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In this paper, we discuss the problem of peer-to-peer (P2P) refueling of satellites in
a circular constellation. In particular, we propose a cooperative P2P (C-P2P) refueling
strategy, in which the satellites involved in P2P maneuvers are allowed to engage in co-
operative rendezvous. We discuss a formulation of the proposed C-P2P strategy and a
methodology to determine the optimal C-P2P assignments. We show that in order to re-
duce the fuel expenditure in a C-P2P maneuver, the amount of fuel exchanged between the
two satellites is such that the satellite performing the larger-ΔV transfer during the return
trip, ends up having just enough amount of fuel to be fuel-sufficient. Finally, with the
help of numerical examples, we provide a comparison of the P2P and the C-P2P refueling
strategies. It is found that a C-P2P strategy is beneficial when the fuel-deficient satellites
in the constellation do not have enough fuel to complete a non-cooperative rendezvous.

INTRODUCTION

On-orbit servicing (OOS) of spacecraft has received significant attention in the last decade. Although
the current practice in space industry is to replace the spacecraft after their design lifetime, there have also
been a few instances of on-orbit servicing. The first instances of OOS can be traced to the servicing missions
for the SkyLab Space Station in 1970s. OOS missions were also undertaken for the Solar Maximum Mission
(SMM) and the Russian Space Station. The most visible instance of an OOS mission was perhaps the repair
of the Hubble Space Telescope (HST).1–4

Waltz defines OOS as work done in space by man or machine or by both. He classifies the objectives
of OOS into three broad categories: assembly, maintenance, and servicing. Reynerson5 introduced a notion
of cost in describing on-orbit servicing and he defined a serviceable spacecraft as one for which the benefits
of OOS outweigh the associated cost. A recent customer-centric approach to studying OOS classifies the
objectives of OOS into three functions, namely life extension, upgrade, and modification.2,3

Replenishment of consumables (e.g., propellant) is one aspect of OOS. Satellites need a regular fuel-budget
for stationkeeping. Providing fuel-deficient satellites with propellant has significant benefits by extending
their lifetime. The potential profitability of refueling relatively lightweight geostationary communication
satellites with long lifetimes has been emphasized in Ref. 6. Saleh et al.3 provide numerical examples that
point out the promise of refueling in OOS operations. The authors of Ref. 3 also remark that refueling
presents little risk, but offers immense gains if it is performed at the end of the spacecraft lifetime. An
account of technical and economic feasibility of on-orbit satellite servicing can also be found in Ref. 7. It
should be noted that apart from extending the lifetime of satellites, refueling capabilities of a servicing
mission enables extraordinary mission flexibility by allowing for orbital maneuvering, which would otherwise
considerably shorten the spacecraft lifetime because of high fuel consumption.

The conventional wisdom suggests refueling one or more fuel-deficient satellites in a constellation using a
single refueling spacecraft.8 Recently, an alternative refueling strategy has been investigated by the second

∗PhD Candidate, D. Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150.
Email: a3d@gatech.edu.

†Professor, D. Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150. Tel:
(404) 894-9526, Fax: (404) 894-2760, Email: tsiotras@gatech.edu.

1 of 14

American Institute of Aeronautics and Astronautics



author and his students. This is the so-called peer-to-peer (P2P) refueling strategy.9–12 In a P2P strategy
satellites distribute fuel amongst themselves in the absence of a single refueling spacecraft. This is achieved
by having satellites with excess fuel sharing their resources (propellant) with those depleted of it. Although
a stand-alone P2P strategy might seem unconventional at first glance, P2P comes as a natural choice for
distributing fuel amongst several satellites in a mixed refueling strategy.10,11 In such a scenario, an external
refueling spacecraft, either launched from Earth or coming from a different orbit, replenishes half of the
satellites in a constellation before returning back to its original orbit. The satellites which receive fuel from
the external refueling spacecraft distribute the fuel with the rest of the satellites in the constellation via P2P
refueling. Numerical studies have shown that such a mixed refueling strategy is a competitive alternative to
the single-service vehicle refueling strategy and, in fact, outperforms the latter, as the number of satellites in
the constellation increases and/or the time to refuel decreases.10 Furthermore, the incorporation of additional
cost-reducing strategies, such as the coasting time allocation strategy and asynchronous P2P maneuvers,11

leads to further improvements by reducing the fuel expenditure of the P2P phase of the mixed refueling
strategy even more.

