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ABSTRACT
Geometric shapes embedded in 2D or 3D images often have boundaries with both high and low curvature regions. These
boundaries of varying curvature can be efficiently captured by adaptive grids such as quadtrees and octrees. Using these
trees, we propose to store sample values at the centers of the tree cells in order to simplify the tree data structure, and to take
advantage of the image pyramid. The difficulty with using a cell-centered tree approach is the interpolation of the values
sampled at the cell centers. To solve this problem, we first restrict the tree refinement and coarsening rules so that only a
small number of local connectivity types are produced. For these connectivity types, we can precompute the weights for
a continuous interpolation. Using this interpolation, we show that region-based image segmentation of 2D and 3D images
can be performed efficiently.
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1. INTRODUCTION
Partial differential equation (PDE)-based image segmentation performed on high resolution 2D or 3D images requires
typically high resolution grids. These grids can be dense, often facing memory or computational limitations. In contrast,
adaptive grids can dramatically reduce memory and computational requirements, since the grid can be adaptively refined
close to the sharp features of the image and coarsened at flat boundaries and regions far from the image boundary.

Such adaptivity is trivially obtained using quadtree and octree grids since their hierarchical structure allow us to refine
or coarsen the grids. Among various quadtree or octree implementations, storing values at the cell corners provides an easy
interpolation of the data,12 but complicates the tree data structure. Storing sample values at the center of the tree cell on the
other hand has a simple tree data structure, parent-child relationship between samples, and often has significant benefits
such as image pyramid levels trivially mapped to the octree. However, the cell-centered sampling approach comes with a
cost of continuous interpolation that requires triangulation or tetrahedralization.3 As a result, the cell-centered approach
has not been broadly used in the literature thus far. We address the problem of continuous interpolation for cell-centered
sampling by developing efficient continuous bilinear and tri-linear interpolation methods. To facilitate the interpolation,
we develop a special quadtree and octree grid structure. Since the proposed tree structure produces only a small number
of local connectivity types, we can pre-compute the interpolation rule for each type. We first identify the interpolation
box that is made of the neighboring cells of the same depth. Then, the interpolation box is divided by smaller sub-grid
boxes, whose corner values are interpolated from neighboring cell center values. We pre-compute the interpolation rules at
each sub-grid points as a set of weight and cell pairs, and store them in a look-up table. These pre-computed interpolation
look-up table values greatly reduce the interpolation cost. We also use this table to differentiate the values and build the
iso-surfaces. By using the new tree structure and the continuous interpolation, we show that large 2D or 3D images can be
efficiently segmented with a quadtree or an octree.

2. AN OVERVIEW ON REGION-BASED LEVEL SET SEGMENTATION
Since their introduction almost two decades ago,4–6 level sets have been used in a large number of applications, including
image segmentation applications. The latter are performed either using edge-based level set methods,7, 8 or region-based
level set methods.9 While edge-based methods are used to segment a feature that has a boundary edge, region-based
methods can be used when a feature in an image has statistics that are different from the background. Examples of such
statistics are intensity,9 texture,10 or motion.11 Region-based level set methods can also be used to segment vector-valued
images,12 or to segment an image into more than two regions using multi-phase level sets.10, 13 In particular, region-based



level set segmentations are suitable to adaptive tree grids since a tree cell can contain statistics inside the cell. Therefore,
in this work we choose to work with region-based level set segmentation methods. In this section, we provide an overview
of the region-based level set segmentation method.

Given an image u0(x), where x is the location in the image, Chen et al9 defined the image segmentation problem as a
problem of minimizing the following functional:

F(c1,c2,C) = µ Length(C)+νArea(inside(C))

+λ1

∫
inside(C)

|u0(x)− c1|2 dΩ+λ2

∫
outside(C)

|u0(x)− c2|2 dΩ,
(1)

where C is the unknown curve boundary of image segment to be found, and c1 and c2 are average values inside and outside
the curve C, respectively. As we integrate over time, the shape of C and the values of c1 and c2 will be updated. In (1) µ

and ν are length and area weights, and λ1, and λ2 are weights for the user to choose.

