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Abstract—In the development of advanced driver-assist systems
(ADAS) for lane-keeping or cornering, one important design objec-
tive is to appropriately share the steering control with the driver.
The steering behavior of the driver must therefore be well char-
acterized for the design of a high-performance ADAS controller.
This paper adopts the well-known two-point visual driver model
to characterize the steering behavior of the driver, and conducts
a series of field tests to identify the model parameters and vali-
date this model in real-world scenarios. An extended Kalman filter
and an unscented Kalman filter are implemented for estimating
the driver parameters using either a joint-state estimation algo-
rithm or a dual estimation algorithm. The estimated parameters
for different types of drivers are analyzed and compared. The re-
sults show that the two-point visual driver model captures realistic
driving behavior with time-varying, but not necessarily constant,
parameters. A wavelet analysis of the driver steering command
shows that distinct driver classes can be identified by analyzing the
smoothness of the driver command using the Lipschitz exponents
of the recorded signals.

Index Terms—Extended Kalman filter (EKF), field test,
parameter estimation, two-point visual driver model, unscented
Kalman filter (UKF), wavelet signal analysis.

I. INTRODUCTION

MORE than six million motor vehicle crashes occurred in
the U.S. in 2014 alone, of which 27% resulted in injury

or death [1]. From 2014 to 2015, the total number of vehicle
crashes increased by 3.8%, and the number of fatal crashes in-
creased by 7% [2]. Another study, sponsored by National High-
way Traffic Safety Administration, investigated 723 crashes and
showed that driver behavioral error caused or contributed to
99% of these crashes [3]. Given the increased sophistication of
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automotive active safety systems, these studies show that driver
behavior still remains the most important factor contributing to
accidents. It is therefore necessary to understand, characterize
and, if possible, predict driver behavior so as to design better,
and more proactive (as opposed to merely reactive) advanced
driver-assist systems (ADAS). Nevertheless, driver modeling is
a difficult task since driver behavior is affected by different in-
dividual factors, such as gender, age, experience, and driver’s
aggression. Such diverse driver behaviors have a significant ef-
fect on the performance of ADAS [4], [5]. A controller for
vehicle handling stability should take into account the diverse
driver skills, habits, and handling behavior of different drivers,
and persistently provide good “intuitive” performance. In order
to characterize driver behavior, researchers have proposed dif-
ferent driver models based on several methodologies over the
past four decades.

Wier and McRuer [6] used transfer functions to describe the
result of the driver’s actions on the vehicle’s position error and
yaw angle, and built a quasi-linear model (crossover model) to
approximately describe the nonlinear steering behavior of the
driver. This model uses feedback control to eliminate the track-
ing error, but it does not take the driver’s preview behavior into
consideration. MacAdam [7], [8] assumed that the driver wants
to minimize a predefined previewed output error, and modeled
the driver’s steering strategy as an optimal preview process with
a time lag. Hess and Modjtahedzadeh [9], [10] introduced a
control-theoretic model for the steering behavior of the driver.
This model consisted of a preview component along with low-
and high-frequency compensation elements. The above models
successfully achieve lane-tracking using only lateral control;
braking is not considered in these works. Burgett and Miller
[11] designed and optimized a parameterized driver model us-
ing a multivariable nonlinear regression approach, based on data
collected from test tracks and driving simulations. This model
investigated the driver’s braking strategy in order to avoid rear-
end driving conflicts. Chatzikomis and Spentzas [12] proposed
a path-following driver model that regulated both the steering
wheel and the throttle/brake by previewing the path ahead of the
vehicle. In [13] and [14], model predictive controller (MPC)-
based driver steering models have been considered. Keen and
Cole [14], in particular, linearized the vehicle model at different
working points and used a multimodel structure to characterize
the ability of the driver to predict the future vehicle path. By
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using different combinations of the internal models, this MPC
achieves various driver expertise in the path-following task.

The driver’s mental work has also been taken into consid-
eration for driver modeling. In [15], Flad et al. proposed a
steering-primitive optimal selection driver model by defining
a set of elementary control primitives to describe the driver’s
neuromuscular system, limbs, and control actions. This model
assumes that the driver has a mental model of the vehicle and
the steering task and determines the optimal sequence of control
primitives to achieve the target maneuver. Different artificial in-
telligence approaches have also been introduced to model the
driver’s mental work and behaviors. In [16], Kageyama and
Pacejka evaluated the driver’s mental influence from the envi-
ronment with respect to a “risk level” and proposed a driver
model based on fuzzy control theory. Lin et al. [17] built a
neural network driver model and compared three typical model
configurations in great detail. More recently, Hamada et al. [18]
proposed a beta process autoregressive hidden Markov model
(HMM). This model was trained in an unsupervised way using
real driving data, and was used to predict the driving behaviors
of the drivers.

All previous driver control-theoretic models can be catego-
rized into the following three groups according to the method-
ology used to develop them.

1) Classical control theory such as [6], [9], and [10], where
the system is represented using transfer functions and the
stability is analyzed using frequency-response methods.

2) Modern control theory such as [7], [8], [11], [12], and
[14], where the system is represented in state space and
the stability is analyzed in the time domain.

3) Intelligent control theory such as [16]–[18], where the ar-
tificial intelligence approaches including neural network,
fuzzy logic, and HMM are used to develop the driver
models [19].

These driver models focus on three kinds of driving tasks, in-
cluding longitudinal control [11], lateral control [6]–[10], [14],
[15], [17], and combined longitudinal-lateral control [12], [16],
[18].

Recently, nonparameterized models such as neural networks
or HMMs have been used to predict driver behavior. They have
to be trained offline by using supervised/unsupervised machine
learning techniques and they typically need large amounts of
data. Furthermore, nonparameterized models are not very trans-
parent to the user and hence are not convenient for design-
ing driver-based ADAS controllers. The parameters of these
models are difficult to modify in order to characterize different
driving behaviors; instead, the model must be retrained using
new data to capture new driver types and driving styles. Pa-
rameterized, transfer-function-based driver models, such as the
crossover model [6], [20], the control theoretic model [9], and
the two-point visual driver model [21]–[23] on the other hand
are better for control design tasks, since they are easy to use (they
are quasi/linear), and their parameters correspond to measurable
physical variables that relate to meaningful performance param-
eters. Among these driver models, the two-point visual driver
model is considered to have both satisfactory model accuracy
and good identification feasibility [24].

The two-point visual driver model used in this paper is de-
rived from the concept of the two-level steering mechanism
observed in a series of psychological experiments involving
human drivers [25]–[27]. In [25], Donges divided the driver’s
steering task into a guidance level and a stabilization level, and
thereby built a two-level steering model. The guidance level
interprets the driver’s perceptual response with respect to the
oncoming road in an anticipatory open-loop control mode. The
stabilization level interprets the driver’s compensatory behav-
ior with respect to the deviation from the reference path in a
closed-loop control mode. This idea has been widely accepted
and has been further developed by subsequent researchers [22],
[23], [26]–[28]. Among these researchers, Salvucci [23] first in-
troduced the concepts of visual “near point” and “far point” into
the model. By taking appropriate choices of the “near point” and
“far point,” the two-point visual driver model achieves different
tasks such as lane tracking [23] and collision avoidance [29].