The original studies9,11 perceived P2P refueling as a means of equalizing fuel in the constellation. A
subsequent alternative formulation imposed a minimum fuel requirement on each satellite, and perceived
P2P refueling as a means of achieving fuel-sufficiencyd for all satellites in the constellation.12 An extension
of P2P refueling, known as the Egalitarian P2P (E-P2P) strategy, has been shown to further reduce the
overall fuel expenditure during the refueling process.13–15

In all previous work on P2P refueling all rendezvous between the satellites participating in a fuel exchange
have been assumed to be non-cooperative. In other words, one of the satellites is active and performs all
the orbital maneuvers, whereas the other satellite is passive and stays in its original orbital slot throughout
the whole process. In general, the rendezvous need not be non-cooperative. In fact, cooperative rendezvous
(between two single satellites) has been studied in the literature for quite some time. The earliest works
on cooperative rendezvous considered a rendezvous between systems with linear or non-linear dynamics and
with various performance indices.16,17 The idea of using differential games to study cooperative rendezvous
problems has also been discussed.18 The optimal terminal maneuver of the active satellites engaged in a
cooperative impulsive rendezvous has been studied in Ref. 19. The determination of the optimal terminal
maneuver involves the optimization of the common velocity vector after the rendezvous. Methods to deter-
mine optimal fixed-time impulsive cooperative rendezvous using primer vector theory were given in Ref. 20.
These methods accommodate cases of fuel-constraints on the satellites themselves, and enable the addition
of a mid-course impulse to the trajectory. For the case of fixed-time impulsive maneuvers, cooperative
rendezvous may be advantageous when the time allotted for the maneuver is relatively short. Examples
show that a non-cooperative solution becomes cheaper once the time allotted for the rendezvous is large
enough for Hohmann transfers to be feasible. The minimum fuel rendezvous of two power-limited space-
craft has also been studied using non-linear analysis as well as Clohessy-Wiltshire (C-W) equations.21,22

For spacecraft engaging in a rendezvous maneuver, cooperative rendezvous is always found to be cheaper
than a non-cooperative rendezvous. Constrained and unconstrained circular terminal orbits have also been
analyzed in Ref. 21, where it has been found that the cooperative solution still remains the cheaper option.
Analytical solutions using the C-W equations can be used to predict the nature of the terminal orbit of
the rendezvous. For instance, in the case of a cooperative rendezvous between two satellites in a circular
orbit, the two satellites meet at an orbital slot that is mid-way between the two original slots, each satellite
essentially removing half of the phase angle.21

In all previous studies on P2P refueling,9–14 only non-cooperative rendezvous had been considered. The
primary contribution of this paper is the application of cooperative rendezvous to the problem of P2P
refueling. The goal is to reduce the fuel expenditure incurred during the refueling process. As in all previous
work on the subject, all orbital transfers considered in this work are time-fixed two-impulse orbital transfers.

In the forthcoming sections, we review the P2P refueling strategy, and provide a formulation for the
solution of the C-P2P strategy refueling problem. We also determine the amount of fuel shared by satellites
engaged in a C-P2P maneuver so that the fuel expenditure incurred during the maneuver is minimum.
Finally, with the help of numerical examples, we illustrate the merits of C-P2P refueling strategies.

dBy fuel-sufficiency, we mean that a satellite has a sufficient amount of fuel to remain operational.
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P2P REFUELING STRATEGY

In this section, we will discuss in detail the P2P refueling strategy. This sets the stage for the subsequent
developments. We first introduce the basic notation and we then formulate the problem as an optimization
problem over a (bipartite) constellation graph.

Notations

Let us consider a circular constellation consisting of n satellites, distributed over n orbital slots in a circular
orbit of radius R. Let the set of n satellites be given by S = {si : i = 0, 1, 2, . . . , n}, where s0 represents
a fictitious satellite, the purpose of which will become clear shortly. Let the set of n orbital slots be given
by Φ = {φi ∈ [0, 2π) : i = 1, 2, . . . , n, φi �= φj}. We introduce a mapping σt : Φ �→ S that, at time t ≥ 0,
assigns to each orbital slot a satellite from S. In particular, σt(φj) = si implies that the satellite si occupies
the orbital slot φj at time t. If the slot φj is empty at time t, we write σt(φj) = s0. Also, let the fuel
content of satellite si at time t be denoted by fi,t. In particular, let the initial fuel content of satellite si be
denoted by f−

i and the final fuel content be denoted by f+
i ; that is, f−

i = fi,0 and f+
i = fi,T , where T is

the time allotted for refueling. Also, let f
i
denote the minimum amount of fuel for the satellite si to remain

operational, and let f̄i denote the maximum fuel capacity of the same satellite. Fuel-sufficient satellite are
those which have at least the required amount of fuel; the remaining satellites are fuel-deficient.

