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Since vision-based sensors typically cannot directly measure the
relative linear and angular velocities between two spacecraft, it is
useful to develop attitude- and position-tracking controllers—
namely, pose-tracking controllers—that do not require such
measurements. Using dual quaternions and based on an existing
attitude-only tracking controller, a pose-tracking controller that does
not require relative linear- or angular-velocity measurements is
developed in this paper. Compared to the existing literature, this
velocity-free pose-tracking controller guarantees that the pose of the
chaser spacecraft will converge to the desired pose independent of
the initial state, even if the reference motion is not sufficiently
exciting. In addition, the convergence region does not depend on the
gains chosen by the user. The velocity-free controller is verified and
compared with a velocity-feedback controller through two
simulations. In particular, the proposed velocity-free controller is
compared qualitatively and quantitatively with a velocity-feedback
controller and an extended Kalman filter using a relatively realistic
satellite proximity-operation scenario.
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NOMENCLATURE

0m × n m × n matrix of 0s
In × n n × n identity matrix
1 Quaternion (1, 03×1)
0 Quaternion (0, 03×1)
qY/Z Unit quaternion from the Z-frame to the

Y-frame
ω̄X

Y/Z Angular velocity of the Y-frame with respect
to the Z-frame expressed in the X-frame

v̄X
Y/Z Linear velocity of the origin of the Y-frame

with respect to the Z-frame expressed in the
X-frame

r̄X
Y/Z Translation vector from the origin of the

Z-frame to the origin of the Y-frame
expressed in the X-frame

τ̄B Total external moment vector applied to the
body about its center of mass expressed in
the body frame

f̄ B Total external force vector applied to the
body expressed in the body frame

1 Dual quaternion 1 + ε0
0 Dual quaternion 0 + ε0
qY/Z Unit dual quaternion from the Z-frame to the

Y-frame
ωX

Y/Z Dual velocity of the Y-frame with respect to
the Z-frame expressed in the X-frame

fB Total external dual force applied to the body
about its center of mass expressed in the
body frame

MB Dual inertia matrix
f B

c Dual control force expressed in the body
frame

I. INTRODUCTION

The term “proximity operations” has been widely used
in recent years to describe a wide range of space missions
that require a spacecraft to remain close to another space
object. Such missions can include the inspection, health
monitoring, surveillance, servicing, and refueling of a
space asset by another spacecraft. One of the biggest
challenges in autonomous space proximity operations,
either cooperative or uncooperative, is the need to
autonomously and accurately track time-varying relative
position and attitude references—i.e., pose references—
with respect to a moving target, in order to avoid on-orbit
collisions and achieve the overall mission goals. In
addition, if the target spacecraft is uncooperative, the
guidance, navigation, and control system of the chaser
spacecraft must not rely on any help from the target
spacecraft. In this case, vision-based sensors, such as
cameras, are typically used to measure the relative pose
between the spacecraft. Although vision-based sensors
have several attractive properties, they introduce new
challenges, such as a lack of direct linear- and
angular-velocity measurements.

Velocity-free pose-tracking controllers have been
proposed by several authors. In particular, a velocity-free
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pose-tracking controller that does not require mass and
inertia matrix information is proposed in [1]. However, as
explained in [2], if the reference pose is not sufficiently
exciting, the pose of the body might not converge to the
desired pose. In [3], another velocity-free pose-tracking
controller is designed based on the vectrix formalism. This
controller suffers from two problems. First, the attitude of
the body cannot be more than 180◦ away from the desired
attitude. Second, the region of convergence is dependent
on the gains chosen by the user. In other words, an
arbitrarily large region of convergence requires arbitrarily
large gains. In turn, high gains may lead to actuator
saturation and poor noise rejection. Finally, in [4], it is
shown that a locally asymptotically stable closed-loop
system can be obtained by combining an almost globally
asymptotically stable attitude-only tracking controller
with a locally exponentially convergent angular-velocity
observer. Although the theory presented in [4] can, in
principle, be extended to pose control, only attitude
control is demonstrated.

Compared to the existing literature, the velocity-free
pose-tracking controller presented in this paper is almost
globally asymptotically stable. In particular, the pose of
the body converges to the desired pose independently of
the initial condition, and unlike in [1], the reference
motion does not need to be exciting. Moreover, the region
of convergence does not depend on the gains chosen by the
user. Note that “almost-global” stability means stability
for all initial conditions, except for a set of measure 0 as a
result of topological obstructions [5]. In that sense,
almost-global stability is the strongest type of stability
one can hope for using continuous controllers for this
system.

As in the recent papers [6–8], the analogies between
quaternions and dual quaternions are explored to develop
the controller proposed in this paper. Dual quaternions are
built on, and are an extension of, classical quaternions.
They provide a compact representation of not only the
attitude but also the position of a frame with respect to
another frame. Their properties, including examples of
previous applications, are discussed in length in [7].
However, the property that makes dual quaternions most
appealing is that the combined translational and rotational
kinematic and dynamic equations of motion written in
terms of dual quaternions have the same form as the
rotational-only kinematic and dynamic equations of
motion written in terms of quaternions (albeit the
operations have now to be interpreted in dual-quaternion
algebra). As a consequence, as shown in [6, 7], pose
controllers with certain properties can be developed
from existing attitude-only controllers with analogous
properties by (almost) just replacing quaternions
with dual quaternions. Following the same idea, a
velocity-free pose-tracking controller is developed in
this paper based on the attitude-tracking controller of [9]
that guarantees almost globally asymptotic stability
of the attitude-tracking error when angular-velocity
measurements are not available.

This paper is organized as follows. In Section II, the
main operations and properties of quaternions and dual
quaternions are reviewed. Then a pose-tracking controller
that requires relative linear- and angular-velocity
measurements is derived in Section III. Based on this
velocity-feedback controller, the velocity-free controller is
derived in Section IV. Subsequently, both controllers are
verified numerically in Section V. Two examples are
presented. In the first, a chaser spacecraft is required to
track an elliptical motion around a target satellite while
pointing at it. In the second, the velocity-free controller is
compared qualitatively and quantitatively to the
velocity-feedback controller fed with velocity estimates
produced by an extended Kalman filter (EKF) through a
more realistic satellite proximity-operation simulation.

II. MATHEMATICAL PRELIMINARIES

For the benefit of the reader, the main properties of
quaternions and dual quaternions are summarized in this
section. For additional information, the reader is referred
to [7, 8, 10].

