of controllers for nonholonomic systems and, in
nonholonomic constraints. Several controllers have been proposed particular, between time-varying and time-invariant controllers,
in the literature for stabilizing these systems. However, few exper- has not been done. at least as far as the authors know. This is

imental studies have been reported comparing the characteristics learlv of tint £ M th bust " f
and the performance of these controllers with respect to neglected clearly or great INterest. Vioreover, the robustness Properties o

dyﬂarﬂics7 quantization‘ noise‘ de|ays7 etc. In this paper, we use athese Contr0||erS IS St|” a t0p|C Under |nVeSt|gat|0n. ThIS papel’
Khepera mobile robot to perform experimental comparison of sev- provides a step toward this goal by comparing the stabilization
eral control laws. Khepera has two dc motor-powered wheels and and robustness properties of several time-varying and time-in-
introduces many realistic difficulties, such as different motor dy- y4rjant controllers for a wheeled robot. It should be noted that
namics for the two wheels, time delay, quantization, sensor noise, L L . . .

and saturation. We emphasize the implementation difficulties of G comprehenswe mvesugapon of the issues assoma'Fed with the
two discontinuous controllers proposed herein' and we compare eXpel’Imenta| |mp|ementat|0n Of Contl’0||ers fOI’ m0b||e rObOtS
their performance with several other controllers reported in the has also recently appeared in [6].

literature. Ways to improve the performance of each controller are All controllers in this paper are implemented on a uni-
also discussed. cycle-type robot called Khepera. This robot has two dc

Index Terms—Experimental results, nonholonomic systems, sta- motor-powered wheels and introduces many realistic diffi-

bilization, tracking, wheeled robots. culties, such as different motor dynamics for the two wheels,
time delay, quantization, sensor noise, and saturation. The
I. INTRODUCTION performance of each controller was tested with respect to

) . convergence characteristics, speed of response, steady-state
A N UNDERACTUATED system is one with a smallergrror, robustness to sensor noise, etc. Suggestions on how to

number of control inputs than the number of independepprove each controller's performance are also presented.
generalized coordinates. Often, underactuated systems arisgne paper is organized as follows. In Section II, we present
as a result of some nonintegrable motion constraints. In Sugla mathematical equations used to describe the kinematics of a
systems, it is not possible to choose generalized coordinai#fcycle-type wheeled robot. Two somewhat different state and
equal to the number of degrees of freedom (DOF). The numbgpt transformations of these equations result in two slightly
of generalized (i.e., Lagrangian) coordinates exceeds Werent implementations (herein called System | and System
number of degrees of freedom by the number of independefiy.of the control laws. The effects of choosing either of these
nonintegrable constraints [14, p. 66]. Such systems are caligg implementations is discussed in detail later in the paper. In
nonholonomic. Several examples which involve nonholonoméaction 1, we present two discontinuous, time-invariant con-
constraints can be found in real-world applications, such gg| jaws. These control laws are based on the results of [19],
mobile robots, bicycles, cars, underactuated spacecraft, uncigtr], and [2]. Proper implementation of these control laws re-
water vehicles, etc. Several approaches have been propQggges some care in order to avoid the singularity at the origin.
for stabilizing nonholonomic systems. One such approadaction IV summarizes the controllers tested in this work. De-
is to use time-varying controllers [15], [13], [11], [16], [10].tals for each controller can be found in the relevant references.
These time-varying control laws have typically slow rateghe gescription of the experimental setup and the problems en
of convergence [9]. Experimental validation of time-varyingoyntered during the implementation of these controllers are
controllers can be found in [11]. An alternative approach igven in Section V. Sensor noise, quantization error, and motor
to use time-invariant, discontinuous controllers such as tho(i‘/’namics all affected the performance of the control laws. The
in [4], [18], [8], [1], [19], [3], and [2]. These discontinuoussteps taken to reduce these effects are outlined in detail. To make
control laws ensure exponential convergence rates. A COMPgkajr comparison between all controllers, several robot missions

were devised. Considerable effort was devoted to finding the
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and System Il is given by

Ty =up — Tzup T2 = Uz T3 = TiUp (4a)

v =U;p W= U, (4b)

These two systems are completely equivalent when the inputs
are the linear velocity and the angular velocity. However,
they are different when the inputs are andu,. Compare (3a)
and (4a). Our experimental results have shown that the extra
termzzus has a significant effect on the transient response of the
robot. Although it is easier to design a control law using System
I, our results have shown that practical implementation favors
System Il. This fact has also been observed by M’Closkey and
Murray [11], [12] where they implemented their controllers (de-

z rived based on System 1) using System Il. Fortunately, it turns
out that the extra termzus in (4a) does not destroy stability.
Our experiments actually showed that working with System 1l
was almost always beneficial.

Fig. 1. Definition of configuration variables.

Ill. Two TIME-INVARIANT CONTROLLERS

In this section, we present two time-invariant, discontinuous
controllers. Their derivation uses ideas from invariant manifold
theory [17], [2], [8].