Figure 1. Notation for P2P refueling.

It the following, we will need to keep track of the indices of the satellites participating in the refueling
process under different roles. To this end, let I = {1, 2, . . . , n}. The fuel-sufficient satellites have excess
fuel and are thereby capable of sharing this fuel with other satellites in the constellation. The fuel-deficient
satellites are low on (or depleted of) fuel. Let Is,0 denote the set comprised of the indices of the fuel-
sufficient satellites, and let Id,0 denote the set having as elements the indices of the fuel-deficient ones.
Clearly, Is,t = {i : fi,t ≥ f

i
}, Id,t = {i : fi,t < f

i
} and Is,0 ∪ Id,0 = I. The objective of P2P refueling is

therefore to achieve f+
i ≥ f

i
for all i ∈ {1, 2, . . . , n} by expending the minimum amount of fuel during the

ensuing orbital transfers.

During a P2P refueling transaction between a fuel-sufficient and a fuel-deficient satellite, one of them
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(henceforth referred to as the active satellite) performs an orbital transfer to rendezvous with the other
satellite (henceforth referred to as the passive satellite). After the fuel exchange takes place between the
two, the active satellite returns to its original orbital slot. We will denote the index set of active satellites
by Ia ⊆ I and the index set of passive satellites by Ip ⊂ I. For convenience, let also Js,t = {j : σt(φj) =
si, i ∈ Is,t} denote the index set of orbital slots occupied by the fuel-sufficient satellites at time t, and let
Jd,t = {j : σt(φj) = si, i ∈ Id,t} denote the index set of the orbital slots occupied by fuel-deficient satellites
at time t. Also, let Ja = {j : σ0(φj) = si, i ∈ Ia} denote the index set of the orbital slots occupied by the
active satellites before any orbital maneuver commences. Finally, let Jp = {j : σ0(φj) = si, i ∈ Ia} denote
the index set of the orbital slots occupied by the passive satellites before any orbital maneuver commences.
Figure 1 illustrates these concepts. For the situation depicted in Fig. 1, we assume that σ0(φi) = si. Also,
satellites s1, s2, s7 and s8 are the fuel-sufficient satellites while the remaining ones are the fuel-deficient
satellites. The active satellites are marked with ’�’, the forward trips are marked by a solid arrow, and
the return trips are marked by a dashed arrow. Furthermore, for each satellite si, we denote the mass of
its permanent structure by mspi and the specific thrust of its engine by Ispi. We denote the gravitational
acceleration on the surface of the earth by g0. For each satellite si, we therefore define the characteristic
constant as c0i = g0Ispi. Finally, we denote the optimal rendezvous cost required for an orbital transfer from
slot φi to slot φj by ΔVij . The fuel expended by satellite sμ to perform the orbital transfer from slot φi to
slot φj will be denoted by pμ

ij .

Fuel Expenditure in a P2P Maneuver

Let us consider a P2P maneuver between satellite sμ, initially occupying the orbital slot φi, and satellite
sν , initially occupying the orbital slot φj . Hence, sμ = σ0(φi) and sν = σ0(φj). Without loss of generality,
assume sμ to be a fuel-sufficient satellite and sν to be a fuel-deficient satellite, that is, μ ∈ Is,0 and ν ∈ Id,0.
Either of the two satellites may be active during a refueling transaction. Accordingly, two different refueling
transactions are possible. In the first case, the fuel-sufficient satellite sμ is active. Therefore, μ ∈ Ia ∩ Is,0

and ν ∈ Ip ∩ Id,0. The fuel consumed by the active satellite sμ to transfer from the orbital slot φi to the
orbital slot φj is given by:

pμ
ij =

(
msμ + f−

μ

) (
1 − e

−ΔVij
c0μ

)
. (1)

The fuel content of satellite sμ after its forward trip (but before fuel exchange takes place) is f−
μ −pμ

ij . After
the fuel exchange takes place between the two satellites, sμ performs another orbital transfer and returns
to its original orbital slot φi. Since the fuel consumption during the transfer is minimized when the active
satellite returns to its final slot with exactly the required minimum amount of fuel to remain operational,
the amount of fuel consumed during the return trip is given by

pμ
ji =

(
msμ + f

μ

)
e

ΔVji
c0μ

(
1 − e

−ΔVji
c0μ

)
. (2)

In order for satellite sν to become fuel-sufficient after the fuel transaction, we must therefore have,

(
f−

ν + f−
μ

) − (
f

μ
+ f

ν

)
≥ pμ

ij + pμ
ji. (3)

If the above condition does not hold, then the P2P refueling transaction is not feasible. Also, if satellite sμ

does not have enough fuel to carry out the orbital transfer during the forward trip, that is, if pμ
ij ≥ f−

μ , then
the P2P refueling transaction is also not feasible.