The contributions of this paper can be summarized as fol-
lows: First, the paper adopts the two-point visual driver model
from [22], since this model characterizes driver steering behav-
ior more precisely. This driver model combines both a two-level
visual strategy and high-frequency kinesthetic feedback. The
latter accounts for the interaction between the driver’s arms and
the steering wheel [9]. Saleh et al. in [21], [30], [31] also adopted
the two-level visual strategy, but instead of the high-frequency
kinesthetic feedback in [9], [22], a well-designed neuromuscu-
lar system was used. The identification of the parameters of the
model in [30], [31], and [21] was done using simulated data. In
this paper, we show the validity of the proposed model by com-
paring with actual recorded driver data collected during field ex-
periments. Although previous work has validated the two-point
visual driver model and identified the driver model parameters
using a driving simulator [22], [30], this is the first instance that
the model is validated using actual field test data. Second, by
applying four different identification methods, namely, the joint
extended Kalman filter/unscented Kalman filter (EKF/UKF) and
the dual EKF/UKF [32]–[34] it is shown that the model param-
eters are indeed identifiable using minimal data, but that some
of these parameters are not necessarily constant but may vary
with time. Our results thus reveal that parameter-varying ver-
sions of the two-point visual driver model may provide a much
better explanation of actual human driver behavior. It is expected
that these observations will pave the way for online driver be-
havior and cognitive driver state identification, which can be
used downstream in the ADAS architecture in order to adapt
the controller gains to the specific driver/vehicle/traffic configu-
ration. Finally, we show that when comparing different driving
types, the smoothness of the driver steering command may be
a good discriminating feature for driver classification. Using
wavelet signal analysis, it is shown that different driver styles
correspond to different signal smoothness (i.e., degree of dif-
ferentiability), as measured by the rate of decay of the wavelet
coefficients. As far as we know, this is the first work that wavelet
analysis has been applied to determine driver categories.

The paper is structured as follows. Section II introduces the
mathematical modeling of the driver. Section III details the ap-
proaches used to identify the driver model parameters, while
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Fig. 1. Human-vehicle-road closed-loop system.

Section IV describes the equipment and the driving scenarios
used for the field tests. Section V outlines the data processing
task and presents the results. Section VI analyzes and compares
different driver styles. Finally, Section VII summarizes the re-
sults of this study and provides some directions for future work.

II. SYSTEM MODELING AND PROBLEM FORMULATION

The proposed human-vehicle-road system consists of four
subsystems, as shown in Fig. 1.

1) The driver model that exerts a steering torque on the steer-
ing wheel.
The steering column model that converts steering torque
to steering angle;
The vehicle model that provides the necessary position
and state information of the vehicle; and
The road and perception model that provides the road
geometry and kinematics, and also determines the driver’s
visual perception angles.

The input to the system is the curvature of the road ρref,
which can be treated either as an external reference command
to be tracked or a disturbance to be rejected, depending on the
problem formulation. The primary performance variable is the
lateral deviation Δy of the so-called “near point” directly in
front of the vehicle to the centerline of the road (see Figs. 1 and
2).

A. Driver Model

We use the driver model proposed in [22], which introduces
a kinesthetic force feedback from the steering wheel. The struc-
ture of this model is shown in the red rectangular box in Fig. 1.
The transfer functionsGa(s) andGc(s) account for the anticipa-
tory control and the compensatory control actions of the driver,
respectively. The system Gnm(s) approximately describes the
neuromuscular response of the driver’s arms. The “Delay”
block indicates the driver’s processing delay in the brain, and
the transfer functionsGk1(s) andGk2(s) account for the driver’s
kinesthetic perception of the steering system. The variables Tant

and Tcom denote the driver’s steering torques corresponding to
the anticipatory control and the compensatory control paths, re-
spectively; δs denotes the steering wheel angle; and the inputs
θnear and θfar denote the near-field and the far-field visual an-
gles, respectively (see Fig. 2). Finally, Tdr denotes the driver’s
total steering torque delivered at the steering wheel. The transfer

Fig. 2. Road geometries, vehicle states, and driver’s visual perception.

functions of the blocks shown in Fig. 1 are given below

Ga(s) = Ka, Gc(s) = Kc
TLs+ 1
TIs+ 1

Gnm(s) =
1

TNs+ 1
, Gk1 (s) = KD

Tk1 s

Tk1 s+ 1

GL(s) = e−tps , Gk2 (s) = KG
Tk2 s+ 1
Tk3 s+ 1

(1)

where Ka and Kc are static gains for the anticipatory and com-
pensatory control subsystems, respectively; KD and KG are
static gains for the kinesthetic perception feedback subsystems,
respectively; TL and TI (TL > TI) are the lead time and lag time
constants, respectively; Tk1 , Tk2 , and Tk3 are the three time con-
stants of the driver’s kinesthetic perception feedback from the
steering wheel, tp is the delay for the driver to process sensory
signals, and TN is the time constant of the driver’s arm neuro-
muscular system. Ka, Kc, KD, KG, TL, TI, TN, Tk1 , Tk2 , Tk3 ,
and tp are the 11 parameters of the driver model.

B. Road and Perception Model

The road and perception model interacts with both the vehicle
model and the driver model (refer to Fig. 1) and achieves two
functions: 1) It determines the vehicle’s position and posture
relative to the road geometry; and 2) it determines the loca-
tion of the driver’s near and far visual points on the upcoming
road. The near visual point is fixed at a certain distance along
the heading direction of the vehicle, while the far visual point
is taken as the tangent point on the inner road boundary for
driving on a curved road, or the vanishing point of the road for
driving along a straight road [23]. Fig. 2 illustrates the relations
between the geometry of driver’s visual perception, the vehicle
and the curved road [35], [36]. In Fig. 2, the frame XI-O-YI

is fixed on the road. It is assumed that the vehicle is cornering
with a certain lateral deviation from the road centerline. Let
ψ denote the vehicle’s yaw angle, let ψt denote the angle be-
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tween the tangent to the road centerline and the XI axis, and let
M denote the current position of the vehicle’s center of mass.
Let also A denote the driver’s “lookahead” point in front of
M at a distance �s along the vehicle’s heading direction, let B
denote the intersection of OA with the road centerline, let E
denote the intersection of AB with the tangent to the road cen-
terline, and let C denote the point of tangency of the line along
the gaze direction on the road’s inner boundary. Furthermore,
let Ls denote the distance between C and M, let θfar denote the
visual angle between the gaze direction of the driver from a far
away point and the heading direction of the vehicle, and let θnear

denote the near-point visual angle between MB and the heading
direction of the vehicle. Finally in Fig. 2, Δy denotes the length
of the line segment AB—the predicted deviation from the road
centerline at the near lookahead point if the vehicles continues
with the current heading, Rref denotes the radius of the road’s
inner boundary, d denotes the distance from M to the road’s in-
ner boundary, and D denotes the width of the road. Henceforth,
it will be assumed that d and D are small compared to Rref.
From Fig. 2, the near- and far-distance visual perception angles
can be approximated as [22], [25], [35]–[38]

θnear ≈ Δy
�s

(2a)

θfar ≈ Ls

Rref
+ Δψ ≈ Lsρref + Δψ (2b)

where ρref = 1/Rref is the road curvature, and Δψ = ψt − ψ is
the angle between the tangent of the road centerline and the
vehicle’s heading direction.