A. Controller 1

This controller was first proposed in [17] and uses the same
ideas as in [18]. A more general version of this controller has
been proposed in [2]. The control law is given by

s(x) s(x)

u = —kx ———=x9 Uy = —kzo— p—>-—-5x1 (6
o 1 1+u$%+$% 2 2 2 /va%_’_x% 1 ()

v ' wheres is given bys(x) := x5 — (1/2)z122. The derivative of
B s is readily calculated as

Fig. 2. Khepera robot. 25 = T1U2 — UL T2, (6)

The kinematic model of a differentially steered mobile robdgOnseauently, the statés, x, 2s) correspond to the well-
(such as the Khepera, shown in Fig. 2) has two control input§]oWn honholonomic integrator of Brockett [4], [2]. -

the velocities of the left and right wheels, andvs. These are  1h€ fU”Ct'Og‘S : %% — 3t defines a manifold\1 in 1 by
related to the forward velocity and the angular velocity of ! = {# € R”:s(x) = 0}. It can be easily shown that is
the robot byw; = v— Rw, vs = v+ Rw whereR is half the dis- &0 invariant _manlfold for (3a) with control (5). Moreove_r, for all
tance between the two robot wheels. Therefore, the kinematiedia! conditionsz(0) € M, the stater decays exponentially to
of a differentially steered mobile robot can be described by t€0 a$ — oc. Forinitial conditions:(0) ¢ M, the control law
unicycle kinematics (1). Equation (1) can be transformed to tff) 1S Such thas — 0 with an exponential rate of convergence.

normal chained (or power) form by a state and input transfor- 1 "€ controller given by (5) is not defined on thg axis, i.e.,
mation. Using the state transformation [5] for x1 = z2 = 0. This is a singular case and a modification of

the control law in (5) around thes axis is needed to avoid this
singularity. Such a modification is discussed later in this section.
As shown next, for all initial conditions?(0) + z3(0) # 0,
T2 =7 the system (3a) with this control law is “almost exponentially
T3 =wsiny — ycosy (2)  stable” [2].
Proposition 1: The control law given by (5) almost exponen-
one arrives at two slightly different systems, depending on thg)ly stabilizes (3a) for all initial conditions, such that(0) #

r1 =x cos~y + ysin~y

input transformation used. System | is given by 0 andz2(0) # 0, if i« > 0 andk > 0. Moreover, if > 2k > 0,
) ) ) the control inputsy; andus are bounded along the trajectories
L1 =up T2 =Uz T3 = T1U2 (33) of the closed-loop system.

U =ul + T3ty W = U (3b) Proof. See[17]or[2]. [ |
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Remark 1: The notion of almost exponential stability (AES)wherer = /x? + x2 andk andy are constants satisfying
used here is the same as the one in [2]. That is, for any open )
and dense sdt in ®3 AES implies: 1) existence of solutions pe>2k >0, if | <1 (9a)
for all ¢ > 0 and for all initial conditions irf2; 2) exponential pw>—2k >0, if [n| = 1. (9b)
convergence of the closed-loop trajectories to the origin; and 3) a

Lyapunov-type stability with respect to the subspace topolo ;Pe saturation functionsit; (¢ = 1,2) are defined as

induced on?® by €. Similarly to AES, one can introduce the sat (f) Ti ity 20
notions of almost asymptotic stability (AAS) if 2) is replaced by sat;(s,v) = { i v (10)
asymptotic convergence to the origin. A system is locally AES sen(s), ifr=0

(LAES) or locally AAS (LAAS) if the sef? is bounded. wheresat(z) := min{1, |z|}sgn(z).

Next,wet_u_rn ourafttentionto System Il with controlle_r (5)-The Proposition 3: The control law given by (8)—(10) almost ex-
next proposition basically states that the extratesmez inthe  ,nentially stabilizes System I. Moreover, the control input is
&1 equation for System Il does not destroy asymptotic stabilityy, , ,nded bylur 2| < [&] + |-

Proposition 2: System (4a) with the control law given in (5) Proof: The proof is similar to the one in [19] and [2] and,
is LAAS, if £ > 0 andy > 0. Moreover, if > 2k, the control s is omitted. m
inputs are bounded along the closed-loop trajectories. Remark 2: The value of unity in (9) is chosen for the sake
A complete proof of this resultis given in the AppendiX. — of simplicity. Any other convenient bound can be selected
Singularity AvoidanceA modification of the control law (5) according to the desired decomposition of the state space.

in a neighborhood of the; axis is necessary, since this contropy course, the saturation function in (10) has to be modified
law is not defined whemw; = z» = 0. The modification used accordingly in this case.

here _is similar to the one presented in [18]. The ide_a is to CreateAIthough Controller 2 guarantees apriori upper bound for
aregion around thes axis where the control law (5) is not useduL us, andw, it does not provide such a bound fofsee (3b)].