In the second case, the fuel-deficient satellite sν is active. The fuel consumed for the active satellite sν

to transfer from the orbital slot φi to the orbital slot φj is given by

pν
ji =

(
msν + f−

ν

) (
1 − e−

ΔVji
c0ν

)
. (4)

The fuel content of satellite sν after its forward trip (but before fuel exchange takes place) is f−
ν − pν

ji. The
amount of fuel consumed during the return trip (during which the satellite sν travels from the orbital slot
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φi to the orbital slot φj) is given by

pν
ij =

(
msν + f

ν

)
e

ΔVij
c0ν

(
1 − e−

ΔVij
c0ν

)
. (5)

Before the return trip (but after the fuel exchange takes place) the fuel on board satellite sν is f
ν
+ pν

ij . The
fuel transferred to satellite sν during the fuel exchange is (f

ν
+ pν

ij)− (f−
ν − pν

ji). The fuel on board satellite
sμ after the fuel transaction is f−

μ − (f
ν

+ pν
ij) + (f−

ν − pν
ji). In order for the satellite sμ to be fuel-sufficient

after the fuel transaction, we must have
(
f−

μ + f−
ν

) − (
f

ν
+ f

μ

)
≥ pν

ji + pν
ij . (6)

If the above condition does not hold, then a P2P refueling transaction is not feasible. Also, if the satellite
sν does not have enough fuel to carry out the orbital transfer during the forward trip, that is, if pν

ji ≥ f−
ν ,

then the P2P refueling transaction is also not feasible.

P2P Formulation

Consider an undirected bipartite graph G = (V, E) with the two partitions being Js,0 and Jd,0. There exists
an edge 〈i, j〉 ∈ Js,0 × Jd,0 if the satellites sμ = σ0(φi) and sν = σ0(φj) can engage in a P2P refueling
transaction such that at the end of the refueling process, both the satellites end up being fuel-sufficient.
Let E ⊆ Js,0 × Jd,0 be the set of all edges in G. To each edge 〈i, j〉 ∈ E , we assign a cost cij that equals
the fuel expenditure incurred during the P2P refueling transaction between the two corresponding satellites.
Recognizing that either of the two satellites engaged in a P2P refueling transaction can be the active one,
we define the cost associated with each edge 〈i, j〉 as follows:

cij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

pμ
ij + pμ

ji, if sμ can be active, but sν cannot,

pν
ji + pν

ij , if sν can be active, but sμ cannot,

min{pμ
ij + pμ

ji, p
ν
ji + pν

ij}, if either sμ or sν can be active,

∞, if neither sμ nor sν can be active.

(7)

We are interested in a set M ⊆ E of |Id,0| edges that has minimum total cost, and such that all fuel-deficient
satellites are involved in fuel transactions. Let us also associate with each edge 〈i, j〉 ∈ E a binary variable
xij defined as

xij =

⎧⎨
⎩

1, if 〈i, j〉 ∈ M,

0, otherwise.
(8)

We thereby have the following optimization problem:

min
M⊆E

∑
〈i,j〉∈E

cijxij , (9)

such that ∑
j∈Jd,0

xij ≤ 1, for all i ∈ Js,0, (10)

∑
i∈Js,0

xij = 1, for all j ∈ Jd,0, (11)

Constraint (10) implies that a fuel-sufficient satellite can be assigned to at most one refueling transaction,
while constraint (11) implies that a fuel-deficient satellite has to be assigned to a refueling transaction.

Next, we illustrate the P2P refueling scenario with a couple of examples. To this end, let us consider
some sample constellations given in Table 1. The optimal assignments for each case can be obtained by
solving the optimization problem outlined in the previous section. In particular, we discuss in detail the
optimal P2P assignments obtained in the case of constellations C1 and C ′

1.
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Table 1. Sample Constellations.