A. Quaternions

A quaternion can be represented as an ordered pair
q = (q0, q̄), where q̄ = [ q1 q2 q3 ]T ∈ R

3 is the vector part
of the quaternion and q0 ∈ R is the scalar part. Henceforth,
quaternions with zero scalar part and with zero vector part
will be referred to, respectively, as vector quaternions and
scalar quaternions. The sets of quaternions, vector
quaternions, and scalar quaternions will be respectively
denoted by H = {q : q = (q0, q̄), q̄ ∈ R

3, q0 ∈ R},
H

v = {q ∈ H : q0 = 0}, and H
s = {q ∈ H : q̄ = 03×1}.

The following are the elementary operations on
quaternions:

Addition : a + b = (
a0 + b0, ā + b̄

) ∈ H

Multiplication by a scalar: λa = (λa0, λā) ∈ H

Multiplication : ab=(
a0b0−ā · b̄, a0b̄+b0ā+ā×b̄

)∈ H

Conjugation : a∗ = (a0, −ā) ∈ H

Dot product : a · b = (
a0b0 + ā · b̄, 03×1

) ∈ H
s

Cross product : a × b = (
0, b0ā + a0b̄ + ā × b̄

) ∈ H
v

Norm: ‖a‖2 =aa∗ =a∗a=a · a=(
a2

0 + ā · ā, 03×1
) ∈ H

s

Scalar part : sc (a) = (a0, 03×1) ∈ H
s

Vector part : vec (a) = (0, ā) ∈ H
v

Multiplication by a matrix:

M ∗ a = (M11a0 + M12ā, M21a0 + M22ā) ∈ H.
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In these operations, a, b ∈ H, λ ∈ R, 0m×n is an m × n
matrix of 0s,

M =
[

M11 M12

M21 M22

]
∈ R

4×4,

M11 ∈ R, M12 ∈ R
1×3, M21 ∈ R

3×1, and M22 ∈ R
3×3.

Note that, in general, ab �= ba. In this paper, the
quaternions (1, 03×1) and (0, 03×1) will be denoted,
respectively, by 1 and 0. The following properties
follow from the previous definitions [10]:
a · (bc) = b · (ac∗) = c · (b∗a), ‖ab‖ = ‖a‖‖b‖, and
(M ∗ a) · b = a · (MT ∗ b), where a, b, c ∈ H and
M ∈ R

4×4. The L∞-norm of a function u : [0, ∞) → H is
defined as ‖u‖∞ = supt≥0‖u(t)‖. Moreover, u ∈ L∞ if
and only if ‖u‖∞ < ∞.

The relative orientation of a body frame with respect to
an inertial frame can be represented by the unit quaternion
qB/I = (cos(φ/2), sin(φ/2)n̄), where the body frame is said
to be rotated with respect to the inertial frame about the
unit vector n̄ (i.e., n̄ · n̄ = 1) by an angle φ. The
quaternion qB/I is a unit quaternion because it belongs to
the set H

u = {q ∈ H : q · q = 1}. The body coordinates
v̄B of a vector can be calculated from the inertial
coordinates v̄I of that same vector, and vice versa, through
vB = q∗

B/Iv
IqB/I and vI = qB/Iv

Bq∗
B/I, where vX = (0, v̄X).

The rotational kinematic equations of the body frame
and of a frame with some desired orientation, both with
respect to the inertial frame and represented, respectively,
by the unit quaternions qB/I and qD/I, are given by

q̇B/I = 1

2
qB/Iω

B
B/I = 1

2
ωI

B/IqB/I

and

q̇D/I = 1

2
qD/Iω

D
D/I = 1

2
ωI

D/IqD/I,

where ωX
Y/Z = (0, ω̄X

Y/Z) and ω̄X
Y/Z = [ pX

Y/Z qX
Y/Z rX

Y/Z ]T is
the angular velocity of the Y-frame with respect to the
Z-frame expressed in the X-frame. The error quaternion
qB/D = q∗

D/IqB/I is the unit quaternion that rotates the
desired frame onto the body frame. Through
differentiating qB/D, the kinematic equations of the error
quaternion turn out to be

q̇B/D = 1

2
qB/DωB

B/D = 1

2
ωD

B/DqB/D, (1)

where ωB
B/D = ωB

B/I − ωB
D/I and ωD

B/D = ωD
B/I − ωD

D/I.

B. Dual Quaternions

A dual quaternion is defined as q = qr + εqd, where
qr, qd ∈ H are the real and dual part of the dual
quaternion, respectively, and ε is the dual unit, defined as
ε2 = 0 and ε �= 0. Hereafter, dual quaternions with
qr, qd ∈ H

v and with qr, qd ∈ H
s will be referred to,

respectively, as dual vector quaternions and dual scalar
quaternions. The sets of dual quaternions, dual scalar
quaternions, and dual vector quaternions will be
respectively denoted by Hd={q : q = qr + εqd, qr, qd ∈ H},

H
s
d = {q : q = qr + εqd, qr, qd ∈ H

s}, and H
v
d =

{q : q = qr + εqd, qr, qd ∈ H
v}. Moreover, the set of dual

scalar quaternions with zero dual part will be denoted by
H

r
d = {q : q = qr + ε(0, 03×1), qr ∈ H

s}. The following
are the elementary operations on dual quaternions:

Addition : a + b = (ar + br) + ε (ad + bd) ∈ Hd

Multiplication by a scalar : λa = (λar) + ε (λad) ∈ Hd

Multiplication : ab = (arbr) + ε (arbd + adbr) ∈ Hd

Conjugation : a∗ = a∗
r + εa∗

d ∈ Hd

Swap: as = ad + εar ∈ Hd

Dot product : a · b = ar · br + ε (ad · br + ar · bd) ∈ H
s
d

Cross product : a×b = ar×br + ε (ad×br + ar×bd)∈H
v
d

Circle product : a ◦ b = ar · br + ad · bd ∈ H
r
d

Dual norm: ‖a‖2
d = (ar · ar) + ε (2ar · ad) ∈ H

s
d

Norm: ‖a‖2 = a ◦ a ∈ H
r
d

Scalar part : sc (a) = sc (ar) + εsc (ad) ∈ H
s
d

Vector part : vec (a) = vec (ar) + εvec (ad) ∈ H
v
d

Multiplication by a matrix : M � q = (M11 ∗ qr

+M12 ∗ qd) + ε (M21 ∗ qr + M22 ∗ qd) ∈ Hd.