i iof — . - . : . A
To this end, let the regio®; = {(x1,z2,3): [n| > 71} where jging System Il for implementation, we explicitly ensure that

s s andw remain bounded.
= \/TW - @) Proposition 4: For k > 0 andu > 0, the control law in
' 2 (8) and (10) asymptotically stabilizes System Il for all initial
With a slight abuse of notation, we [B¢_ denote the se®’_ = conditionsz € R*. Moreover, the control input is bounded by
{{z1,22,23)1v = 0,5 # O0}= {(z1,22,23)i01 = z2 = |Juro| < |k + |l
0,23 # 0}. Inthe setD%, where|r| is large, we can apply, for Proof: See the Appendix. ]

instance, the control law u; = kssgu(s) anduy = 0 where It should be mentioned at this point that by defining instead
ks is some constant chosen by the user. A simple calculation

Ty .
shows that with this control law the system will lea® in fi- sat;(s,v) = sat (V—Q) sen(s), i=12  (11)
nite time. Moreover, it can be easily shown that for System | ) ) )
7 = —(u/2 — k)n and, hence, the regioR? := RA\DL is in (10) one obtains the bounded controller derived in [2] for the
1 L . 77

invariant. Thus, once the system ent@$ it stays there for nonholonomic Brockett integrator.

all future times. Once D7, the control law (5) can be used.
During controller implementation; was chosen by trial and
error so as to achieve reasonable control input and state trann this section, we give six additional controllers that were
sient responses. For System I, it is shown in the Appendix thiaiplemented on the Khepera robot. Two of them are time in-
7 remains bounded along closed-loop trajectories and the variant [8], [1] and the rest are time varying (periodic) [16], [10],

gion D, is positively invariant. This modification of Controller [15], and [12]. Table | summarizes the controllers tested. The
1 was implemented in both Systems | and II. stability proofs of these controllers can be found in the relevant

references.

IV. CONTROLLERSTESTED

B. Controller 2

The second time-invariant controller also uses ideas from in- V. CONTROLLER IMPLEMENTATION
variant manifold theory. This controller, however, provides A Khepera Robot

control input which is explicitly bounded by anpriori speci- . i
fied upper bound, regardless of the initial conditions. This con- "€ implementation of all controllers was done on a Khepera

troller was originally developed for the stabilization problem offobile robot. The Khepera robot, shownin Fig. 2, is a product of
underactuated axisymmetric spacecraft in [19]. It is modifidf€ K-Team(http://www.k-team.con). Itis a mobile robot

here for the case of a unicycle-type mobile robot. with two dc motor-driven wheels. The _dc motors are conn_ected
The proposed control law is given by to the wheels through a 25:1 reduction gear box. Two incre-
mental encoders are placed on the motor axes. The resolution
o= — k4 psata(s, v) of each encoder is 24 pulses per revolution of the motor axis.
ViZ+1 This corresponds t84 x 25 = 600 pulses per revolution of
Uy = — 2 wsati(s,v) (8) the wheels or 12 pulses/mm of wheel displacement. The algo-
v 41 rithm for estimating the velocity from the encoder outputs is

INotice that the system (3a) or (4a) is controllable onithexis. implemented on the robot. For dc-motor speed control, a native
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TABLE |
CONTROLLERSTESTED Nk | e | DadCa
Controller | Ref. Comments Sudewion | T | Cod | e | Cous
Cariula [ Toiotiae b Leo freamand W arfold ¢ Tme brsariard ;]
1 [17],[2] | Discontinuous, Expo- :
nential Convergence [ . o
2 [19],[2] | Discontinuous, |
Bounded, Exponen- Do, | G
tial Convergence
3 [8] | Two-stage switch- # Yy :% -
ing, Time-Invariant b § ﬁ R
controller o 11345 3 dey
4 [1] | Time-Invariant, Polar Esibaiind Pralins
Coordinates ® A0 om
{16] | Time-Varying ¥ DD om
G G dep

{10] | Time-Varying

[15] | Time-Varying —DH—I

[e B IEN Q=) e

(12] | Time-Varying, Expo- W OHE ow ¥ A em 6 T dag Trie TO00  wee
nential Convergence

PID controller is implemented on the Khepera robot. All one

then needs to do in order to control Khepera is to read po§i¢- 3- Robot control program panel.

tion signals and issue velocity commands via the RS-232 serial

port. The maximum sampling rate can be up to 100 Hz owing Re robot from wheel displacement information. This common
the limitation of the RS-232 serial communication (maximurprocedure, calledlead reckoninguses geometric relations of

is 4.8 kB/s for the Khepera robot). For all experiments in thigie wheel displacements and the robot position to estimate the

paper, we used 50 Hz for sampling. position of the robot.