Label Description
C1 10 satellites, Altitude = 35, 786 Km, T = 12

f−
i : 30, 30, 6, 6, 6, 6, 6, 30, 30, 30

f̄i = 30, f
i
= 12, msi = 70 for all satellites

C ′
1 10 satellites, Altitude = 35, 786 Km, T = 12

f−
i : 30, 30, 1.5, 1.5, 1.5, 1.5, 1.5, 30, 30, 30

f̄i = 30, f
i
= 12, msi = 70 for all satellites

C2 16 satellites, Altitude = 1, 200 Km, T = 30
f−

i : 30, 30, 30, 30, 30, 30, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5
f̄i = 30, f

i
= 15, msi = 70 for all satellites

C3 12 satellites, Altitude = 12, 000 Km, T = 20
f−

i : 25, 25, 25, 25, 25, 25, 2, 2, 2, 2, 2, 2
f̄i = 25, f

i
= 12, msi = 75 for all satellites

C4 18 satellites, Altitude = 6, 000 Km, T = 25
f−

i : 25, 25, 25, 25, 25, 25, 25, 25, 25, 6, 6, 6, 6, 6, 6, 6, 6, 6
f̄i = 25, f

i
= 12, msi = 75 for all satellites

C5 14 satellites, Altitude = 1, 400 Km, T = 35
f−

i : 25, 25, 25, 25, 25, 25, 25, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5
f̄i = 25, f

i
= 10, msi = 75 for all satellites

Example 1. P2P refueling strategy for a constellation of 10 satellites.

Consider the constellation C1 given in Table 1. This constellation consists of 10 satellites evenly dis-
tributed in a circular orbit. The maximum allowed time for refueling is T = 12 orbital periods. Each satellite
si, where i = 1, . . . , 10, has a minimum fuel requirement of f

i
= 12 units, while the maximum amount of fuel

each satellite can hold is f̄i = 30 units. Each satellite has a permanent structure of msi = 70 units, and a
characteristic constant of c0i = 2943 m/s. The indices of the fuel-sufficient satellites are Js,0 = {1, 2, 8, 9, 10}
and those of the fuel-deficient satellites are Jd,0 = {3, 4, 5, 6, 7}. The optimal P2P assignments obtained after
solving the optimization problem (9)-(11) is s4 → s1, s5 → s2, s7 → s8, s6 → s9, s3 → s10, and the total
fuel consumption for all P2P maneuvers is 26.07 units. The indices of the active satellites in this case are
Ja = {3, 4, 5, 6, 7}. Note that Ja = Jd,0, that is, the fuel-deficient satellites are the active ones for the P2P
refueling strategy. The optimal P2P assignments are shown in Fig. 2(a). The active satellites are marked by
’�’. The forward trips are marked by solid arrows, while the return trips are marked by dotted arrows. The
fuel-deficient satellites, having the lesser mass than their fuel-sufficient counterparts, incur much lesser fuel
expenditure during their forward trips. This results in lower fuel expenditure during the overall refueling
process and hence, we all the fuel-deficient satellites are active.

Example 2. P2P refueling strategy when all satellites do not have enough fuel to be active.

We consider the constellation C ′
1 which is the same as the constellation C1 of Example 1, except that now

the fuel-deficient satellites contain only 1.5 units of fuel (not sufficient to carry out some of the large-ΔV
transfers). Hence, it is not possible for all the fuel-deficient satellites to be active. In this case, the optimal
P2P assignments are: s1 → s4, s2 → s5, s6 → s8, s7 → s9, s10 → s3. The total fuel expended during all
P2P maneuvers is 29.61. Figure 2(b) shows the optimal P2P maneuvers in the constellation. Note that
Jd,0 = {3, 4, 5, 6, 7} and Ja = {1, 2, 6, 7, 10}, so that we no longer have Jd,0 = Ja. The 1.5 units of fuel for
satellites s4, s5 and s3 are not sufficient to complete the forward trip. Instead, it is possible to carry out the
P2P maneuvers by having the fuel-sufficient satellites s1, s2 and s10 to be active.
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S2

S8

S7

S5

S4

S1

S3

S6

S9

S10

(a) Constellation C1 (b) Constellation C′
1

Figure 2. Optimal assignments for P2P refueling.