C. Problem Formulation

We formulate the driver parameter estimation problem based
on the driver model, road and perception model, steering
column model, and vehicle model summarized in the pre-
vious section. For notational simplicity, let p1 = Ka, p2 =
Kc, p3 = TL, p4 = TI, p5 = TN, and p6 = tp. The driver’s
near-field lookahead distance �s is also an important fea-
ture of the driver steering characteristics. We thus take �s

as an additional parameter, and let p7 = �s. We further let
p8 = KD, p9 = KG, p10 = Tk1 , p11 = Tk2 , and p12 = Tk3 for
the high-frequency kinesthetic feedback in the driver model.
Since the human driver has physical limits, each model

parameter is restricted to lie within some compact interval, pi ∈
[pi, pi ], i = 1, 2, . . . , 12. Let p = (p1 , p2 , . . . , p12)T ∈ P =
[p1 , p1 ] × [p2 , p2 ] × · · · × [p12 , p12 ] ⊂ R12 . The upper and
lower bounds (pi and pi) that define P are given in Table III.

The combined system of the driver model and the road and
perception model can be written in the form

ẋc = Ac(p)xc +Bc(p)uc (3a)

yc = Ccxc (3b)

where the system state is xc = (Δψ, δy, xd1 , xd2 , T
ff
dr,

xd3 , xd4 , T
fb
dr )

T, the input is uc = (ρ, β, r, δs)T, and the output
is yc = T ff

dr + T fb
dr = Tdr. In the previous expressions, T ff

dr and
T fb

dr denote the two components of the driver’s steering torque,
resulting from the feedforward path and the feedback path of
the driver model, respectively. Specially, referring to Fig. 1, T ff

dr
and T fb

dr can be expressed as follows:

T ff
dr = (Tcom + Tant)GLGnm (4a)

T fb
dr = −δsGk1 (1 +Gk2 )Gnm. (4b)

By measuring uc and yc, we can identify the driver parameter
vector p in (3a) and (3b). To this end, we define an alternative
parameter vector ν = (ν1 , ν1 , . . . , ν12)T as follows:

ν1 =
1
p4
, ν2 =

1
p6
, ν3 =

1
p5
, ν4 =

p1

p5

ν5 =
p2p3

p4p6p7
, ν6 =

p2

p4p7
, ν7 = p7 , ν8 = p8

ν9 = p9 , ν10 =
1
p10

, ν11 = p11 , ν12 =
1
p12

. (5)

The mathematical expressions in the sequel can be simplified
by using ν instead of p. The system matrices in (3a) and (3b) are
given explicitly by (6). It is worth mentioning that,Vx is assumed
to be constant in (6). One can add Vx to the input vector uc for
varying velocity cases.

Since we are interested in identifying the parameter vector ν,
we augment the state with ν and define the new augmented state

[
Ac(ν) | Bc(ν)
Cc | 0

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 | Vx 0 −1 0
Vx 0 0 0 0 0 0 0 | Vxν7 −Vx −ν7 0
0 ν6 − ν1 ν5

ν2
−ν1 0 0 0 0 0 | 0 0 0 0

4 ν2 ν4
ν3

4ν5 4ν2 −2ν2 0 0 0 0 | 4L sν2 ν4
ν3

0 0 0
−ν4 − ν5 ν3

ν2
−ν3 ν3 −ν3 0 0 0 | −Lsν4 0 0 0

0 0 0 0 0 0 0 −ν3ν10ν12 | 0 0 0 0
0 0 0 0 0 1 0 −ν3ν10 − ν3ν12 − ν10ν12 | 0 0 0 −ν3ν8ν12(ν9 + 1)
0 0 0 0 0 0 1 −ν3 − ν10 − ν12 | 0 0 0 −ν3ν8(ν9ν11ν12 + 1)
0 0 0 0 1 0 0 1 | 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)
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x = [ (xc)T νT ]T. The augmented-state system is then given by

ẋ =

[
Ac(ν)

0

]
x+

[
Bc(ν)

0

]
u (7a)

y =
[
Cc 0

]
x (7b)

where u = uc. Notice that although the system in (3a) and (3b)
is linear, the system in (7a) and (7b) is nonlinear, since the
matrices Ac and Bc depend on the augmented state x. If we
discretize the system in (7a) and (7b), we obtain the following
discrete augmented system with additive noise terms

xk+1 = AD(ν)xk +BD(ν)uk + wk (8a)

yk = CDxk + vk (8b)

where wk and vk are the process noise and the measure noise,
respectively. As usual, these noise terms are included to model
neglected/unmodeled uncertainties.

In the following sections, we estimate the state vector of the
system in (3a) or (7) based on the available data, subject to the
following constraints:

pi � gi(ν) � pi, i = 1, 2, . . . , 12 (9)

where gi(ν) is the ith element of the vector-valued function g(ν)
given by

g(ν) = [ 1/ν1 1/ν2 1/ν3 ν4/ν3 ν5/(ν2ν6)

(ν6ν7)/ν1 ν7 ν8 ν9 1/ν10 ν11 1/ν12 ]T. (10)

Note that some of the parameters in the feedback model, in
particular in the neuromuscular system Gnm(s), can be con-
sidered to be constants that do not change significantly from
driver to driver [9], [39]. These parameters will be discussed in
Section VI-A.

III. DRIVER PARAMETER ESTIMATION

In this section, we use a joint EKF/UKF and a dual EKF/UKF
to estimate the system states and obtain the unknown driver pa-
rameters. The joint EKF/UKF includes the unknown parameters
into the original state vector and then estimates the states and
the parameters simultaneously. The dual EKF/UKF separates
the states and the parameters, so as to estimate the states and the
parameters separately.

A. Nonlinear Kalman Filter

The EKF is a classical approach to solve nonlinear estimation
problems. This is achieved by means of linearizing the nonlin-
ear state transition and nonlinear observation models. Let the
discrete system

xk+1 = f(xk , uk , wk ) (11a)

yk = h(xk , uk , vk ) (11b)

where wk and vk are the process noise and the measure noise,
respectively, both of which are assumed to be with zero-mean

white Gaussian with covariances given by

E(wtwT
s ) = Qwδts , E(wtvT

s ) = Qcδts , E(vtvT
s )=Qvδts

(12)
where Qw , Qc, and Qv are the covariance matrices and δts is
the Kronecker delta function defined by

δts =

{
1, if t = s

0, if t �= s.
(13)

We assume that wt and vs are independent Gaussian random
variables and hence the cross term Qc in (12) is zero. The state
estimates can then be computed using the EKF algorithm [34].

An alternative to EKF is to use an UKF. A UKF implements
the unscented transform (UT) [32], and avoids calculating the
Jacobian matrices at each time step. Hence, it captures the true
mean and the covariance of the state Gaussian random variable
to at least second-order accuracy for any nonlinearity. Let us
consider the system in (11a) and (11b). The UKF redefines the
state vector as xak = [xT

k , w
T
k , v

T
k ]

T and estimates xak recursively.
The UT sigma point selection scheme is applied to calculate the
sigma matrix X a

k for the augmented state xak .
Although the UKF-based algorithms (joint/dual UKF) are

expected to have better accuracy, the choice between the joint
estimation and the dual estimation is still not clear, since they
show different performances when they are applying to different
problems. More discussions can be found, for instance, in [32],
[33].

B. Nonlinear State Constraints

Recall that the parameter vector ν to be estimated is con-
strained by the nonlinear inequalities in (9). The Kalman filter-
ing constrained state estimation problem has been solved using
a number of algorithms [40]–[42]. The available approaches for
solving linear equality constraint problems include model reduc-
tion [43], perfect measurement [44], estimate projection [40],
system projection [45], and soft constraints [46]. The available
methods for solving nonlinear equality constraints problems
include Taylor expansion approximation [47], smoothly con-
strained Kalman filter [48], moving horizon estimation [49],
unscented Kalman filtering [50], and particle filters [51]. In this
study, we use the estimate projection algorithm and the first-
order Taylor expansion approximation method to solve the state
estimation problem with nonlinear inequality constraints in (9).