The position estimation error was checked by a series of ex-
B. Implementation of Controllers on a Windows NT periments. Before each experiment, the robot was placed at a
Environment point (xg,10) with heading angley, and was commanded to

A specially written C++ application running under WindowdJ0 to the origin. At the end of each experiment, the actual po-
NT was developed by the authors to control the robot via &ifion of the robot (measured on a 1 mm-resolution grid) was
RS-232 serial port. A Pentium 1l 400 MHz class PC runningompared with the estimated position and orientation using the
Windows NT 4.0 was used as the host computer. The velocfigad-reckoning scheme and the error was recorded. The mean
commands were sent to the robot through the RS-232 serial pgftimation errof(z.. y.,v.) was deduced from a sequence of
Position information was obtained through the encoders. Sirfé¢ experiments for each set of initial conditions. The accuracy
WInNT is not a real-time operating system, a timer handler w&$é the dead-reckoning scheme was deemed to be adequate for
called periodically to implement the control laws. The 32-bthe objectives of our experiments.
multimedia timer service for the Windows NT application level
was used. With this timer service, a resolution of up to 1 ms c&h Motor and Robot Dynamics

be achieved. A common tacit assumption made for all controllers tested is

~C/C++ was used to implement the control algorithms with @4t the system has ideal response, i.e., there are no dynamics.
nice looking, multitabbed dialog box interface, shown in Fig. 3rhjs is not true for the Khepera robot, which uses dc motors. dc
Several tabs can be used to set.up the sta_b|I|zat|0n or trackifigiors usually have poor transient response when compared, for
problems, change controller gains, sampling frequency, cQfyample, with step motors. Moreover, the left and right motors
figure the dc motors, etc. To record the history of the contrgl,y ot have identical responses owing to nonhomogeneous
input and robot response without recording time limitationgnass distribution over the robot body or differences in the mo-
a double-buffered data storage algorithm was developed. Thgs themselves. We therefore used the following procedure to
robot motion can also be visualized by an independent Open@ha acterize the dynamic behavior of the motors.
Window that supports 6-DOF camera navigation using the key-\yith the robot initially at rest, a right{ = 423 mm/s,vs =
board (not shown in Fig. 3). The software is available from the, mm/s) and a leftd, = 377 mm/s,v, = 423 mm/s) turn
authors upon request. were commanded, and the robot wheel velocities were recorded.
These are shown in Fig. 4. From this figure, it is seen that the
linear velocityv has a typical step response, but the angular ve-

Since there is no direct measurement of the absolute positlonity w has an unusual response. During the right turn, small
and orientation of the robot, we need to estimate the positionvalocity differences in; andw, are evident. As a result, the

C. Position Estimation
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Fig. 4. Step responses of linear and angular velocities.

angular velocity is relatively small for about 0.6 s. This cafihis steady-state error in was more severe for Controllers 1
be treated as a delay. Moreover, comparing the response ofdhd 4 (about 15-6C0°). One simple, but effective, approach to
left wheelw; in a left and a right turn, one sees that the maxyandling this problem is to use an inverted dead zone. That is,
imum overshoot time becomes smaller as the step input beconiesmagnitude of the velocity commands was increased by the
smaller. This implies nonlinearity in the motor dynamics of thamount of quantization. The improvement in the steady-state
left wheel. Most importantly, because of this asymmetric rerror (especially for the heading angi¢ using the inverted
sponse of the wheels, the angular velocity is initially reversetad zone is shown in Fig. 5. The inverted dead zone was
in a left turn. In fact, during the left turn, a negative angular vémplemented in software.

locity is produced for about 0.5 s. In summary, the difficulties

caused by the motor dynamics are as follows: 1) there is refa-Scaling

tively high overshoot, moreover, the maximum overshoot time o onlinear system has different characteristics, depending

c_ieper_u_js on Fhe_ magnitude of the applied step,_hence SOME NPNthe region where it operates in the state space. For certain
linearities exist in the motor and 2) the left and right motor see

. : . ions, it may exhibit small oscillations, fast convergence
to have different dynamics. As a result, the linear and angula . . .
. rates, and good robustness, while for other regions it may
velocity responses are coupled.

Based on the motor velocity step responses, a parameter i )ﬁhibit large oscillations_and slow convergence rates.. Since
tification scheme was used to fit a second-order transfer funﬁSe performance for nonlinear _system_s Is not l_Jnn‘orm, itis of
tion that approximates the motor dynamics from commanded'fgerefst to prqperly sgale_the d|.fferent|al equau.ons o accqunt
output velocity. This dynamic model was used to validate tﬁgr_th's behavior. Scaling is equivalent to choosing appropriate

often unusual behavior observed for some controllers when iH2its for the system variables or proper controller gains. By
plemented on the real system. proper scaling, one can avoid the regions of poor performance.

This helps to design better controllers. The importance of
E. Velocity Output Quantization scaling in improving transient response has also been noted by

The velocity command of the Khepera robot is quantize%ther authors [11]. Fig. 6 shows how scaling was applied to the

by 8 mm/s. This is not important if the velocity is large<NePera robot.