C-P2P REFUELING STRATEGY

In this section, we formulate the Cooperative P2P (C-P2P) refueling problem as an optimization problem
over a suitable bipartite constellation graph. Recall that in the C-P2P strategy, we allow cooperative
rendezvous between the satellites engaging in a P2P maneuver. To this end, let us consider a set of slots
Φ′ ⊇ Φ on the constellation orbit. These slots are positions where a cooperative rendezvous can take place
between two satellites in the constellation. Let K denote the set of indices for these slots. Now, let us
consider a C-P2P maneuver between two satellites sμ = σ0(φi) and sν = σ0(φj) occupying the orbital slots
φi and φj , where i, j ∈ J . Let these satellites engage in a cooperative rendezvous at the orbital slot φk,
where k ∈ K. During the first phase of the cooperative P2P maneuver, the two satellites sμ and sν transfer
to the orbital slot φk. After the rendezvous, the satellites sμ and sν are engaged in a fuel exchange and then,
in the second phase of the P2P maneuver, the satellites sμ and sν transfer to their original orbital slots φi

and φj respectively. Without loss of generality, let us assume that sμ is the fuel-sufficient satellite and that
sν is the fuel-deficient satellite, that is, f−

μ ≥ f
μ

and f−
ν < f

ν
.

Note that in a non-cooperative P2P maneuver, the amount of fuel exchanged by the two satellites can
be determined by the fact that the active satellite returns with just enough fuel to be fuel-sufficient. Unlike
the non-cooperative case, the amount of fuel exchanged between the satellites in the cooperative case affects
the return trips of both the active satellites. Hence, a natural question that arises here is how to obtain the
amount of fuel that must be shared between the two satellites. Of course, the objective is to spend as little
fuel during each C-P2P maneuver as possible.

Fuel Expenditure During a C-P2P Maneuver

In this section, we determine the amount of fuel exchange that leads to minimum fuel expenditure during
the maneuver. To this end, let us denote by gν

μ the amount of fuel that is transferred from satellite sμ to
satellite sν .

The fuel consumed by the active satellite sμ to transfer from the orbital slot φi to the orbital slot φk is
given by:

pμ
ik =

(
msμ + f−

μ

) (
1 − e

−ΔVik
c0μ

)
. (12)

Similarly, the fuel expenditure for satellite sν to transfer from the orbital slot φj to the orbital slot φk is
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given by:

pν
jk =

(
msν + f−

ν

) (
1 − e−

ΔVjk
c0ν

)
. (13)

The fuel content of satellite sμ after its forward trip (but before the fuel exchange takes place) is f−
μ − pμ

ik,
while that of satellite sν is f−

ν − pν
jk. The amount of fuel that sμ imparts to sν is gν

μ. Hence, the fuel
content of satellite sμ just after the fuel exchange takes place is f−

μ − pμ
ik − gν

μ, while that of satellite sν is
f−

ν − pν
jk + gν

μ. During the return trip, the fuel expenditure of satellite sμ to transfer from slot φk to slot φi

is given by

pμ
ki =

(
msμ + f−

μ − pμ
ik − gν

μ

) (
1 − e

−ΔVki
c0μ

)
, (14)

while that of satellite sν to transfer from slot φk to slot φj is given by

pν
kj =

(
msν + f−

ν − pν
jk + gν

μ

) (
1 − e−

ΔVkj
c0ν

)
. (15)

The final fuel content of satellite sμ after the cooperative P2P maneuver is given by f+
μ = f−

μ − pμ
ik −

gν
μ − pμ

ki, while that of satellite sν is given by f+
ν = f−

ν − pν
jk + gν

μ − pν
kj . Using the above equations, we have

f+
μ =

(
msμ + f−

μ − gν
μ − pμ

ik

)
e
−ΔVki

c0μ − msμ, (16)

and
f+

ν =
(
msν + f−

ν + gν
μ − pν

jk

)
e−

ΔVkj
c0ν − msν . (17)

We therefore have

f+
μ + f+

ν =
(
msμ + f−

μ − pμ
ik

)
e
−ΔVki

c0μ − gν
μe

−ΔVki
c0μ +

(
msν + f−

ν − pν
jk

)
e−

ΔVkj
c0ν

+ gν
μe−

ΔVkj
c0ν − (msμ + msν) .

(18)

Minimizing the fuel expenditure during a C-P2P maneuver is the same as maximizing the total fuel content
f+

μ + f+
ν of the satellites after the maneuver. From the above equation, f+

μ + f+
ν is maximized when

gν
μe−

ΔVkj
c0ν − gν

μe
−ΔVki

c0μ = gν
μ

(
e−

ΔVkj
c0ν − e

−ΔVki
c0μ

)

is maximized. Recall that both satellites need to be fuel-sufficient after the P2P maneuver. Satellite sμ will
be fuel-sufficient if

f+
μ ≥ f

μ
,

that is, (
msμ + f−

μ − gν
μ − pμ

ik

)
e
−ΔVki

c0μ − msμ ≥ f
μ
,

or
gν

μe
−ΔVki

c0μ ≤ (
msμ + f−

μ − pμ
ik

)
e
−ΔVki

c0μ −
(
msμ + f

μ

)
,

and hence,

gν
μ ≤ (

msμ + f−
μ − pμ

ik

) − (
msμ + f

μ

)
e

ΔVki
c0μ .