In these operations, a, b ∈ Hd, λ ∈ R,

M =
[

M11 M12

M21 M22

]
,

and M11, M12, M21, M22 ∈ R
4×4. Note that, in general,

ab �= ba. In this paper, the dual quaternions 1 + ε0 and 0
+ ε0 will be denoted by 1 and 0, respectively. The
following properties follow from the previous definitions
[6, 10]:

a ◦ (bc) = bs ◦ (
asc∗)= cs ◦ (

b∗as) , a, b, c ∈ Hd (2)

a ◦ (b×c) = bs ◦ (
c×as) = cs ◦ (

as × b
)
, a, b, c ∈ H

v
d

(3)

a × a = 0, a ∈ H
v
d (4)

a × b = −b × a, a, b ∈ H
v
d (5)

as ◦ bs = a ◦ b, a, b ∈ Hd (6)∥∥as
∥∥ = ‖a‖ , a ∈ Hd (7)∥∥a∗∥∥ = ‖a‖ , a ∈ Hd (8)

(M � a) ◦ b = a ◦ (
MT � b

)
, a, b ∈ Hd, M ∈ R

8×8

(9)
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|a ◦ b| ≤ ‖a‖ ‖b‖ , a, b ∈ Hd (10)

‖ab‖ ≤
√

3
/

2 ‖a‖ ‖b‖ , a, b ∈ Hd. (11)

The L∞-norm of a function u : [0, ∞) → Hd is
defined as ‖u‖∞ = supt≥0‖u(t)‖. Moreover, u ∈ L∞ if
and only if ‖u‖∞ < ∞.

A compact way to represent the pose of a body frame
with respect to an inertial frame is through the unit dual
quaternion

qB/I = qB/I + ε
1

2
r I

B/IqB/I = qB/I + ε
1

2
qB/Ir

B
B/I,

where r̄X
Y/Z = [ xX

Y/Z yX
Y/Z zX

Y/Z ]T and r̄X
Y/Z is the

translation vector from the origin of the Z-frame
to the origin of the Y-frame expressed in the
X-frame. The dual quaternion qB/I is a unit dual
quaternion because it belongs to the set
H

u
d = {q ∈ Hd : q · q = qq∗ = q∗q = ‖q‖d = 1}.

The rotational and translational kinematic equations of
the body frame and of a frame with some desired pose,
both with respect to the inertial frame and represented,
respectively, by the unit dual quaternions qB/I and

qD/I = qD/I + ε
1

2
r I

D/IqD/I = qD/I + ε
1

2
qD/Ir

D
D/I,

are given by

q̇B/I = 1

2
ωI

B/IqB/I = 1

2
qB/Iω

B
B/I

and

q̇D/I = 1

2
ωI

D/IqD/I = 1

2
qD/Iω

D
D/I,

where ωX
Y/Z is the dual velocity of the Y-frame with

respect to the Z-frame expressed in the X-frame,
ωX

Y/Z = ωX
Y/Z + ε(vX

Y/Z + ωX
Y/Z × rX

X/Y), vX
Y/Z = (0, v̄X

Y/Z),

and v̄X
Y/Z = [ uX

Y/Z vX
Y/Z wX

Y/Z ]T is the linear velocity of
the origin of the Y-frame with respect to the Z-frame
expressed in the X-frame.

By direct analogy to the error quaternion, the dual
error quaternion is defined as

qB/D = q∗
D/IqB/I

= qB/D + ε
1

2
qB/DrB

B/D = qB/D + ε
1

2
rD

B/DqB/D.

The dual error quaternion is the unit dual quaternion that
represents the pose of the body frame with respect to the
desired frame. Through differentiating qB/D, the kinematic
equations of the dual error quaternion turn out to be

q̇B/D = 1

2
qB/DωB

B/D = 1

2
ωD

B/DqB/D, (12)

where ωB
B/D = ωB

B/I − ωB
D/I, ωB

D/I = q∗
B/DωD

D/IqB/D, and
ωD

B/I = qB/DωB
B/Iq

∗
B/D. Note that (12) has the same form as

(1).
The dual-quaternion representation of the relative

rotational and translational dynamic equations of a rigid

body are given by(
ω̇B

B/D

)s = (
MB

)−1
�

(
f B − (

ωB
B/D + ωB

D/I

)
×

(
MB �

((
ωB

B/D

)s + (
ωB

D/I

)s
))

−MB �
(
q∗

B/Dω̇D
D/IqB/D

)s

−MB �
(
ωB

D/I × ωB
B/D

)s
)

, (13)

where f B = f B + ετB is the total external dual force
applied to the body about its center of mass expressed in
the body frame, f B = (0, f̄ B), f̄ B = [ f B

1 f B
2 f B

3 ]T is the
total external force vector applied to the body expressed in
the body frame, τB = (0, τ̄B), and τ̄B = [ τB

1 τB
2 τB

3 ]T is
the total external moment vector applied to the body about
its center of mass expressed in the body frame. Finally,
MB ∈ R

8×8 is the dual inertia matrix, defined as

MB =

⎡
⎢⎢⎢⎣

1 01×3 0 01×3

03×1 mI3×3 03×1 03×3

0 01×3 1 01×3

03×1 03×3 03×1 ĪB

⎤
⎥⎥⎥⎦ ;

IB =
[

1 01×3

03×1 ĪB

]
;

ĪB ∈ R
3×3 is the mass moment of inertia of the body about

its center of mass written in the body frame; and m is the
mass of the body. Note that MB is a symmetric
positive-definite matrix. Also note the similarity between
(13) and the quaternion representation of the relative
rotational(-only) dynamic equations given by ω̇B

B/D =
(IB)−1 ∗ (τB − (ωB

B/D + ωB
D/I) × (IB ∗ (ωB

B/D + ωB
D/I)) −

IB ∗ (q∗
B/Dω̇D

D/IqB/D) − IB ∗ (ωB
D/I × ωB

B/D)).

III. VELOCITY-FEEDBACK POSE-TRACKING
CONTROLLER

When the relative linear and angular velocities are
known, the controller proposed in Theorem 1 can be used
to track a time-varying reference pose.