Geometrically, the idea is to project the unconstrained esti-
mate x̂(k) onto the constraint surface. Mathematically, we solve
the following minimization problem:

x̃k = argmin
x

(x− x̂k )TW (x− x̂k ) (14a)

such that g(x) � b (14b)

where x̂k and x̃k are the unconstrained estimate and the con-
strained estimate of the state at the time step k, respectively,
W is the weighting matrix, and g : Rn → Rm is a nonlinear
vector-valued function. Performing a Taylor series expansion of
(14b) around x̂(k), yields

g(x) ≈ g(x̂k ) + g′(x̂k )(x− x̂k ) + · · · , (15)
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Fig. 3. Proving ground by the Google map.

and after ignoring higher order terms, we obtain a linear approx-
imation of the constraint inequalities in (14b)

g′(x̂k )x � b− g(x̂k ) + g′(x̂k )x̂k . (16)

The minimization problem (14a) subject to the linear inequal-
ity constraints in (16) can be solved using standard quadratic
programming [11], [52].

IV. FIELD TESTS

Several field tests were conducted to validate the previous
driver model. The field tests took place at the ford dearborn
proving ground (DPG) in Michigan during November 2015. The
Ford DPG is about 1750 ms from West end to East end and about
900 m from South end to North end. The width of the double-
lane road is about 6 m. Three kinds of tests were conducted.
A steering handling course (SHC) test, a fixed-radius circling
(FRC) test, and the public road test (PRT). The SHC and FRC
tests were conducted at zone 1 and zone 2 of the proving ground,
respectively (see Fig. 3). Three vehicles differing in size and
engine power were prepared and were driven by a professional
driver mimicking three different types of drivers having distinct
driving skills (novice, experienced, and racing). This was done
mainly for safety reasons, as untrained novice drivers were not
allowed to use the DPG. Consequently, a natural next step along
this research direction would be the collection of more data
(primarily from untrained novice drivers on the road) in order
to further corroborate the conclusions of this paper.

In both the SHC test and the FRC test, the driver was re-
quired to maintain the vehicle at a constant velocity throughout
the road, while in the PRT test, the driver drove freely on a
section of a prechosen public road, considering the specific traf-
fic conditions. The proving ground, the experimental vehicles
and the drivers were provided by the Ford Motor Company.
Fig. 4 shows the experimental vehicles and the main equipment
used for the tests. All data were collected through a controller
area network (CAN) analyzer that interconnected the computer
and the in-vehicle CAN buses. There are two CAN channels,
namely, the HS-CAN and INFO-CAN channel, both of which
have a data transfer rate of 500 [kB/s]. The HS-CAN con-
nects to most of the regular on-board electronic control units
(ECU), such as the antiskip braking system (ABS), the electric
power assisted steering (EPAS) system and the restraints control

Fig. 4. Experiment vehicles and some apparatus. 1st row: Fiesta (left), MKS
(medium), F150 (right); second row: power source (left), power converter
(medium), CAN case (right).

Fig. 5. Illustration of the CAN network on MKS.

TABLE I
SHC (CONSTANT VELOCITY); CW=CLOCKWISE, CCW=COUNTER

CLOCKWISE

module (RCM). These ECUs share the data on the HS-CAN bus.
The INFO-CAN connects to the in-vehicle communications and
entertainment system—called the SYNC system, which incor-
porates the global position system (GPS) and the navigation
module.

The data collected during the tests were the steering wheel
angle, the steering column torque, the yaw rate, and the longi-
tude and the latitude of the vehicle. The signals of the steering
wheel angle and the steering column torque were provided by
the EPAS, the yaw rate signal was provided by the RCM and
position information was provided by the on-board GPS system.
Additional variables such as the vehicle yaw angle, the veloc-
ity/acceleration of the vehicle, the side slip angle, and the road
curvature were estimated based on the yaw rate and the GPS
position data. The CAN bus network of the MKS is shown in
Fig. 5. The setup of the test conditions for the SHC, FRC, and
PRT tests are summarized in Table I.
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Fig. 6. Illustration on the different coordinate systems.

V. DATA ANALYSIS AND RESULTS

In this section, we summarize the data processing step from
the driving tests and we apply the joint EKF/UKF and the dual
EKF/UKF to estimate the parameters of the assumed driver
model. Based on the data analysis, a refined driver model is
proposed to better reproduce the actual steering wheel torque
command of the driver.

A. GPS Data Processing

Since the road curvature and the side slip angle of the vehicle
were not directly measured, we first obtain the missing values by
processing the GPS data, which are given in the form of latitude
and longitude. We refer to the method proposed in [53], by
which the GPS coordinates are transformed to local navigation
coordinates East, North, and Up (ENU) (in this paper, the height
is zero since the vehicle is traveling on the ground). Three useful
coordinate systems used in this transformation are shown in
Fig. 6, namely, the World Geodetic System 1984 (WGS84), the
Earth Centered Earth Fixed (ECEF) system and the ENU system.
The WGS84 system expresses the position vector in terms of
the longitude, the latitude and the height (φ, λ, h) of the vehicle,
while the ECEF system is in terms of the vehicle Cartesian
coordinates (x, y, z). The ENU system is represented locally,
which usually works as the navigation coordinate system.

We first converted the GPS coordinates to ECEF coordinates
using the following equations:

x =
a cosφ cos λ

χ
, y =

a cosφ sin λ

χ
, z =

a(1 − e2) sinφ
χ

(17)
where χ =

√
1 − e2 sin2 φ, a ≈ 6.39 × 106 [m] and e2 ≈

6.69 × 10−3 are the semimajor axis and the first numerical ec-
centricity of the earth, respectively. By performing a Taylor
expansion of (17) about φ and λ and omitting terms higher than
second order, we obtain

We finally rotate the ECEF coordinates to obtain the ENU
coordinates using the following equations:
(
de

dn

)
=

(
− sin λ cos λ 0

− sinφ cos λ − sinφ sin λ cosφ

)⎛
⎝dx
dy
dz

⎞
⎠ .

(19)
The trajectory of the vehicle can be obtained by integrating

the ENU coordinates de and dn in (19). The side slip angle β is
estimated using the equation [54]

β = arctan
(Vy

Vx

)
− ψ (20)

where Vx and Vy are the longitudinal velocity and the lateral
velocity of the mass center of the vehicle chassis, respectively,
and ψ is the yaw angle. The road curvature ρ is calculated by

ρ =
Y ′′

cog

(1 + Y ′2
cog)3/2 (21)

where Y ′
cog = ∂Ycog/∂Xcog, Y ′′

cog = ∂Y ′
cog/∂Xcog, andXcog and

Ycog are the coordinates of the vehicle in the local ENU system.

B. Driver Parameter Identification

This section shows the results from the previous driver pa-
rameter identification and validation procedure, and provides a
comparative analysis. Before processing the field test data, we
first implemented the identification approach on a set of data
obtained from CarSim/MATLAB simulation. This was done in
order to confirm the correctness and limitations of the identifi-
cation algorithm.