However, as the states converge to the origin, quantization
becomes more important because the velocity commandSs
small around the origin. At the origin, quantization manifests Typically, sensor noise and quantization resultin a limit cycle.

itself as a dead-zone problem, resulting in a steady-state er@mme controllers were much more sensitive to sensor noise than

Effect of Sensor Noise and Quantization
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Fig. 5. Improvement of steady-state error using inverted dead zone for Controller 1 and System Il.
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A
U, 2 L
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- z2 :1’2(1,7:‘/77)
uz = uz(x1, 2, 23) T1,22,23 3 = 23(2,4,7)
Controller

Transformation
Fig. 6. Block diagram of robot control system including scaling.

others. Fig. 7 shows the effects of sensor noise for Controllers
2 and 4. As shown in this figure, Controller 4 is especially sen-

sitive to noise. The sensitivity of Controller 4 to sensor noise is To compare the controllers, we introduced four different mis-
elaborated upon later.

VI. EXPERIMENTAL RESULTS

sions. Due to the nonholonomic constraint, missions where the
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Fig. 7. Effects of noise on steady-state error.

TABLE I A. Discussion of Results
INITIAL CONDITIONS FORROBOT MISSIONS

Mission x (mm) | y (mm) Controllers 1 and 2: Figs. 8 and 9 show the plots of selected
Eos 100 o trajectories for Controllers 1 and 2. As shown in these figures,
N y ] 100 100 Controllers 1 and 2 may fail to achieve convergence for System |

: orma : ' ' for some cases. Subsequent analysis showed that the divergence

Singular (Pa“f‘llel Parking) | 0 -100 was due to motor dynamics. Numerical simulations including a
Long Distance -500 ~500 motor model (see Section V-D) validated the results of Figs. 8

and 9. For System II, however, both controllers achieved sta-
bot | ded t id e in violat fthbility for all missions. Fig. 10 shows a comparison between the
robot is commanded to move sideways (i.e., in violation o Rctual and commanded velocities for Controllers 1 and 2 when

constraint) were assumed to be more challenging. We therefgbep“ed to System Il. Controller 2 (which guarantees bounded

designed foqr missions: 1) easy mission:lthe forward distancqﬁgut commands) behaves as expected, whereas Controller 1 ex-
be travelled is larger than the sideways distance; 2) normal misg;ts large magnitude fos.

sion: the forward and sideways distances are the same; 3) Sincontroller 3: Similarly to Controller 1, this controller

gular mission: the robot is commanded to move sideways (thseds to be modified inside the regidh% to avoid the
mission is customarily referred to as the “parallel parking majngularity whens; = 2, = 0. The approach of Section IlI
neuver”); and 4) long-distance mission: the robotis command@@s used to circumvent the singularity issue. Nonetheless, this
to travel over a large distance. Depending on the aggressiven@sitroller induces chattering, as can be verified from the top
of the controller (most time-invariant controllers can be claseft plot of Fig. 11. This figure shows the results for a normal
sified as such) the motors may saturate during a long-distanagsion using System | and with gaiks= 1, 1, = 3, and
mission. Moreover, this mission can be used to estimate the sealing= 100.
gion of attraction for some controllers that only ensure local Controller 4: This controller does not use either System |
asymptotic stability. or System Il. Instead, its derivation and implementation uses
The initial conditions for all missions are given in Table llpolar coordinates [1]. The experimental results for Controller 4
For all missions, the initial heading angjés chosen to be zero. are shown in Fig. 12. This controller has good convergence and
Starting from these initial conditions, and for all cases, the robgbod transient response for all cases. Fig. 12 shows the results
was commanded to go to the origin. for a singular mission with gaink; = 1, ko = 1, k3 = 1,
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and scaling= 1. A potential problem with this controller is asulting in a limit cycle for the heading angle around the origin.
steady-state error for the heading anglelue to the dead zone These simulations were verified by the experiments. Controller
in the velocity output (see upper right and lower left plots of basically implements a “turn—drive—turn” strategy. Although
Fig. 12). Our simulations, with different levels of sensor nois#his control strategy is intuitive and simple to implement, it may
indicated that Controller 4 was sensitive to sensor noise, fead to large angular velocity commands close to the origin. This
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Fig. 11. Experimental results for Controller 3.

is because the angular velocity commandor this controller duce this steady-state error. The sensitivity of this controller to
does not depend on the distance from the origin [1]. Thereforeise close to the origin has also been observed in [3]. Overall,
even small errors in andy coordinates may produce large anthis controller can have a very good performance if a method to
gular velocity commands and, hence, steering angles. Since tisid the heading oscillations is devised.

controlleris inherently sensitive to noise and small perturbationsControllers 5, 6, and 7:Controller 5 from [16] exhibited
around the origin, we cannot apply the inverted dead zone to very slow converge when implemented in both Systems | and
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Fig. 13. Trajectories of Controllers 5, 6, and 7 for the singular mission. The controller from [13] is also shown for comparison.