THEOREM 1 Consider the rigid-body relative kinematic
and dynamic equations (12) and (13). Let the total external
dual force acting on the rigid body be defined by the
feedback control law

f B = −kpvec
(
q∗

B/D

(
qs

B/D − 1s)) − kd
(
ωB

B/D

)s

+ MB �
(
q∗

B/Dω̇D
D/IqB/D

)s + ωB
D/I×

(
MB �

(
ωB

D/I

)s
)
,

(14)

kp, kd > 0, and assume that ω̇D
D/I, ω

D
D/I ∈ L∞. Then

qB/D → ±1 (i.e., qB/D → ±1 and rB
B/D → 0) and

ωB
B/D → 0 (i.e., ωB

B/D → 0 and vB
B/D → 0) as t → + ∞

for all initial conditions.

PROOF First, note that qB/D = ± 1 and ωB
B/D = 0 are in

fact the equilibrium conditions for the closed-loop system
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formed by (12)–(14). Consider now the following
candidate Lyapunov function for the equilibrium
point qB/D = + 1 and ωB

B/D = 0—or, equivalently,
(ωB

B/D)s = 0:

V
(
qB/D, ωB

B/D

) = kp
(
qB/D − 1

) ◦ (
qB/D − 1

)
+1

2

(
ωB

B/D

)s ◦
(
MB �

(
ωB

B/D

)s
)

.

Note that V is a valid candidate Lyapunov function,
since V (qB/D = 1, ωB

B/D = 0) = 0 and V (qB/D, ωB
B/D) > 0

for all (qB/D, ωB
B/D) ∈ H

u
d × H

v
d\{1, 0}. The time derivative

of V is equal to V̇ = 2kp(qB/D − 1) ◦ q̇B/D + (ωB
B/D)s ◦

(MB � (ω̇B
B/D)

s
). Then, plugging in (12) and (13) and using

(3), it follows that V̇ = (ωB
B/D)s ◦ (kpq∗

B/D(qs
B/D − 1)s +

f B − (ωB
B/D + ωB

D/I) × (MB � ((ωB
B/D)

s + (ωB
D/I)

s))

− MB � (q∗
B/Dω̇D

D/IqB/D)
s − MB � (ωB

D/I × ωB
B/D)

s
).

Introducing the feedback control law (14) yields V̇ =
(ωB

B/D)s ◦ (−kd(ωB
B/D)

s
) + (ωB

B/D)s ◦ (kpq∗
B/D(qs

B/D − 1s)
− kpvec(q∗

B/D(qs
B/D − 1s))) + (ωB

B/D)s ◦
(−(ωB

B/D + ωB
D/I) × (MB � ((ωB

B/D)
s + (ωB

D/I))
s
) − MB �

(ωB
D/I × ωB

B/D)
s + ωB

D/I × (MB � (ωB
D/I)

s
)). Note that the

second term is zero because it is the circle product of a
dual vector quaternion with a dual scalar quaternion.
Moreover, the third term can be shown to be equal to zero
as follows:

(
ωB

B/D

)s ◦
(
− (

ωB
B/D + ωB

D/I

) ×
(
MB �

((
ωB

B/D

)s + (
ωB

D/I

))s)
− MB �

(
ωB

D/I × ωB
B/D

)s + ωB
D/I ×

(
MB �

(
ωB

D/I

)s
))

=
((

ωB
B/I

)s − (
ωB

D/I

)s
)

◦
(
−ωB

B/I ×
(
MB �

(
ωB

B/I

)s
)

− MB �
(
ωB

D/I × (
ωB

B/I − ωB
D/I

))s + ωB
D/I ×

(
MB �

(
ωB

D/I

)s
))

= (
ωB

B/I

)s ◦
(
−ωB

B/I ×
(
MB �

(
ωB

B/I

)s
)

− MB �
(
ωB

D/I × ωB
B/I

)s + ωB
D/I ×

(
MB �

(
ωB

D/I

)s
))

− (
ωB

D/I

)s

◦
(
−ωB

B/I ×
(
MB �

(
ωB

B/I

)s
)

− MB �
(
ωB

D/I × ωB
B/I

)s + ωB
D/I ×

(
MB �

(
ωB

D/I

)s))
= −(

ωB
B/I

)s ◦
(
ωB

B/I ×
(
MB �

(
ωB

B/I

)s
))

− (
ωB

B/I

)s ◦
(
MB �

(
ωB

D/I × ωB
B/I

)s)
+ (

ωB
B/I

)s

◦
(
ωB

D/I ×
(
MB �

(
ωB

D/I

)s))
+

(
ωB

D/I

)s
◦

(
ωB

B/I ×
(
MB �

(
ωB

B/I

)s
))

+
(
ωB

D/I

)s
◦

(
MB �

(
ωB

D/I × ωB
B/I

)s)
−

(
ωB

D/I

)s
◦

(
ωB

D/I ×
(
MB �

(
ωB

D/I

)s
))

.

Note that the first and last terms are zero due to (3) and
(4). Moreover, using (6) and (9), the second and fifth terms
can be rewritten as −(MB � (ωB

B/I)
s
)s ◦ (ωB

D/I × ωB
B/I) +

(ωB
B/I)

s ◦ (ωB
D/I × (MB � (ωB

D/I)
s
)) + (ωB

D/I)
s ◦

(ωB
B/I × (MB � (ωB

B/I)
s
)) + (MB � (ωB

D/I)
s
)s ◦

(ωB
D/I × ωB

B/I). Finally, applying (3) and (5) to the first and
last terms of the previous expression yields
−(ωB

D/I)
s ◦ (ωB

B/I × (MB � (ωB
B/I)

s
)) + (ωB

B/I)
s ◦

(ωB
D/I × (MB � (ωB

D/I)
s
)) + (ωB

D/I)
s ◦

(ωB
B/I × (MB � (ωB

B/I)
s
)) − (ωB

B/I)
s ◦

(ωB
D/I × (MB � (ωB

D/I)
s
)) = 0. Therefore, the time

derivative of the Lyapunov function is equal to
V̇ = −kd(ωB

B/D)s ◦ (ωB
B/D)s ≤ 0 for all

(qB/D, ωB
B/D) ∈ H

u
d × H

v
d\{1, 0}. Hence, qB/D and ωB

B/D are
uniformly bounded—i.e., qB/D, ωB

B/D ∈ L∞.
Since V ≥ 0 and V̇ ≤ 0, limt→∞V (t) exists

and is finite. By integrating both sides of
V̇ = − kd(ωB

B/D)s ◦ (ωB
B/D)s ≤ 0, one obtains

limt→∞
∫ t

0 V̇ (t)dτ = limt→∞V (t) − V (0) ≤
−limt→∞

∫ t

0 kd(ωB
B/D(τ ))

s ◦ (ωB
B/D(τ ))

s
dτ or

lim
t→∞

∫ t

0
kd

(
ωB

B/D (τ )
)s ◦ (

ωB
B/D (τ )