Also, satellite sν will be fuel-sufficient if
f+

ν ≥ f
ν
,

that is, (
msν + f−

ν + gν
μ − pν

jk

)
e−

ΔVkj
c0ν − msν ≥ f

ν
,

or,

gν
μe−

ΔVkj
c0ν ≥

(
msν + f

ν

)
− (

msν + f−
ν − pν

jk

)
e−

ΔVkj
c0ν ,
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and hence,

gν
μe−

ΔVkj
c0ν ≥

(
msν + f

ν

)
− (

msν + f−
ν − pν

jk

)
e−

ΔVkj
c0ν .

The conditions of fuel-sufficiency on the satellites provide us with a lower bound gν
μ|� on the amount of

fuel exchange, given by

gν
μ|� =

(
msν + f

ν

)
e

ΔVkj
c0ν − (

msν + f−
ν − pν

jk

)
. (19)

It also provides an upper bound gν
μ|u on the amount of fuel exchange, given by

gν
μ|u =

(
msμ + f−

μ − pμ
ik

) − (
msμ + f

μ

)
e

ΔVki
c0μ . (20)

As mentioned already, we need to maximize gν
μ

(
e−

ΔVkj
c0ν − e

−ΔVki
c0μ

)
. This is maximized if

gν
μ =

⎧⎨
⎩

gν
μ|�, e−

ΔVkj
c0ν < e

−ΔVki
c0μ ,

gν
μ|u, e−

ΔVkj
c0ν > e

−ΔVki
c0μ .

(21)

Clearly, if e−
ΔVkj
c0ν = e

−ΔVki
c0μ , then gν

μ can assume any value in the interval gν
μ|� ≤ gν

μ ≤ gν
μ|u.

To determine the final fuel content of the satellites when the fuel exchange is optimal, we need to consider

two cases. If e−
ΔVkj
c0ν < e

−ΔVki
c0μ , we have

f+
ν =

(
msν + f−

ν + gν
μ|k − pν

jk

)
e−

ΔVkj
c0ν − msν

=
(
msν + f−

ν − (
msν + f−

ν − pν
jk

) − pν
jk

)
e−

ΔVkj
c0ν +

(
msν + f

ν

)
− msν

= f
ν
, (22)

which implies that sν returns with just enough fuel to be fuel-sufficient. On the other hand, if e−
ΔVkj
c0ν >

e
−ΔVki

c0μ , we have

f+
μ =

(
msμ + f−

μ − gν
μ|u − pμ

ik

)
e
−ΔVki

c0μ − msμ

=
(
msμ + f−

μ − (
msμ + f−

μ − pμ
ik

) − pμ
ik

)
e
−ΔVki

c0μ +
(
msμ + f

μ

)
− msμ

= f
μ
, (23)

which implies that sμ returns with just enough fuel to be fuel-sufficient.

If both satellites have the same engine characteristics, then c0μ = c0ν , and e−
ΔVkj
c0ν < e

−ΔVki
c0μ , equivalently,

ΔVkj

c0ν
> ΔVki

c0μ
, and hence, ΔVkj > ΔVki. Similarly, e−

ΔVkj
c0ν > e

−ΔVki
c0μ implies that ΔVkj > ΔVki. We can

summarize our findings with the following proposition.

Proposition 1. If two satellites engaging in a cooperative P2P maneuver have engines with the same specific
thrust, the optimal fuel exchange takes place when the satellite making the costlier ΔV transfer returns with
just enough fuel to be fuel-sufficient.