II. Controller 6 has been derived in [10] using System . In thithese experiments were similar to the ones for Controller 6 and
paper, we used System Il for the implementation since it leadsae omitted. Controller 7 was implemented using System I. Im-
better convergence. The advantages of using System Il instpéementation on System Il gave similar results.

of System | have also been observed by M’Closkey and MurrayFig. 13 shows that the time-varying Controllers 5, 6, and 7

[11], where the authors used center manifold theory to prohave very slow or oscillatory behavior. Their performance can

local asymptotic stability for System Il. It should be pointed oute improved by scaling the states or by choosing different gains,
that the controller of [11] was also implemented. The results bfit this has only a limited effect. The slow convergence of the
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Fig. 14. Robot trajectories with Controller 8 and System Il (singular mission).
time-varying controllers can be shown rigorously [9]. In all ex- TABLE I
periments and simulations in this paper, these controllers have SUMMARY OF EXPERIMENTAL RESULTS
shown poor performance. _ _ Ctr. [ Sys. |[E[N|S| L Note
Controller 8:. The convergence rates _ofthe tlme—yarylng con- L TElolol o Oscillatory
trollers can be improved significantly using the scaling approach 1
. - . . . I |E|E|E| E Good/Fast
of [12]. In simulations, this controller achieved stability for both _
Systems | and Il. The speed of converge was about 15-25's, re- 9 I [E]O]O] O Oscillatory
gardless of the magnitude of the initial conditions. However, in I |E|E|E| E |Good/Fast/Bounded
experiments, it failed to converge when the initial conditions 3 I |[€1C|C| O Chattering
were larger than about 50 mm using System | (for singular and I cjcjclc
normal missions). For the easy mission, the robot converged for 4 |Polar | Einx,y, Oin~y| Good/Fast/Noise
all initial conditions. Applying proper scaling and/or choosing 5 |/ |G|S|8]0O Very Slow
System |l for implementation solved this problem. Then the 6 I ([U|uju] u Diverged
robot converged with good transient response. Nonetheless, its II |S|S|S] S Very Slow
convergence was still slower than the time-invariant controllers. 7 | /L [S|S|S| O Very Slow
Results of the experiments with this controller for the singular 8§ | YII [G|G|G| G Good/Slow
mission are shown in Fig. 14.
B. Summary As indicated by the table, Controller 2 (when implemented

Table Il summarizes the results of the experiments. RN System Il) gave the most satisfactory performance for all
Table Ill the letters “E”, “N”, “S” and “L” stand for easy, missions. Its speed of response and the velocity commands
normal, singular, and long-distance missions respectively. “®ere always within acceptable limits. The implementation
stands for “excellent,” which means good speed of respon§@mplexity of all controllers was comparable, with the dis-
no oscillations either inz, ¥, or ~, reasonable control inputscontinuous Controllers 1 and 3 requiring the most care to
and natural trajectories. “G” stands for “good,” which meangvoid singularities. Controller 2 has a built-in mechanism that
that the convergence is acceptable, i.e., within 10 s. “S” star@iépids singular regions. Controllers 2 and 4 generated natural
for “slow,” which means that it took the robot more than 2@rajectories, i.e., similar to what a human operator would
seconds to converge. “C” stands for “chattering,” which meagétempt. However, as mentioned previously, Controller 4 was
that trajectories converged, but there was too much chattergsitive to sensor noise, resulting in relatively large limit
in the velocity commands. “O” stands for “oscillatory,” whichcycles of the heading angle around the origin. Time-varying
means that the trajectory oscillated around the origin. “Ueontrollers generated oscillatory paths, and all of them showed
stands for “unstable/unsatisfactory” response. slow convergence, especially close to the origin. Among
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the time-varying controllers, Controller 8 exhibited the bedbllows that (A1) cannot have finite escape times. Equivalently,
performance and speed of response. The implementationz9f+ x2 cannot become zero in finite time. It follows that the set
this controller presented the most difficulties, however, becauB¥, is positively invariant for System Il with Controller 1.

of the requirement to update the parameteof the dilation In order to show convergence, l&¥(xy,z2,23) =
operator (see [12]) using a Newton method at each time step(1/2) (a:% + x%)Q + s2. The derivative ofi” along System | is
given by

VII. CONCLUSIONS .

_ _ V=LV(z)=-2k (x% + x%)Q —pus? < —4V(z) <0

In this paper, we have experimentally tested several stabi- v Do
lizing controllers for a unicycle-type mobile robot. In theory, T eV
all controllers ensure (at least) some form of local asymptoligherey = min{4k,u} > 0. This shows that System | with
stability/convergence. In our experiments, several of these c@ntroller 1 is almost exponentially stable with respect to the
trollers exhibited oscillatory or even unstable behavior. Seveigdtpy_(recall that the seb?_ is positively invariant for System
issues contributed to this, including motor dynamics, sensgfjith Controller 1 [17]).
and quantization errors, actuator dead zone, etc. By applyingrhe derivative ofV along the closed-loop trajectories of

several techniques (such as inverse dead zone, scaling, e&ystem Il is given by = L;V(z) + L,V (z), where
the performance of most controllers improved significantly. All

time-varying controllers except the controller in [12] were too  LgV(z) = -2 (xf + x%) z1@3u2(x) + swazgua ().
slow and oscillatory for most practical purposes. In fact, this . . . .
controller was the only time-varying controller with acceptablé stra|gh'tforward calculation .Sh.OWS thByV(z) is bounded in
performance and speed of response. The two time-invariant cGEY nqghborhood of _the_ O”grm' 5 1T
trollers presented in this paper showed consistently good per0NSider now the dilatiomiz = [)‘af,l’ Az, Nws]”
formance for all missions, if implemented properly. Of course?Sing this dilation, one can verify thai (Ajz) = dua(x) and