)s
dτ ≤ V (0) . (15)

Since qB/D, ωB
B/D ∈ L∞ and ω̇D

D/I, ω
B
D/I ∈ L∞ by

assumption, it follows from (14) that f B ∈ L∞ as well.
Then from (13) it also follows that ω̇B

B/D ∈ L∞. Along
with (15), this implies that ωB

B/D(t) → 0 as t → ∞,
according to Barbalat’s lemma [11].

It can also be shown that ω̇B
B/D → 0 as t → ∞. First,

note that limt→∞
∫ t

0 ω̇B
B/D(τ )dτ = limt→∞ωB

B/D(t)
− ωB

B/D(0) = −ωB
B/D(0) exists and is finite. Now note that

ω̈B
B/D ∈ L∞, since ω̇D

D/I, ω
D
D/I, ω̇

B
B/D, ωB

B/D, qB/D, q̇B/D

∈ L∞. Hence, by Barbalat’s lemma, ω̇B
B/D → 0 as t → ∞.

Finally, calculating the limit as t → ∞ of both sides of
(13) yields vec(q∗

B/D(qs
B/D − 1s)) → 0 as t → ∞, which,

as shown in [12], is equivalent to qB/D → ± 1.

REMARK 1 The dual part of control law (14) is
τB = −kpvec(qB/D) − kdω

B
B/D + IB ∗ (q∗

B/Dω̇D
D/IqB/D) +

ωB
D/I × (IB ∗ ωB

D/I). This control law is identical to the
attitude(-only) model-dependent control law proposed in
[13].

IV. VELOCITY-FREE POSE-TRACKING CONTROLLER

The pose-tracking controller presented in Section III is
almost globally asymptotically stable, but it requires
measurements of ωB

B/D. Theorem 2 shows that it is still
possible to obtain an almost globally asymptotically stable
pose-tracking controller without measurements of ωB

B/D.
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THEOREM 2 Consider the rigid-body relative kinematic
and dynamic equations (12) and (13). Let the total external
dual force acting on the rigid body be defined by the
feedback control law

f B = −kpvec
(
q∗

B/D

(
qs

B/D − 1s)) − 2vec
(
q∗

B/D zs)
+MB �

(
q∗

B/Dω̇D
D/IqB/D

)s + ωB
D/I×

(
MB �

(
ωB

D/I

)s
)

,

kp > 0, (16)

where z is the output of the linear time-invariant (LTI)
system

ẋp =A � xp+B � qB/D and z = (CA) � xp + (CB) � qB/D,

(17)
(A, B, C) is a minimal realization of a strictly positive real
transfer matrix Csp(s), and B is a full-rank matrix. Assume
that ω̇D

D/I, ω
D
D/I ∈ L∞. Then qB/D → ±1, ωB

B/D → 0, and
xsp = ẋp → 0 as t → + ∞ for all initial conditions.

PROOF First, rewrite the LTI system as

ẋsp = A � xsp + B � q̇B/D and z = C � xsp. (18)

Note that qB/D = ±1, ωB
B/D = 0, and xsp = 0 is the

equilibrium condition of the closed-loop system formed
by (12), (13), (16), and (18). Consider the candidate
Lyapunov function

V
(
qB/D, ωB

B/D, xsp
) = kp

(
qB/D − 1

) ◦ (
qB/D − 1

)
+ 1

2

(
ωB

B/D

)s ◦
(
MB �

(
ωB

B/D

)s
)

+ 2xsp ◦ (
P � xsp

)
,

for the equilibrium point qB/D = 1, ωB
B/D = 0, xsp = 0,

where P = PT > 0 satisfies ATP + PA = −Q, PB = CT,
and Q = QT > 0. By the Kalman–Yakubovich–Popov
conditions [11], there always exist matrices P and Q
satisfying these conditions, since (A, B, C) is a minimal
realization of a strictly positive real transfer matrix
Csp(s). Note that V is a valid candidate Lyapunov function,
since V (qB/D = 1, ωB

B/D = 0, xsp = 0) = 0 and
V (qB/D, ωB

B/D, xsp) > 0 for all (qB/D, ωB
B/D, xsp)

∈ H
u
d × H

v
d × Hd\{1, 0, 0}. The time derivative of

V is equal to V̇ = 2kp(qB/D − 1) ◦ q̇B/D + (ωB
B/D)s ◦

(MB � (ω̇B
B/D)

s
) + 4ẋsp ◦ (P � xsp). From plugging

in (12) and (13) and applying (2) and the
Kalman–Yakubovich–Popov conditions, it follows that
V̇ = (ωB

B/D)s ◦ (kpq∗
B/D(qs

B/D − 1s) + f B − (ωB
B/D + ωB

D/I)

× (MB � ((ωB
B/D)

s + (ωB
D/I))

s
) − MB � (q∗

B/Dω̇D
D/IqB/D)

s −
MB � (ωB

D/I × ωB
B/D)

s
) + 4(A � xsp+B � q̇B/D) ◦ (P � xsp).

Introducing the feedback control law (16) yields
V̇ = (ωB

B/D)s ◦ (−2vec(q∗
B/D zs)) + (ωB

B/D)s ◦
(kpq∗

B/D(qs
B/D − 1s) − kpvec(q∗

B/D(qs
B/D − 1s))) +

(ωB
B/D)s ◦ (−(ωB

B/D + ωB
D/I) × (MB � ((ωB

B/D)s

+ (ωB
D/I))

s) − MB � (ωB
D/I × ωB

B/D)
s + ωB

D/I × (MB �

(ωB
D/I)

s)) + 4(A � xsp + B � q̇B/D) ◦ (P � xsp). Again, note
that the second term is zero because it is the circle product
of a dual vector quaternion with a dual scalar quaternion.