Region-based segmentation solves (1) by first representing the curve C as the zero level set of a scalar function φ(x).
The value of φ(x) is the signed distance from x to C. Using this level set function φ(x), and the Heaviside function H(φ),
we can write F(c1,c2,C) as

F(c1,c2,C) = µ

∫
Ω

δ (φ(x))|∇φ(x)|dΩ+ν

∫
Ω

H(φ(x))dΩ

+λ1

∫
Ω

|u0(x)− c1|2 H(x)dΩ+λ2

∫
Ω

|u0(x)− c2|2 (1−H(x))dΩ.
(2)

We first regularize δ and H as δε and Hε , and then compute the Euler-Lagrange equation for φ that minimizes F as

∂φ

∂ t
= δε

[
µ∇ · ∇φ

|∇φ |
−ν −λ1(u0− c1)2 +λ2(u0− c2)2

]
. (3)

We can segment images by solving (3). First, the user specifies an initial shape, say, a big circle. This will define an initial
level set to start with. We then evaluate the right hand side of (3) and perform the explicit time integrations.

3. INTERPOLATION ON THE QUADTREE AND OCTREE GRIDS
Continuously interpolating the level set values φ(xi) sampled at tree cell centers xi is an important ingredient to implement
the previous approach. A continuous interpolation provides a continuous field φ(x). This allows us to define the continuous
interface line {x|φ(x) = 0}. In addition, to solve a PDE on the grid, a continuous interpolation is also necessary. For
example, the advection type PDE φ̇ = ∇ ·u, where u is the velocity, can be stably solved using semi-Lagrangian methods,
e.g., the CIR method, which requires interpolation. If this interpolation is not continuous, significant noise on the interface
may result. Thus, continuous interpolation is necessary to solve advection-type PDEs.

Continuous interpolation is trivially implemented on a regular grid, or even in quadtree or octree grids by sampling
values at the corners of a tree cell. However, in cell-centered quadtrees or octrees, continuous interpolation is not trivial.
In this section, we develop a new method to continuously interpolate the center-sampled values φ(xi).

Previously, center-sampled values were interpolated by using a triangulation (or tetrahedralization) of the center loca-
tions.3 This operation is relatively slow (i.e., of order O(n logn)), and required an additional triangle or tetrahedralization
data structure. The first observation is that this operation can be accelerated if we restrict the tree connectivity so that
only a small number of local tree connectivity types exist, and then pre-compute the interpolation weights for each con-
nectivity type. Another problem in the triangulation or tetrahedralization-based interpolation is the fact that a triangle or
a tetrahedron-inside test is more expensive than bilinear or trilinear interpolations in axis-aligned boxes. Therefore, we
develop an interpolation method that is based on axis-aligned interpolation boxes.



(a) (b) (c) (d)
Figure 1. Invalid quadtree structures: (a) and (b) are not valid since the green cell and the red cells are neighbors, but their depth
difference is greater than one. (c) and (d) are not valid, since the green cell’s same-depth neighbors are the three blue cells, one of which
contains a non-leaf child cell (lower right child is not a leaf, but has four red children).

Figure 2. Only 15 quadtree connectivity types (even without considering symmetries) satisfy the quadtree constraints.

3.1 Construction of Octree/Quadtree Constraints
With the goal in mind to limit the number of local cell connectivity types, we develop the following constraints:

1. We allow only one resolution difference between adjacent grid cells. In Fig. 1, (a) and (b) show the green and red
cells violating this condition, since the neighbor in a green cell and a red cell have depth difference greater than one.

2. All the same-depth neighbors are either leaves or have leaf children only. In Fig. 1, (c) and (d) show the green cell’s
same-depth neighbors (blue cells) containing a non-leaf children (the red cell).

These two constraints produce a small number of connectivity types illustrated in Fig. 2 for a quadtree. In all quadtree
cells, we can find the four neighboring same-depth cells that are either leaf cells or have four leaf children. Since each of the
four cells can have children, there can be 16 different cases. However, if all the four cells have leaves, then the connectivity
is equivalent to the case in which all the four cells are leafs. Therefore, there are 15 different local connectivity types.
Similarly, on an octree, we can always find eight cells that are either leaf cells or have leaf children. Therefore, there exist
255 different connectivity types. The number of connectivity types can be further reduced by removing symmetric cases,
but we do not pursue this reduction, since the number of 255 cases is still a small number that does not require much
memory space, even if we precompute the interpolation weights for all of the 255 cases. Thus, only a small number of
connectivity types are produced, and therefore, we can pre-compute all interpolation operations.