T J— . . _
more experiments are required to confirm these conclusions 2 (Afz) = ua(z). Thus, the control Iayv n ,(5) is homoge
neous to degree one with respect to the dilatidp:. Moreover,

sinceL sV (ALx) = A*LyV(z)andL,V (ALz) = AL,V (x),

thenL,V andL,V are homogeneous functions of degrees four
In this section, we make use of the theory of homogand six, respectively.

neous systems and dilation operators; see, for exampleConsider now the homogeneous nopr) associated with

[12] for a detailed discussion on the subject. For our puthe given dilationA}.2 We claim that there exists > 0 such

poses, it suffices to say that for any set of positive scalatsat for all0 < p(z) < ¢, |L;V(z)| > |L,V (z)|. To prove this

r; > 0,4 = 0,...,n, the dilation operato\}, is defined as result, we first show that

APPENDIX

Atz = [A\mzy A™zy ... Xz, |7, A > 0. The homo-

geneous norm associated with the dilatif) is a continuous min Ly V()] > 1
function p: R — R, such that 1p(x) > 0, andp(z) = 0 play=c \| |LgV ()|

if and only if x = 0; and 2)p(A%Lz) = Ap(z). Such anorm =

always exists. A vector fiel: R* — R is homogeneous of implies

degreek with respect to the dilatio\} if f(A%Lz) = A f(z). LV (2)]

We are now ready to provide the proof of Proposition 2. ,;E%IEC L,V ()] > 1.

A. Proof: Proposition 2 To this end, let any: such thap(z) = ¢, and consider the set of
Let f(x) = [ui(x), wa(z), ziue(x)]¥ and g(x) = pointsy = ALz for 0 < A < 1. Notice thatp(y) = p(ALz) =
[—z3ua(x), 0, 0]F, wherew,(x) andua(z) as in (5). Then Ap(z) < c. Conversely, for every with p(y) < ¢, there exists

the equation for System | is given by = f(z), and the 0 < A < 1 such thaty = A%z with p(z) = ¢. From the
equation for System Il is given by = f(z) + g(z). Let homogeneous properties bV andL,V, it now follows that
U(z) = (1/2) (#1 + 23 + 23). The derivative of/ along the

trajectories of System Il is given by = —k (22 +3) < 0 LVl _ [ILV(AR)] _ 1 []LyV (o)
for all z € D, := R¥}\DL,. It follows that the closed-loop |L,V (y) |L,V(ATz)| — AV L,V (z)
trajectories are bounded insi@¥_. 1 .V 1
Let now¢ = 1/ (#1 + 23). Along the closed-loop trajecto- >> min |LsV (@) S>>,

ries of System Il with Controller 1, one can verify that Ap@)=e | [LgV(z)] = A

. #12g 72 To complete the proof of our claim, let

¢ =2k(—2k < 5 2) 73— 24 <ﬁ) z3s¢?. (AL)

i +T) Ty + a3 A . |LsV ()| (A2)
= min — -

Notice that the terms in parentheses are bounded in any neigh- ple)=1 \| |LgV ()|

b20rh00d of the origin. From the '”eql_la'l*9 _2|‘?|/4C < 38 < 2As usual,L V" denotes the Lie derivative of the functidhalong the vector
s° + |s|/4¢, it follows that the coefficient of* in (Al) is non- field f.

positive for large.. Hence{ < 0 for large¢, and since > 0 it 3Choose, for instance(«) = (% 4+ 21 4+ «2)/*.
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SinceL;V(z) = 0ifand onlyifz = 0 andL,V (z) is bounded B. Proof: Proposition 4

on every neighborhood of the origin, it follows th&t > 0. If First, the fact that the control inputs are boundediy+ 4
A" > 1,letc = 1andthe result follows. Otherwise, let a positivgy o s directly from (8).

scalarc such thate < A* < 1 anti consider the se(z) < c. Next, consider the radially unbounded, positive-definite func-
Noticing that{z : p(x) = c} = {Acy : p(y) = 1}, 0ne obtains ion v — ;2 4 42 4 42 |ts derivative along (4a) with control
that for anyz such thafp(x) = ¢, the following holds: law (8) is calculated as

(

(
. |LfV ()] 1LVl A ' < 1 )

min == min — /= — > 1. V =221 | -k———= + psato(s,v

sorme | LV (@) ~ stwmr e\ LV ()~ e ' RS 2(:7)