Moreover, the third term has been shown to be equal to
zero in the proof of Theorem 1.
As for the fourth term, it can be simplified as follows:

V̇ = (
ωB

B/D

)s ◦ (−2vec
(
q∗

B/D zs)) + 4
(
A � xsp

)
◦ (

P � xsp
) + 4

(
B � q̇B/D

) ◦ (
P � xsp

)
= (

ωB
B/D

)s◦ (−2vec
(
q∗

B/D zs)) + 2
((

ATP + PA
)
� xsp

)
◦ xsp + 4q̇B/D ◦ ((

BTP
)
� xsp

)
= (

ωB
B/D

)s ◦ (−2vec
(
q∗

B/D zs)) − 2xsp ◦ (
Q � xsp

)
+ 2

(
qB/DωB

B/D

) ◦ (
C � xsp

)
= (

ωB
B/D

)s◦ (
2q∗

B/D zs−2vec
(
q∗

B/D zs))−2xsp◦(Q � xsp)

= −2xsp ◦ (
Q � xsp

) ≤ 0

for all (qB/D, ωB
B/D, xsp) ∈ H

u
d × H

v
d × Hd\{1, 0, 0}.

Hence, qB/D, ωB
B/D, and xsp are uniformly bounded—i.e.,

qB/D, ωB
B/D, xsp ∈ L∞.

It is now shown that xsp → 0 as t → ∞. Since V ≥ 0
and V̇ ≤ 0, limt→∞V (t) exists and is finite. By
integrating both sides of V̇ = −2xsp ◦ (Q � xsp) ≤ 0, one
obtains limt→∞

∫ t

0 V̇ (τ )dτ = limt→∞V (t) − V (0) =
−limt→∞

∫ t

0 2xsp(τ ) ◦ (Q � xsp(τ ))dτ or

lim
t→∞

∫ t

0
2xsp (τ ) ◦ (

Q � xsp (τ )
)

dτ ≤ V (0) . (19)

Since qB/D, ωB
B/D, xsp ∈ L∞, it follows that q̇B/D ∈ L∞

and ẋsp ∈ L∞. Along with (19), this implies that xsp → 0
as t → ∞, according to Barbalat’s lemma. This, in turn,
implies from (18) that z → 0 as t → ∞.

It can also be shown that ẋsp → 0 as t → ∞. First,
note that limt→∞

∫ t

0 ẋsp(τ )dτ = limt→∞xsp(t) − xsp(0)
= −xsp(0) exists and is finite. Since ẋsp=A� ẋsp+
B � q̈B/D and qB/D, ωB

B/D, xsp, q̇B/D, ẋsp, ω̇
D
D/I, ω

D
D/I, z,

ω̇B
B/D, q̈B/D ∈ L∞, it follows that ẍsp ∈ L∞. Hence, by

Barbalat’s lemma, ẋsp → 0 as t → ∞.
Thus, calculating the limit as t → ∞ of both sides

of (18) yields q̇B/D → 0 as t → ∞, since B is assumed
to be full rank. Given that (12) can be rewritten as
ωB

B/D = 2q∗
B/Dq̇B/D, this also implies that ωB

B/D → 0 as
t → ∞.

Now it is shown that ω̇B
B/D → 0 as t → ∞. First, note

that limt→∞
∫ t

0 ω̇B
B/D(τ )dτ = limt→∞ωB

B/D(t) − ωB
B/D(0)

= −ωB
B/D(0) exists and is finite. Since (ω̈B

B/D)s = (MB)−1 �

(−kpvec(q̇∗
B/D(qs

B/D − 1s)) − kpvec(q∗
B/D(q̇s

B/D)) −
2vec(q̇∗

B/D zs) − 2vec(q∗
B/D( ż)s) + ω̇B

D/I × (MB � (ωB
D/I)

s
)

+ ωB
D/I × (MB � (ω̇B

D/I)
s
) − ω̇B

B/I × (MB � (ωB
B/I)

s
) −

ωB
B/I × (MB � (ω̇B

B/I)
s
) − MB � (ω̇B

D/I × ωB
B/D)

s − MB �

(ωB
D/I × ω̇B

B/D)
s
) and ω̇B

B/D, ωB
B/D, ω̇B

B/I, ω
B
B/I, qB/D,

q̇B/D, z, ż ∈ L∞, it follows that ω̈B
B/D ∈ L∞. Hence, by

Barbalat’s lemma, ω̇B
B/D → 0 as t → ∞.

Finally, calculating the limit as t → ∞ of both sides of
(13) yields vec(q∗

B/D(qs
B/D − 1s)) → 0 as t → ∞, which,

as shown in [12], is equivalent to qB/D → ±1.
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REMARK 2 Theorems 1 and 2 state that qB/D converges to
either + 1 or −1. Note that qB/D = + 1 and qB/D = −1
represent the same pose [10]. Therefore, either
equilibrium is acceptable. However, this can lead to the
so-called unwinding phenomenon, where a large rotation
(greater than 180◦) is performed despite the fact that a
smaller rotation (less than 180◦) exists. This problem of
quaternions is well documented, and possible solutions
exist in the literature [7].

REMARK 3 If the reference pose is constant—i.e.,
ωD

D/I = 0—then the pose-tracking controllers suggested in
Theorems 1 and 2 become pose-stabilization controllers
[12]. Note that in this special case, the feedback control
laws (14) and (16) do not depend on MB—i.e., they do not
depend on the mass and inertia matrix of the rigid body.

REMARK 4 If A and B are chosen, respectively, as
−kfI8 × 8 and kfI8 × 8 in (17), where kf > 0, and the
definition Q = −kd(B−TA + ATB−T) is adopted as in
[14], the Kalman–Yakubovich–Popov conditions yield
P = kdB

−T and C = kdI8 × 8. Then the transfer-matrix
representation of the LTI system (17) is given by Cp(s) =
ds/(s + a), where d = kdkf and a = kf. In this case, z is
obtained by differentiating qB/D and passing q̇B/D through
a low-pass filter. Theorem 2 proves that in the absence of
measurement noise, the cutoff frequency of the low-pass
filter can be chosen arbitrarily. In practice, in the presence
of measurement noise, the cutoff frequency of the
low-pass filter has to be chosen low enough to reject
high-frequency measurement noise.