1) CarSim Data Processing: The vehicle model used in
the simulation was configured with CarSim 8.0 [55] and was

dx = −a cos λ sinφ(1 − e2)
χ3 dφ− a sin λ cosφ

χ
dλ +

1
4
a cosφ cos λ(−2

− 7e2 + 9e2 cos2 φ)dφ2 − a sin λ sinφ(1 − e2)
χ3 dφdλ − a cos λ cosφ

2χ
dλ2

dy = −a sin λ sinφ(1 − e2)
χ3 dφ+

a cos λ cosφ
χ

dλ +
1
4
a cosφ sin λ(−2

− 7e2 + 9e2 cos2 φ)dφ2 − a cos λ sinφ(1 − e2)
χ3 dφdλ − a sin λ cosφ

2χ
dλ2

dz =
a cosφ(1 − e2)

χ3 dφ+
1
4
a sinφ(−2 − e2 + 9e2 cos2 φ)dφ2 . (18)
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TABLE II
CONSTANT PARAMETERS OF THE SYSTEM

m Mass of vehicle 1653 kg

�f Distance from center of gravity to front axis 1.402 m
�r Distance from center of gravity to rear axis 1.646 m
Ls Distance from center of gravity to far-field visual point 15 m
Iz Moment of inertia of the vehicle 2765 kgm2

Js Moment of inertia of the steering column 0.11 kgm2

TABLE III
DRIVER MODEL PARAMETERS; JEKF=JOINT EKF, DEKF=DUAL EKF,

UB=UPPER BOUND, LB=LOWER BOUND

Parameter JEKF ©s JEKF JUKF DEKF DUKF UB LB

Ka [Nm] 56.56 22.10 21.62 21.29 21.29 100 5
Kc [Nm] 19.82 149.87 152.35 151.88 150.96 200 5
TL [s] 0.90 0.33 0.34 0.33 0.33 5 0
TI [s] 0.48 0.26 0.26 0.26 0.26 0.5 0
TN [s] 0.30 0.18 0.19 0.19 0.20 0.3 0.01
tp [s] 0.19 0.11 0.11 0.11 0.11 0.5 0.01
�s [ m ] 3.47 12.06 12.16 12.25 12.07 15 3
KD [Nm] 1.50 0.37 0.27 0.11 0.31 1.5 0.1
KG −0.41 −0.74 −0.64 −0.79 −0.43 −0.4 −1.5
Tk1 [sec] 1.05 1.50 1.54 1.97 1.57 6 1
Tk2 [sec] 5.13 3.82 3.71 3.42 3.81 6 1
Tk3 [sec] 0.01 0.01 0.01 0.01 0.01 0.03 0.01

Fig. 7. Data, the training curve, and the simulated curve for the steering wheel
torque.

initialized with a constant speed of 15 [m/s](54 [km/h]). Other
vehicle constants can be found in Table II. In addition, we as-
sumed a high-adhesion asphalt pavement with a constant friction
factor of 0.89 for all simulations. The length and the width of
the road were configured as 1000 [m] and 6 [m], respectively.
A path composed of a sequence of straight segments, circular
segments, and clothoids was given as an input. The configured
road curvature was obtained through a sensor provided by Car-
Sim. Since the road curvature data from CarSim are noisy, we
applied a first-order lowpass filter with a cutoff frequency at
2.5 rad/s to eliminate the noise before inputting this signal to
the driver model.

After collecting the necessary simulation data, namely, the
steering wheel angle δs, the road curvature ρ, the side slip angle
β, and the yaw rate r in the input vector uc, and the steering
wheel torque Tdr in the output yc. We then implemented the joint
EKF to estimate the driver model parameters. The results are
given in Fig. 7. We only show the results of the joint EKF here,
since the results given by the other filters were quite similar. In
Fig. 7, the blue dashed curve shows the steering wheel torque

Fig. 8. Data, the training curve, and the simulated curve from the Joint/Dual
E-/UKF.

from the data, the green dot-dash curve shows the estimation of
the steering wheel torque during the training process, and the
red solid curve shows the validation result, which is obtained by
using the identified driver model parameters from the training
process in the simulation. The simulated result agrees well with
the data. The identified driver model parameters are given in the
second column of Table III.

2) Field Test Data Processing: We processed the field test
data using the joint EKF, the joint UKF, the dual EKF, and
the dual UKF separately, so that we can compare the identified
driver parameters obtained from these four different methods.
For instance, we took the set of data from the SHC tests corre-
sponding to the conditions of a “Racing Driver” with a constant
velocity of 45 [mph] in Table I. In each implementation, we
used the first 60% of the data for parameter training and then
used the remaining 40% of the data for validation.

By designing the appropriate Kalman filter parameters, such
as the process noise covariance, the measurement noise covari-
ance, and the initial state covariance matrix, we obtained rea-
sonably good estimation of the parameters. The process noise
covariance is considered to be the most critical, and therefore
had to be carefully tuned [56], [57]. Fig. 8 illustrates the steer-
ing wheel torque from data, the training curve for each filter,
and the simulated output corresponding to the identified model
parameters. The green dashed plots in Fig. 8 show how the pre-
diction of the steering wheel torque at the current time step,
provided by the joint/dual E-/UKF based on past data, agrees
with the current data. After about 1 min the prediction results
get stabilized and agree well with the data.

The trajectories of the estimated states (we only show the
driver parameters, and each parameter is scaled such that the
initial value is one) corresponding to the joint EKF are given
in Fig. 9. The red dash-dot plots in Fig. 8, which are drawn
to validate the identified driver parameters, agree well with the
data. Although one sees some difference between the validation
results and the data, the results are reasonable, since the param-
eters of the real driver may change slowly with time. This effect
is investigated next.
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Fig. 9. Time histories of the driver parameters during the training process.
Steady state is reached after 45 s.

Fig. 10. Data, the training curve, and the simulated curve from the Joint UKF.

C. Driver Model Refinement

Based on the results from the previous section, we refined
the model by assuming that the process noise for the parameter
vector ν is colored. To this end, we let

ν̇ = ζ, ζ̇ = ξ (22)

where ξ is a zero-mean white process noise and ζ is a colored
process noise with unknown time-varying mean. By discretizing
(22) with a sampling interval Δt, one obtains

νk = νk−1 + Δt ζk−1 , ζk = ζk−1 + Δt ξk−1 . (23)

If ξk−1 is uncorrelated with ζk−1 , ζk is colored process noise
in the sense that ζk is correlated with itself at different time steps
[58]

E(ζk ζT
k−1)=E(ζk−1ζ

T
k−1 + Δt ξk−1ζ

T
k−1)=E(ζk−1ζ

T
k−1) � Qζ

(24)
where Qζ �= 0 is the covariance matrix. For the noise ζ at
any two different time steps t and s (t > s) one obtains that
E(ζtζT

s ) = E(ζt−1ζ
T
s ) = · · · = E(ζsζT

s ) = Qζ , and hence one
can summarize the covariances for ζ and ξ as follows:

E(ζtζT
s ) = Qζ , E(ζtξT

s ) = 0, E(ξtξT
s ) = Qξδts (25)

where Qξ is the covariance matrix and δts is given by (13).
Equations (22) allow the parameter vector ν to drift with time.

We implemented all filters using this model and recorded the
estimates of ν at each time step. We then performed simulations
with the time-varying parameters. Fig. 10 shows the results for
the Joint UKF case. The results with the other filters are similar,

Fig. 11. Trajectory of the driver parameters with±2σ error during the training
process.