The above constraint makes the tree resolution decay slowly as we move away from a high curvature interface region.
At first glance, this appears to be inefficient, since the lower the resolution we can make, the greater savings we obtain.
Note, however, that the amount of reduction is often insignificant since the number of grid cells is dominated by the number
of the fine grid cells in the high curvature interface region.

3.2 Interpolation
In an octree or a quadtree with the previous constraints applied, we now consider how to interpolate cell-centered data. We
prefer to use axis-aligned interpolation boxes since identifying such boxes is easier. For example, in Fig. 3 (a), suppose we
want to interpolate values at the yellow marker. By comparing the coordinates of the yellow marker and the coordinates of



(a) (b) (c) (d)
Figure 3. Various interpolation boxes and their sub-boxes. At the yellow point, bilinear interpolation is performed in the small box
enclosed by the green dotted line. At the blue point, bilinear interpolation is performed in the lower-left sub-box of the blue box.

Figure 4. Level set values sampled at cell centers are interpolated continuously. This continuous interpolation produces the smooth red
interface line (left), or the contour lines (right), which are continuous across differently-sized tree cells .

the neighboring cell centers, we immediately know that bilinear interpolation can be done in the box enclosed by the dotted
green lines, and we can perform bilinear interpolation with the four samples at the corners of the box (the red samples).
Similarly, if we want to compute the value at the blue marker, we can quickly identify the blue box. In this case, however,
interpolation is not obvious since the upper right corner of the blue box does not contain a valid sample.

To interpolate at the blue marker in Fig. 3 (a), we split the blue box as shown by the black dotted lines. This step
produces the three sub-boxes shown in Fig. 3 (a). Again, by comparing the coordinates of the blue point and the dotted
lines, we can trivially identify the sub-box that contains the blue marker. However, in order to perform bilinear interpolation
in this sub-box, we must compute the interpolated value at the green markers as weighted sums of the values at the red
markers. We simply pre-compute these interpolation weights for green markers for all the 15 or 255 different box types
for a quadtree or a octree, respectively. This way, we can quickly compute the values at the green markers. Now, we
have all values at the four corners of all sub-boxes. Finally, we can perform the bilinear interpolation in each sub-box.
This interpolation is continuous, since interpolation (sub-)boxes do not overlap, and interpolations are consistent at the
(sub-)box boundaries. See Fig. 4 for interpolation examples.

3.3 Computing Derivatives
In order to evaluate the right hand side of (3), we must compute the partial derivatives ∂

∂x , ∂

∂y , and ∂

∂ z at the center of each

grid cell. In Fig. 5, suppose that ∆x is the size of the cell that contains φ0. Then, ∂φ

∂x at φ0 can be approximated as the



average value between the left- and right-hand side derivatives. The left-hand side derivative is simply (φ0−φl)/∆x. The
right-hand side derivative is computed as ( 1

2 (φr1 +φr2)−φ0)/( 2
3 ∆x). Finally, we obtain

∂φ

∂x
=

1
2

[
φ0−φl

∆x
+

1
2 (φr1 +φr2)−φ0

2
3 ∆x

]
. (4)

From the Taylor series expansion, we see that this derivative has error O(∆x). Now, consider computing ∂φ

∂x in the case (b)
in Fig. 5. In this case, we first compute φl and then take the centered difference, i.e.,

∂φ

∂x
=

φr −φ`

2∆x
. (5)

Since φ` is computed by bilinear interpolation, φ` contains an error of order O(∆x2). Therefore, ∂φ

∂x computed by (5)
contains an error of order O(∆x). Note that in image segmentation problems, derivatives with accuracy higher than O(∆x)
are not necessary since φ will converge to a static field, and therefore, most of time integration accuracy issues (such as
numerical diffusion) during the transient has no adverse effect on the final result.

(a) (b)
Figure 5. Differentiation across different resolution levels.

4. MESH REFINEMENT
As the level set is updated, the interface moves. As a result, some cells may move away from the interface, while other
cells may come closer to the interface. In addition, the curvature of the interface may change. Therefore, the mesh must be
adaptively refined by subdividing a cell into smaller cells, or coarsened by merging child cells. In this section, we discuss
the criteria for coarsening and refining the cells.