V. SIMULATION RESULTS

The velocity-feedback and the velocity-free
pose-tracking controllers given by (14) and (16) are
numerically verified and compared in this section via two
examples. In the first example, a chaser spacecraft is
required to track an elliptical motion around a target
satellite while pointing at it. In the second example, the
velocity-free controller is compared qualitatively and
quantitatively to the velocity-feedback controller fed with
velocity estimates produced by an EKF through a more
realistic satellite proximity-operation simulation.

A. Satellite Proximity-Operation Example

The first example consists of a satellite
proximity-operation scenario where a chaser satellite is
required to track an elliptical motion around a target
satellite while pointing at it.

Four reference frames are defined: the inertial frame,
the target frame, the desired frame, and the body frame.
The inertial frame is the Earth-centered inertial frame. The
body frame is some frame fixed to the chaser satellite and
centered at its center of mass. The target frame is defined
as ĪT = r̄T/I/‖r̄T/I‖, J̄T = K̄T × ĪT, and K̄T = ω̄T/I/‖ω̄T/I‖.
The desired frame is defined as ĪD = r̄D/T/‖r̄D/T‖,
J̄D = K̄D × ĪD, and K̄D = ω̄D/T/‖ω̄D/T‖ [7]. The target
satellite is assumed to be fixed to the target frame. The
different frames are illustrated in Fig. 1. The control

Fig. 1. Reference frames.

objective is to superimpose the body frame onto the
desired frame.

The target spacecraft is assumed to be in a highly
eccentric Molniya orbit with initial orbital elements given
in [7] and nadir pointing. The relative motion of the
desired frame with respect to the target frame is defined as
an ellipse in the ĪT-J̄T plane with semimajor axis
equal to 20 m along J̄T and semiminor axis equal to 10 m
along ĪT. The relative orbit has constant angular speed
equal to the mean motion of the target satellite. More
precisely, during this phase, ω̄T

D/T = [ 0 0 n ]T rad/s,
v̄T

D/T = [ −aen sin(nt) ben cos(nt) 0 ]T m/s, and
r̄T

D/T(0) = [ ae 0 0 ]T m, where ae = 10 m, be = 20 m,

n =
√

μ/a3 is the (unperturbed) mean motion of the target
satellite, and a is the (unperturbed) semimajor axis of the
target satellite.

The linear velocity of the target satellite with respect to
the inertial frame is calculated by numerically integrating
the gravitational acceleration [10, (73)] and the perturbing
acceleration due to Earth’s oblateness [10, (75)]. See [7]
for expressions for the angular acceleration αI

T/I of the
target satellite with respect to the inertial frame expressed
in the inertial frame and for expressions for the variables
ωD

D/I and ω̇D
D/I.

In this example, the total external dual force
acting on the chaser spacecraft is decomposed as
f B = f B

g + f B
∇g + f B

J2
+ f B

c , where f B
g is the

gravitational force [10, (73)], f B
∇g is the gravity gradient

torque [10, (74)], f B
J2

is the perturbing force due to
Earth’s oblateness [10, (75)], and f B

c is the dual control
force. In turn, the dual control force is calculated as
f B

c = f B − f B
g − f B

∇g − f B
J2

, where fB is given by either
(14) or (16).

The mass and inertia matrix of the chaser satellite are
assumed to be m = 100 kg and

ĪB =

⎡
⎢⎣

22 0.2 0.5

0.2 20 0.4

0.5 0.4 23

⎤
⎥⎦ kg · m2.

The initial conditions for this example are r̄B
B/D(0) =

[ 5 5 5 ]T m, qB/D(0)=(0.3320, [ 0.4618 0.1917 0.7999 ]
T
),
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Fig. 2. Reference motion.

Fig. 3. Pose of body frame with respect to desired frame.

v̄B
B/D(0) = [ 0.1 0.1 0.1 ]T m/s, ω̄B

B/D(0) = [ 0.1 0.1 0.1 ]T

rad/s, and xp(0) = qB/D(0).
The control gains are chosen as kp = 0.2, in (14) and

(16), and kd = 4, in (14). The matrices of the LTI system
are chosen as in Remark 4, with kf = 10.

Fig. 2 shows the linear and angular velocity of the
desired frame with respect to the inertial frame expressed
in the desired frame for the complete maneuver. These
signals represent the desired motion.

Fig. 3 shows the initial transient response of the pose
of the body frame with respect to the desired frame
obtained with the control laws with velocity feedback (14)
and without velocity feedback (16). Both controllers are
able to superimpose the body frame onto the desired frame
after the initial transient response.

Fig. 4 shows the linear and angular velocity of the body
frame with respect to the desired frame obtained with (14)
and (16). Again, after the initial transient response, both
controllers cancel the relative linear and angular velocity
of the body frame with respect to the desired frame.

Fig. 4. Velocities of body frame with respect to desired frame.

Fig. 5. Control force and torque during initial transient response.

Fig. 5 shows the control force and control torque
during the initial transient response produced by (14) and
(16). For completeness, Fig. 6 shows the control force and
torque for the complete maneuver. As a comparison, the
complete maneuver requires a 	V of 0.6303 m/s if done
with (14), with velocity feedback, and 0.0211 m/s more if
done with (16), without velocity feedback.

B. Comparison Between the Velocity-Free Controller
and the Velocity-Feedback Controller With EKF

Instead of using the velocity-free pose-tracking
controller derived in Theorem 2 when measurements
of ωB

B/D are not available, one could use the
velocity-feedback pose-tracking controller derived in
Theorem 1 and an EKF to estimate the unmeasured ωB

B/D
from measurements of qB/D. The theoretical and numerical
advantages and disadvantages of each solution are
analyzed in this section.
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Fig. 6. Control force and torque during complete maneuver.

The first solution has three main advantages over the
second solution. The first main advantage is that under the
conditions specified in Theorem 2, pose tracking is
guaranteed—i.e., qB/D → ± 1 and ωB

B/D → 0 as
t → + ∞—independent of the initial condition chosen for
xp. On the other hand, because an EKF is based on
first-order approximations, if the initial guess of the state
is not close enough to the true state, the EKF may diverge,
causing the velocity-feedback controller to fail. The
second main advantage of the velocity-free controller is
that, according to Theorem 2, the LTI system in the
feedback-loop can be designed independent of the value of
kp without violation of the almost globally asymptotic
stability of the closed-loop system. On the other hand,
there is no theoretical guarantee that the connection
between the velocity-feedback controller derived in
Theorem 1 and an EKF will ensure pose tracking. The
third and final main advantage of the velocity-free
controller is the smaller number of states. For example,
whereas the velocity-free controller requires the
propagation of eight states, the dual-quaternion
multiplicative EKF (DQ-MEKF) described in [8] requires
the propagation of 92 states to estimate ωB

B/D from
measurements of qB/D (mostly due to the propagation of
the state covariance matrix). This might make the
velocity-free controller more suitable for satellites with
limited computational resources.