Fig. 12. Detail of estimate of �s along with the 2σ confidence bounds.

and are thus, omitted. Fig. 10 indicates that the parameterized
driver model with time-varying parameters characterizes the
driver’s steering behavior much more accurately. This implies
that the parameterized two-point visual driver model architec-
ture shown in Fig. 1 is valid, but the parameters are not nec-
essarily constant, and may vary slowly with time. The driver
parameters convergence with time, along with their 2σ-bounds,
are shown in Fig. 11. Fig. 12 shows in greater detail the estimate
(solid red line) and the confidence levels (blue dotted line) for
�s . The plots for the other parameters are similar. From Fig. 11
one observes that, although most of the parameters converge to
some constants, some of them exhibit drift, specifically,Ka,Kc,
and TL. This behavior accounts for the difference between the
simulation result (red line) and the test data (blue line) shown
in Fig. 8. In terms of driver parameter identification, this result
suggests thatKa,Kc, and TL are the most important parameters
to track in an online identification scheme.

VI. DRIVER COMPARISON AND ANALYSIS

Section V estimates the identified driver parameters using
four different nonlinear filters. Our main motivation for param-
eter estimation is to be able to distinguish the different driver
styles based on the identified driver parameters from experimen-
tal data. Empirical evidence suggests that one potential strong
distinguishing feature of driver style is the smoothness of the
applied steering command [59], [60]. In order to test this the-
ory, we first analyzed the driver’s steering behavior according
to the identified driver parameters, and we then analyzed the
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TABLE IV
DRIVER MODEL PARAMETERS

Parameter Ka Kc TL TI TN tp �s KD Kg Tk1 Tk2 Tk3

30 mph Racing 21.7 153.5 0.33 0.26 0.19 0.11 12.1 0.28 −0.66 1.57 3.72 0.013
Experienced 21.9 158.6 0.35 0.28 0.20 0.11 12.1 0.66 −0.40 5.95 3.73 0.013

Novice 17.1 113.5 0.25 0.20 0.15 0.10 8.7 0.37 −0.40 2.92 3.29 0.013

45 mph Racing 21.9 155.8 0.33 0.26 0.19 0.11 12.1 0.30 −0.66 1.53 3.72 0.013
Experienced 21.8 156.8 0.35 0.28 0.19 0.11 12.2 0.35 −0.78 2.31 3.73 0.013

Novice 17.4 121.4 0.27 0.21 0.16 0.08 8.8 0.33 −0.81 5.65 3.21 0.013

driver’s steering behavior by comparing the wavelet transform
of the control signals from different drivers, since it is well-
known that wavelet transform contains information about the
local smoothness of a signal [61].

A. Driver Parameter Analysis

Table IV shows the parameters for the racing, experienced
and novice driver in the SHC tests (MKS vehicle). Since some
of the parameters are varying with time (namely, Ka, Kc, and
TL), we only show their time-average values in Table IV.

From the tests shown in Table IV, one observes that Kc is
much larger than Ka. This indicates that in the lane-keeping
task the driver pays more attention to θnear than θfar, as expected.
This result may change, however, for a different driving task
[22]. In this section, we wish to compare the experienced driver
steering command with the novice driver steering command for
the same task. The question we wish to answer is whether we
are able to distinguish between these two (supposedly) distinct
driver styles by analyzing only the driver steering command.
From Table IV, one sees that the parameters Ka, Kc, TL, and TI

for the novice driver are smaller than that for the experienced
driver. The anticipatory gain Ka and the compensatory gain Kc

represent the attention the driver pays to θfar and θnear, respec-
tively. An increase of Ka leads to dθfar/dt < 0 (oversteering),
and the vehicle gets closer to the inner curb of the road. An
increase ofKc leads to more compensation (dθnear/dt < 0), and
the vehicle gets closer to the road centerline. Saleh et al. [30]
mentioned that Kc may depend on the driver’s cautiousness
(e.g., the driver avoids driving too close to the border line) and
small Kc leads to a great tendency to cut around the bends. The
parameters TL and TI define a lead compensation in the com-
pensatory control path of the driver. A larger TL corresponds
to higher compensation rate of θnear (the speed of θnear to reach
the desired value), but the system will be oscillating if TL is too
large [30]. TI determines the bandwidth of the frequencies of
θnear to be compensated. Small values of TI mean that the driver
compensates all frequencies including the high-frequency noise,
hence leading to an oscillatory system. If TI is large (TI < TL),
the bandwidth of the compensatory loop is narrow such that
most frequencies of θnear are filtered.

The Bode plots of the lead compensator Gc are shown in
Fig. 13. One sees that the magnitude of Gc for the novice driver
is the smallest and the center frequency is the highest. This
indicates that the compensatory control of the novice driver is
slow and the driver is more likely to compensate the high fre-

Fig. 13. Bode plots of Gc for the novice, the experienced and the racing
drivers, 45 mph.

quencies of θnear. The near field of view visual distance �s for
the novice driver in Table IV is smaller than that for the expe-
rienced and the racing drivers. This does not necessarily imply,
however, that the larger the preview distance �s the better. For
instance, Damveld and Happee [62] observed that the driver’s
compensatory behavior is reduced with increasing preview dis-
tance (5–100 [m]) and pointed out that, with a preview distance
above a certain point, the drivers no longer minimize the lateral
error but use the additional preview to obtain a smooth path. The
preview distance may also depend on the road geometry [63].

We analyzed the high-frequency feedback part Gfb =
Gk1(1 +Gk2) of the model (see Fig. 1), where Gk1 and Gk2
are given by (1). The Bode plots for the three drivers using the
identified parameters are shown in Fig. 14. Fig. 14 shows that
Gfb has phase lead and high pass properties, and the three Bode
plots look quite close to each other. Considering that the in-
put signal to Gfb (steering wheel angle) typically does not have
many high-frequency components, and the low frequencies are
filtered, only a narrow band of frequencies can effectively pass
through Gfb as feedback to the driver. This result indicates that
the effect of the high-frequency feedback may be small, and
hence the visual information is more important to the driver
than the steering feel in his/her hands during a lane-keeping
task. Fig. 14 also indicates that the parameters in Gfb do not
distinguish between the drivers since the Bode plots are close
to each other. We may thus be able to fix the parameters in
Gfb to represent the steering behaviors of different drivers, as
in [9], [22], where KD and Tk1 are considered to be constants
(i.e., KD = 1, Tk1 = 2.5). It is worth mentioning that, besides
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Fig. 14. Bode plots of Gfb for the novice, the experienced and the racing
drivers (45 mph).

Fig. 15. Plots of Ka versus Kc for the three types of drivers.

KD and Tk1 in [9], [22], the time delay tp and the parameter TN

in the neuromuscular system are also treated as constants (i.e.,
tp = 0.151, TN = 0.11).

Fig. 15 shows the plots of Ka versus Kc. As shown from
the analysis of the experimental data in Section V-C, the gains
Ka and Kc drift with time. Furthermore, the parameters of the
novice driver change faster and take values in a larger range
than both the experienced driver and the racing driver. This
result may indicate that, at least for a lane-keeping task, the
steering behavior of the experienced driver and the racing driver
is smoother than the novice driver. To confirm this conjecture,
in Section VI-B we perform a wavelet analysis of the control
signals of the experienced/racing driver and the novice driver
and compare the two.

B. Wavelet Analysis of Driver Steering Torque Command

In this section, we compare the steering commands of the
novice, experienced and racing drivers in terms of their fre-
quency characteristics, and local smoothness properties. Recall
that the continuous wavelet transform (CWT) for a given signal
f at scale s � 0 and translation τ ∈ R is written as [64], [65]

Wf(s, τ) =
1√
s

∫ +∞

−∞
f(t)ψ∗

( t− τ

s

)
dt (26)

where ψ∗ is the complex conjugate of the mother wavelet ψ.
Many available wavelet bases can be used, such as Morlet, Paul,
Haar, Daubechies, Coiflets, and Symlets [66], [67].