The mesh is refined if the distance to the interface is close enough, and the curvature is high enough. Conversely, if
the distance to the interface is large, the mesh is coarsened, regardless of the curvature. In addition, if the curvature is not
high, the mesh is coarsened, regardless of the distance to the interface. In order to facilitate the discussion below, we use
coarseness to refer to the degraded mesh resolution. Where the coarseness is zero, the mesh is fully refined, and where
the coarseness is, say, three, the mesh has tree depth smaller than the maximum depth by three. Note that coarseness is a
function of the curvature κ = ∇ · ∇φ

|∇φ | , and the distance to the interface |φ |.

We propose to compute the coarseness of the cell as

C(φ ,κ) =
|φ |

σdmax
+ c1 tan−1

(c2κC

κ

)
, (6)

where dmax is the maximum depth, σ is the thickness of the interface where maximum resolution is maintained when
the curvature is high, Cmax is the maximum allowed coarseness at the interface, κC is the curvature at which the mesh is
coarsened by one, c1 = 2Cmax/π , and c2 = tan(1/c1). When φ → 0 and κ →∞, the coarseness is reduced, i.e., C(φ ,κ)→ 0.
In smooth regions, the curvature κ is small. In this case, the coarseness is increased, i.e., when κ → 0, C(φ ,κ) →
|φ |/(σdmax)+Cmax. When the curvature is κ = 1/rC, the coarseness takes the value C(φ ,κ) = |φ |/(σdmax)+1.



Figure 6. Segmentation of a 512×512 image. Brute force segmentation without using other speed up methods, such as narrow band level
set, results in a segmentation within 4 seconds on an Intel Q6600 (3.6GHz), DDR2 800 system. Significant speedup can be achieved by
using the image pyramid. See Fig. 7 for an example.

Once C(φ ,κ) is computed, we can compute the desired tree depth as ddesired = dmax −C(φ ,κ). We then compare
ddesired and the current depth d. If ddesired > d, we can merge the tree. However, since we must satisfy the tree connectivity
constraint, we cannot always merge to enforce ddesired. In contrast, if ddesired < d, we always refine the cell, and refine the
neighboring cells to meet the constraint.

5. RESULTS AND DISCUSSION
Figure 6 shows a segmentation result on a 2D image. Using an explicit time integration of (3) with a constant time step,
we obtained the segmented image in about 4 seconds (400 time steps). As shown in Fig. 4, and 6, the level set interfaces
remained smooth during the image segmentation processes, without developing any artifacts.

Figure 7 shows the result of the segmentation of a synthetic 3D test image. With this image, even naive time integration
with a small constant time step converged in 34 seconds, although the interface is moving only by a small amount at each
time step. The computation time is greatly reduced to 0.5 second by first taking eight time steps in a 64×64×64 grid (i.e.,
we set dmax = 6), and then taking eight more time steps in a 128×128× grid (dmax = 7). To compute the level set interface
mesh, we used the marching cube algorithm with a modification to irregular grids.

Figure 8 shows the segmentation result for a volumetric cell image taken from the CCDB site (http://ccdb.ucsd.edu).
Since the cell shape has high curvature regions, cells are refined to high depths. As a result, naive integration of (3) with
dmax = 9 took a very long time (30min). Again, by segmenting in lower resolution first, and then moving on to higher
resolution, the segmentation computation time is reduced to approximately 40 seconds.



Figure 7. Segmentation of a volumetric 128× 128× 128 set of data. Naive segmentation takes approximately 34 seconds on a Intel
Q6600 CPU. However, if we use very large time steps (i.e., k-mean clustering14) in a coarse image pyramid level and move on to finer
level with refined time steps, the level set is converged within about 0.5 second (0.2 sec for eight time steps in 64× 64× 64 image
pyramid level (we simply set dmax = 6), and 0.3 sec for eight time steps in the 128×128×128 level (dmax = 7).

6. CONCLUSION AND FUTURE WORK
The main weakness of using cell-centered octrees is the complexity of interpolation. We show that this complexity can
be resolved by the proposed tree connectivity constraints and by precomputing the interpolation values using interpolation
rules on a small number of local connectivity types. In addition, we demonstrate that the cell-center-sampled quadtree and
octree allows us to accelerate segmentation by using the image pyramid. We plan to further explore the accommodation of
several common speed-up techniques, such as narrow-band or freezing the converged region.
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