Hence + 229 <—k$72 — psaty (s, 1/))
Vi +1
3 + 3
min M > 1. =- Qk% <0. (A5)
p@)<e \| |LgV (2)] w7+ +1

Therefore, there always exists a neighborhood of the origin suthe previous equation holds, regardless of whefhex 1 or
that |L;V (x)| > |L,V(x)|. SinceL;V(z) < 0, this implies [7] = 1. In particular,V" = 0 if and only if z € D, U {0}.
that there exists > 0 such that’ = LV (z) + L,V (z) < 0 Global stability follows.

for all z € (R\DY) n B.. This implies local al- Inequality (AS) implies that,, x», andx3 remain bounded.
most asymptotic stability about the origin. Consequentlginceu; andu; are bounded;; andi; are also bounded. Thus,
limy oo (21 (), 22(t), 23(t)) = 0. 21 andz» are uniformly continuous/ is also uniformly contin-

In order to show that the control inputs remain bounded f&ous. Moreover, the limit ot exists sincé” is bounded from
u > 2k > 0, it suffices to show thay in (7) remains bounded below and nonincreasing. From Barbalat's Lemma [7], it fol-
along closed-loop trajectories. From the previous analysis, it fé@ws thatlim, ... V'(¢) = 0. We conclude that, andx> go to
lows thatn cannot go to infinite in finite time. We next show thatZ€ro.

7 remains bounded for atl> 0. First, notice that From (A5), we have that; andz; go to zero, and:; remains
bounded. Sinc& has a limit, it follows thatim; ... z3(t) =
t _ = A
lim |.’L’1(t)||7’](t)| = lim |J}1( )| |S t)| 3 E‘ R. Suppose thatl(t) =0forallt >T. Thena:l(t) =0
t—oo t=oo \/22(t) + x3(t) andz3(t) = Oforallt > T as well. Let us assume thag(t) =
< lim |s(¢)| = 0. Zg # 0forall ¢ > 7. Notice that in this case;; cannot become
T t—oo

identically zero fort > T, since fromzy = uy = 0 it follows
Hence |z:||n| — 0 ast — co. Therefore, for every > Othere thatsgn(zs) = 0, a contradiction. From the definition af;,
existsT” > 0, such thatz (t)||n(t)| < ¢/(k +p) forallt > 7. and substituting:; = 0 andz3; = 73 in (8), it follows that
A simple calculation shows that % i
min< 1, |—| p = ———|Z3||z
%ddi; =—(%—k)n2—§$;n2— <%+§>92n2 { e } NCESu
9 i 9 which is a contradiction. Hence, if; # 0, z; cannot converge
_Ho <1 + %) n® — kén® — Eexgn - ,f_;n‘* to zero in finite time. Continuing this reasoning # 0, and
2 v 4 v sincex; — 0andz, — 0, the following expressions hold inside

9
wheref = zix2/+/22 + 23 andv = /2% + 23. From the P&

vi>T

inequalities|f| < |z;|, (i = 1,2), andz?/1? < 1, it follows . To z1
tha? 61 < il ) s @1 =psgn(s)—= + psgn(zs) s + O(|v])
. X
i 2 = — psenas) 2 + O() (16)

k x3
> = —anf? + |z [Inf® + Z|9|$§|77| - NV—§774 (A3)
. whereO(|x|P) denotes a term of ordex, i.e., f(z) = O(|z|”)
wherec := /2 — k > 0 andn := pu + k. Sincex; andw» are  if lim,, ., f(z)/|z[P = ¢ € R and where we have used the

bounded, there exists > 0 such thafxz;(t)| <c¢; forallt = 0, fact thatsgn(s) = sgn(xs) for 1, z sufficiently small (but

wherei = 1,2. Consequently nonzero). Using the previous expressions one obtains that
1 dn? 2 2 ks 2t 4 xi
3 ST e + el = pgn v = il + O A7)

3
< = (a=¢)n| <|77| - %) Vt=>T. (A4) where the first term in the previous expression is of o).
Hence, there exists a tim such that> > Oforall¢ > 7. In
Therefore, if for any timet > T, |n| becomes larger than other words, ift; # 0, there exists a neighborhood of the origin
ke3 /4(a— €), the derivative of) is negative semidefinite. Sincein thex; — x» space such that= /2% + x3 is nondecreasing
e is arbitrary, it follows that; is bounded along the closed-loopfor all ¢ > 1. This contradicts the fact that — 0 ast — .

trajectories ify > 2k > 0. m Hence, necessarilys = 0.
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(A7) also shows that there exists a neighborhood of tives

(i.e., |n| > 1), such that the vector field of the closed-loop

system points away from this axis. In additionzit D?_ (i.e.,
v = 0 ands # 0), the control law (8) reduces tg = psgn(s)
anduz = —psgn(s) with i > 0. Sinces # 0, it follows that if
z(t) € D* for somet > 0, z(t+) ¢ D", andx leavesD?_. In
other words, with the control law (8), the sBt_ is repelling.
SincedD?, = Db_u {0}, it also follows thatD?_ is invariantm
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