Fig. 16 shows the steering wheel torques for the novice, expe-
rienced and racing driver, respectively. In order to compare the
frequency content of the signals, we performed a CWT of the

Fig. 16. Steering wheel torque of the racing, experienced and novice driver
(MKS, 45 mph).

Fig. 17. Wavelet transform ofTdr of the racing (above), experienced (medium)
and novice (below) driver.

steering wheel torques shown in Fig. 16 using the real-valued
Daubechies wavelet 3 function with respect to (26). The graphs
of the absolute coefficients of the CWT of the steering wheel
torques in Fig. 16 are shown in Fig. 17. The color regions of the
graph indicate the local modulus maxima. The results in Fig. 17
show that, in the same SHC, the CWT of the control signal of
the novice driver has more local maxima than the experienced
and the racing driver. This may be used to evaluate the perfor-
mance of the steering behavior of the driver. The local maxima
can be used to detect the position of the local singularities, as
well as to determine the associated Lipschitz exponents using
the following theorem [61].

Theorem 6.1: Suppose that the wavelet ψ(t) is the nth
derivative of a smooth function, is n times continuously dif-
ferentiable, and has compact support. Let f(t) be a tempered
distribution whose wavelet transform is well defined over [a, b],
and let τ0 ∈ [a, b]. Assume that there exists s0 > 0 and a con-
stant C, such that for all τ ∈ [a, b] and s < s0 , the modulus
maxima of Wf(s, τ) belong to the cone defined by

|τ − τ0 | � Cs. (27)

Then f(t) is uniformly Lipschitz n in a neighborhood of τ , for
all τ ∈ [a, b], τ �= τ0 . Furthermore, f(t) is Lipschitz α (α < n)
at τ0 , if and only if there exists a constant A such that at each
modulus maximum (s, τ) in the cone (27)

|Wf(s, τ)| � Asα . (28)

By taking the logarithm of both sides of (28), one obtains

log |Wf(s, τ)| � logA+ α log s. (29)
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Fig. 18. Absolute CWT coefficients |Wf (s, τ )|.

Fig. 19. Histogram of the Lipschitz exponents α for the experienced and
racing driver.

The Lipschitz exponentα is therefore determined by the max-
imum slope of log |Wf(s, τ)| on a logarithmic scale. Here, we
only perform CWT of the steering wheel torque of the experi-
enced driver and show the process to determine the Lipschitz
exponent. We adopt the Daubechies wavelet 3 that is orthog-
onal, compactly supported and has three vanishing moments,
by which we can determine Lipschitz exponents α < 3. Fig. 18
plots the absolute CWT coefficients in the time-scale domain.

We find the lines of maxima from Fig. 18 and determine the
positions of the singularities. The singularities are all the points
on the time axis that the lines of maxima converge to. There
may be multiple lines of maxima converging to the points that
are close to each other, due to the number of the vanishing
moments of the mother wavelet or the Lipschitz exponent of the
singularity [61].

Fig. 19 illustrates the histogram showing the distribution of
the Lipschitz exponents corresponding to the experienced and
racing driver. By comparing the results in Fig. 19, one observes
that the control signal (Tdr) of the racing driver has a smaller
number of singularities. This result indicates that the steering
wheel torque command of the racing driver is smoother than
the experienced driver. The distribution of the Lipschitz expo-
nent α of the racing driver shows a smaller minimal, maximal,
and mean value than the experienced driver. This statistical re-
sult indicates that the singularities of the steering wheel torque
command of the racing driver are likely to be more irregular
and impulsive than the experienced driver. The racing driver
perhaps tends to sacrifice smoothness locally (smaller Lipschitz
exponents) by making good use of the double-lane road, such
that (s)he could obtain overall better smoothness (fewer sin-
gularities) than the experienced driver. The experienced driver,
who was only allowed to drive within a single lane of the road,
behaved less aggressively since the mean and minimal value
of the Lipschitz exponents are larger than the racing driver.
Fig. 20 illustrates the histogram showing the distribution of the

Fig. 20. Histogram of the Lipschitz exponents α for the novice and experi-
enced driver.

Lipschitz exponents corresponding to the novice driver and the
experienced driver. By comparing the results in Fig. 20, one
observes that the control signal (Tdr) of the novice driver has
a larger number of singularities, and the Lipschitz exponent α
shows a larger range from −0.1074 to 2.204, with a larger stan-
dard deviation of 0.6876. This result implies that the steering
wheel torque command of the novice driver is more noisy than
the experienced driver (see Fig. 16). Furthermore, the distribu-
tion of α exhibits multiple modes, and the first mode on the left
is smaller than that of the experienced driver. These features
observed from the distribution of the Lipschitz exponents may
be used to distinguish the control signals of different drivers and
hence classify drivers into different groups.

VII. CONCLUSION

This paper adopts the parameterized two-point visual driver
model to characterize the steering behavior of a driver, and
conducts a series of field tests to investigate the validity of this
model to predict human driver behavior and driving style. We
have implemented four nonlinear filters, namely, the joint EKF,
the joint UKF, the dual EKF, and the dual UKF to estimate the
parameters based on field test data conducted at Ford’s Dearborn
Development Center test facility. The validation results agree
well with the data. The UKF is considered to be more accurate
than the EKF in propagating the Gaussian random variables,
but the difference is not obvious in this paper. The results of
our investigation indicate that some of the driver parameters are
not exactly constant, but rather vary slowly during a driving
task more that few minutes long. This observation suggests that
similar parameterized driver models need to incorporate this
effect to faithfully represent reality.

The main difficulty with the use of the two-point visual driver
model in practice is the difficulty of reliably measuring the two
visual angles θnear and θfar. In this paper, the road curvature ρref

is calculated using the GPS data along with the linear estimator
in (2) to obtain the values of θnear and θfar. In general, one will
need to estimate ρref if it is not readily available [37].

The parameters of the driver model provide some interest-
ing features to better understand the steering behavior of dif-
ferent types of drivers. An experienced driver is likely to pay
more attention to both the anticipatory control (θfar) and the
compensatory control (θnear) than a novice driver. The model pa-
rameters may also depend on the driving task [22]. The wavelet
transform provides insights into the driver’s control signal, in
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terms of the number and the location of the singularities of the
signal and the distribution characteristics of the associated Lip-
schitz exponents. These can be used to characterize the control
signal into different levels of smoothness. Our analysis showed
that the steering wheel torque of an experienced driver has fewer
singularities, and the Lipschitz exponents seem to follow a com-
paratively more concentrated distribution. Based on the work of
this paper, a potential next step would be to use machine learning
ideas to distinguish the behaviors of the drivers, and to classify
the drivers into distinct categories based on features arising from
the wavelet transform.

ACKNOWLEDGMENT

The authors would like to thank Mr. D. Starr from Ford Motor
Company for the excellent work done in the field test.

REFERENCES

[1] National Highway Traffic Safety Administration, “Traffic safety facts
2014: A compilation of motor vehicle crash data from the fatality anal-
ysis reporting system and the general estimates system,” Dept. Transp.,
Nat. Highway Traffic Safety Adm., Washington, DC, USA, Tech. Rep.
DOT-HS-812-261, 2015.