On the other hand, the solution based on the
velocity-feedback controller and an EKF has three
important advantages over the velocity-free controller.
First, an EKF can handle measurement noise by design,
whereas the model on which the velocity-free controller is
based assumes no noise. Note, however that, for example,
by choosing the matrices of the LTI system as in Remark
4, the user is free to choose the cutoff frequency of the
low-pass filter in the feedback loop, which will help filter
out measurement noise. Second, an EKF can be easily
designed to handle discrete-time measurements, whereas
the velocity-free controller described in Theorem 2

Fig. 7. Post tracking using velocity-free controller and
velocity-feedback controller with DQ-MEKF.

assumes continuous-time measurements. Finally, an EKF
can produce a direct estimate of ωB

B/D, whereas the
velocity-free controller cannot. This estimate can be used
to estimate ωB

D/I = ωB
B/I − ωB

B/D, which in turn is used in
both (14) and (16). In an uncooperative satellite
proximity-operation scenario, where ωB

D/I is unknown, and
assuming that the chaser satellite can measure its own
linear and angular velocities with respect to the inertial
frame—i.e., ωB

B/I—this provides a method to estimate
ωB

D/I, which is not available with the velocity-free
controller. Most important, the EKF provides a measure of
the uncertainty associated with the estimate of ωB

B/D
through the state covariance matrix.

To compare the two solutions numerically,
both controllers were applied to the satellite proximity-
operation scenario described in Section V-A, but now
under more realistic conditions. Instead of continuous-time
measurements, both controllers were now fed pose
measurements at 10 Hz. Since the velocity-free controller
requires continuous-time measurements, a zero-order hold
was used to convert the discrete-time measurements into
continuous-time signals. The EKF used in this comparison
is the DQ-MEKF described in [8] that estimates ωB

B/D
from discrete-time measurements of the relative pose.
Moreover, zero-mean additive white Gaussian noise is
added to the measurements of qB/D and rB

B/D, with standard
deviations of, respectively, 1 × 10−4 and 1.7 × 10−3

m. After the additive white Gaussian noise is added to
qB/D, qB/D is renormalized through qB/D = (1/‖qB/D‖)qB/D

[15]. Additionally, each element of the control torque
and force is saturated at ± 5 N·m and ± 5 N, respectively.
Also, the controllers are run at 100 Hz to simulate
a satellite with limited computational resources. Finally,
to make the comparison fair, the control gains are chosen
as kp = 0.2 and kd = 0.4 both in (14) and in (16). All other
parameters of the scenario are defined as in Section V-A.

Fig. 7 shows the initial transient response of the true
(i.e., continuous-time and noise-free) pose of the body
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Fig. 8. Pose-tracking error using velocity-free controller and
velocity-feedback controller with DQ-MEKF.

Fig. 9. Relative linear and angular velocity using velocity-free
controller and velocity-feedback controller with DQ-MEKF.

frame with respect to the desired frame obtained with the
velocity-free controller and with the velocity-feedback
controller in series with the DQ-MEKF. It demonstrates
that even under these more realistic conditions, both
controllers can track the desired pose. In fact, Fig. 7 is
relatively similar to Fig. 3, obtained under ideal
conditions. The pose-tracking error is shown in more
detail in Fig. 8. Whereas the pose-tracking error during the
transient response is smaller with the velocity-feedback
controller and the DQ-MEKF, both controllers achieve
similar steady-state errors.

Fig. 9 shows the true (i.e., continuous-time and
noise-free) linear and angular velocity of the body frame
with respect to the desired frame obtained with both
solutions under these more realistic conditions. Both
controllers track the desired velocities. Again, note that
Fig. 9 is relatively similar to Fig. 4, obtained under ideal
conditions.

Fig. 10. Control force and torque using velocity-free controller and
velocity-feedback controller with DQ-MEKF.

Finally, Fig. 10 shows the control force and torque
produced by both controllers under these more realistic
conditions. The control force and torque produced by the
velocity-free controller exhibit noise and oscillations that
are not visible in the control force and torque produced by
the velocity-feedback controller with the DQ-MEKF. They
also do not appear in Fig. 5 under ideal conditions. This is
expected, since unlike the DQ-MEKF, the velocity-free
controller does not filter out the measurement noise nor is
designed to take discrete-time measurements.

Hence, in this particular scenario and assuming that
the computational resources allow it, the
velocity-feedback controller in series with the DQ-MEKF
seems to be the more numerically robust solution to the
pose-tracking problem without relative linear- and
angular-velocity measurements. The velocity-free
controller may be more suitable for small cheap satellites
where operational requirements are not stringent and
onboard computational resources are limited.

VI. CONCLUSION

This paper proposes a pose-tracking controller that
guarantees almost globally asymptotic stability of the
pose-tracking error even when relative linear- and
angular-velocity measurements are not available. This
property is proven for any reference pose with finite
velocities and accelerations. The derivation of this
controller is based on an existing attitude-tracking
controller that guarantees almost globally asymptotic
stability of the attitude-tracking error when
angular-velocity measurements are not available and on
the dual-quaternion formalism. The proposed controller is
specially suited for uncooperative satellite proximity
operations where the only relative measurements the
chaser satellite has access to are relative pose
measurements from, e.g., a vision-based sensor. The
proposed controller is also useful in the case of
malfunction of a velocity sensor. The simulation results
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presented in this paper show that in a conceivable satellite
proximity-operation scenario, the proposed velocity-free
controller would require only 3% more 	V than a
controller that knows the true relative velocities. The
simulation results presented in this paper also show that
whereas using an EKF with a velocity-feedback controller
can lead to better transient responses and controls than
with the velocity-free controller (at least when the
measurement noise is not carefully filtered in the latter
solution), the additional 84 states required by the former
solution might make the velocity-free controller a better
option for satellites with limited computational resources.
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