[2] NHTSA et al., “2015 motor vehicle crashes: Overview,” Traffic Safety
Facts Res. Note, vol. 2016, pp. 1–9, 2016.

[3] D. Hendricks, J. Fell, and M. Freedman, “The relative frequency of unsafe
driving acts in serious traffic crashes,” Veridian Engineering, Inc., Buffalo,
NY, USA, Rep. DOT-HS-809–206, 2001.

[4] W. G. Najm, M. D. Stearns, H. Howarth, J. Koopmann, and J. Hitz,
“Evaluation of an automotive rear-end collision avoidance system,” Dept.
Transp., Nat. Highway Traffic Safety Admin., Washington, DC, USA,
Tech. Rep. DOT-HS-810-569, 2006.

[5] G. Li, S. E. Li, and B. Cheng, “Field operational test of advanced driver
assistance systems in typical Chinese road conditions: The influence of
driver gender, age and aggression,” Int. J. Autom. Technol., vol. 16, no. 5,
pp. 739–750, 2015.

[6] D. H. Weir and D. T. McRuer, “Measurement and interpretation of driver
steering behavior and performance,” SAE Int., Warrendale, PA, USA, SAE
Tech. Paper 730098, Feb. 1973.

[7] C. C. MacAdam, “An optimal preview control for linear systems,” J. Dyn.
Syst. Meas. Control, vol. 102, no. 3, pp. 188–190, 1980.

[8] C. C. MacAdam, “Application of an optimal preview control for simula-
tion of closed-loop automobile driving,” IEEE Trans. Syst. Man Cybern.,
vol. 11, no. 6, pp. 393–399, Jun. 1981.

[9] R. Hess and A. Modjtahedzadeh, “A control theoretic model of driver
steering behavior,” IEEE Control Syst. Mag., vol. 10, no. 5, pp. 3–8, 1990.

[10] A. Modjtahedzadeh and R. Hess, “A model of driver steering control
behavior for use in assessing vehicle handling qualities,” J. Dyn. Syst.
Meas. Control, vol. 115, no. 3, pp. 456–464, 1993.

[11] A. Burgett and R. Miller, “Using parameter optimization to characterize
driver’s performance in rear end driving scenarios,” in Proc., Int. Tech.
Conf. Enhanc. Safety Veh., vol. 2003 May 19–22, 2003, p. 21.

[12] C. Chatzikomis and K. Spentzas, “A path-following driver model with lon-
gitudinal and lateral control of vehicle’s motion,” Forsch. Ingenieurwesen,
vol. 73, no. 4, p. 257, 2009.

[13] D. J. Cole, A. J. Pick, and A. M. C. Odhams, “Predictive and linear
quadratic methods for potential application to modelling driver steering
control,” Veh. Syst. Dyn., vol. 44, no. 3, pp. 259–284, 2006.

[14] S. D. Keen and D. J. Cole, “Application of time-variant predictive con-
trol to modelling driver steering skill,” Veh. Syst. Dyn., vol. 49, no. 4,
pp. 527–559, 2011.

[15] M. Flad, C. Trautmann, G. Diehm, and S. Hohmann, “Individual driver
modeling via optimal selection of steering primitives,” in Proc. World
Congr., Cape Town, South Africa, August 24–29, 2014, vol. 19, no. 1,
pp. 6276–6282.

[16] I. Kageyama and H. Pacejka, “On a new driver model with fuzzy control,”
Veh. Syst. Dyn., vol. 20, no. sup1, pp. 314–324, 1992.

[17] Y. Lin, P. Tang, W. Zhang, and Q. Yu, “Artificial neural network modelling
of driver handling behaviour in a driver-vehicle-environment system,” Int.
J. Veh. Des., vol. 37, no. 1, pp. 24–45, 2005.

[18] R. Hamada et al., “Modeling and prediction of driving behaviors using
a nonparametric Bayesian method with AR models,” IEEE Trans. Intell.
Veh., vol. 1, no. 2, pp. 131–138, Jun. 2016.

[19] C. W. De Silva, Modeling and Control of Engineering Systems. Boca
Raton, FL, USA: CRC Press, 2009.

[20] D. L. Wilson and R. A. Scott, “Parameter determination for a Crossover
driver model,” Dept Mech. Eng. Appl. Mech., Univ. Michigan, Ann Arbor,
MI, US, Tech. Rep. UM-MEAM-83–17, 1983.

[21] L. Saleh, P. Chevrel, F. Claveau, J.-F. Lafay, and F. Mars, “Shared steering
control between a driver and an automation: Stability in the presence of
driver behavior uncertainty,” IEEE Trans. Intell. Transp. Syst., vol. 14,
no. 2, pp. 974–983, 2013.

[22] C. Sentouh, P. Chevrel, F. Mars, and F. Claveau, “A sensorimotor driver
model for steering control,” in Proc. IEEE Int. Conf. Syst. Man Cybern.,
San Antonio, TX, USA, October 11–14, 2009, pp. 2462–2467.

[23] D. D. Salvucci and R. Gray, “A two-point visual control model of steering,”
Perception, vol. 33, no. 10, pp. 1233–1248, 2004.

[24] J. Steen, H. J. Damveld, R. Happee, M. M. van Paassen, and M.
Mulder, “A review of visual driver models for system identification pur-
poses,” in Proc. IEEE Int. Conf. Syst. Man Cybern., Anchorage, AK, USA,
Oct. 9–12, 2011, pp. 2093–2100.

[25] E. Donges, “A two-level model of driver steering behavior,” Human Fac-
tors, vol. 20, no. 6, pp. 691–707, 1978.

[26] M. F. Land and D. N. Lee, “Where do we look when we steer,” Nature,
vol. 369, no. 6483, pp. 742–744, 1994.

[27] M. F. Land, “The visual control of steering,” Vis. Action, pp. 163–180,
1998.

[28] H. Neumann and B. Deml, “The two-point visual control model of steering
– new empirical evidence,” in Digital Human Modeling. Berlin, Germany:
Springer, 2011, pp. 493–502.

[29] G. Markkula, O. Benderius, and M. Wahde, “Comparing and validating
models of driver steering behaviour in collision avoidance and vehicle
stabilisation,” Veh. Syst. Dyn., vol. 52, no. 12, pp. 1658–1680, 2014.

[30] L. Saleh et al., “Human-like cybernetic driver model for lane keep-
ing,” in Proc. 18th World Congr. Int. Fed. Autom. Control, Milano, Italy,
Aug. 28–Sep. 2, 2011, pp. 4368–4373.

[31] F. Mars, L. Saleh, P. Chevrel, F. Claveau, and J.-F. Lafay, “Model-
ing the visual and motor control of steering with an eye to shared-
control automation,” in Proc. Human Factors Ergonom. Soc. Annu.
Meet., vol. 55, no. 1, Las Vegas, NV, USA, Sep. 19–23, 2011,
pp. 1422–1426.

[32] E. A. Wan and R. Van Der Merwe, “The unscented Kalman filter for
nonlinear estimation,” in Proc. Adapt. Syst. Signal Process. Commun.
Control Symp., October 1–4, 2000, pp. 153–158.

[33] A. Farina, B. Ristic, and D. Benvenuti, “Tracking a ballistic target: Com-
parison of several nonlinear filters,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 38, no. 3, pp. 854–867, Jul. 2002.

[34] G. Chowdhary and R. Jategaonkar, “Aerodynamic parameter estimation
from flight data applying extended and unscented Kalman filter,” Aerosp.
Sci. Technol., vol. 14, no. 2, pp. 106–117, 2010.
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