C-P2P Formulation

Similar to solving the P2P refueling problem, let us consider the undirected bipartite graph G with the two
graph partitions being the orbital slots of the fuel-sufficient satellites Js,0 and those of the fuel-deficient
satellites Jd,0. There exists an edge 〈i, j〉 ∈ Js,0 × Jd,0 if the satellites sμ = σ0(φi) and sν = σ0(φj) can
engage in a cooperative or non-cooperative P2P refueling transaction, such that, at the end of the refueling
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process, both satellites end up being fuel-sufficient. Let E ⊆ Js,0 ×Jd,0 be the set of all edges in G. To each
edge 〈i, j〉 ∈ E , we assign a cost cij that equals the fuel expenditure incurred during the cheapest (among
all non-cooperative and cooperative) P2P maneuver between the two. Let the satellites sμ = σ0(φi) and
sν = σ0(φj) be involved in a cooperative rendezvous at the orbital slot φk ∈ Φ′, where Φ′ is the set of all
possible orbital slots on the orbit. Note that Φ ⊆ Φ′. The fuel expenditure incurred during the cooperative
maneuver is given by

cij |φk
=

(
pμ

ik + pν
jk

)
+

(
pμ

ki + pν
kj

)
(24)

Note that φk = φi corresponds to a non-cooperative maneuver, in which the satellite sν is active, while
φk = φj corresponds to a non-cooperative maneuver, in which the satellite sν is active. The minimum
over all cooperative and non-cooperative fuel expenditures is assigned to be the weight of the edge 〈i, j〉.
Therefore, we have

cij = min
φk∈Φ′

cij |φk
(25)

For convenience, let us also define a function Coop : E �→ Φ′ such that

Coop (i, j) = arg min
φk∈Φ′

cij |φk
(26)

Note that if for edge 〈i, j〉, the cheapest maneuver is non-cooperative, then Coop (i, j) gives the orbital slot
of the passive satellite. We are interested in a set Me ⊆ E of |Id,0| edges that has minimum total cost and
such that all fuel-deficient satellites are involved in fuel transactions. Similarly to what we did for the P2P
refueling problem, let us also associate with each edge 〈i, j〉 ∈ E a binary variable xij , defined as

xij =

⎧⎨
⎩

1, if 〈i, j〉 ∈ Me,

0, otherwise.
(27)

We can therefore consider the following optimization problem:

(CP2P − IP) : min
Me⊆E

∑
〈i,j〉∈E

cijxij , (28)

such that ∑
j∈Jd,0

xij ≤ 1, for all i ∈ Js,0, (29)

∑
i∈Js,0

xij = 1, for all j ∈ Jd,0. (30)

As before, constraint (29) implies that a fuel-sufficient satellite must be assigned to at most one refueling
transaction, while constraint (30) implies that a fuel-deficient satellite has to be assigned to a refueling
transaction. However, for the C-P2P problem, we require additional constraints to be imposed. For instance,
consider two edges 〈i, j〉, 〈q, r〉 ∈ Me. Note that if Coop (i, j) = Coop (q, r), then this implies either one of
the following:

i) A cooperative rendezvous corresponding to the two edges occur at the same orbital slot, or

ii) A cooperative rendezvous corresponding to one edge occurs at the slot of the passive satellite corre-
sponding to another edge.

Either case is impractical and cannot occur physically. Hence, we have to ensure that the following additional
constraint also holds:

Coop (i, j) �= Coop (q, r) for all 〈i, j〉, 〈q, r〉 ∈ Me. (31)

The determination of the optimal C-P2P solution requires the minimization of the objective given in (28),
subject to the constraints (29)-(31).
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Methodology

We can solve the optimization problem given by (28)-(30) to find the set of edges Me. The set Me may or
may not be a feasible C-P2P solution, because it may or may not satisfy constraint (31). If it does, then
we have the optimal C-P2P solution and we are done. If the constraint (31) is not satisfied, then another
bipartite matching problem can be set up in order to yield the optimal (and feasible) C-P2P solution for
the same set of satellite pairs (or refueling transactions) given by Me. We discuss below how this can be
achieved.

Me Φ′

φi φj

φk

Figure 3. Bipartite graph for determining the C-P2P solution given the fuel transactions Me.

Let us construct a bipartite graph, with one of the partitions representing the orbital slots given by
Φ′, and the other partition comprised of nodes representing the edges given by Me. Figure 3 depicts such
a graph. We say that there exists an edge < 〈i, j〉, φk > between 〈i, j〉 ∈ Me and φk ∈ Φ, if satellites
sμ = σ0(φi) and sν = σ0(φj) can engage in a feasible cooperative P2P maneuver at the orbital slot φk ∈ Φ′,
such that at the end of the overall maneuver the satellites return to their original slots with enough amount
of fuel to be fuel-sufficient. Let Ec denote the set of all such edges. We are interested in a set Mc ⊆ Ec of
edges that assigns to each fuel transaction a slot for cooperative rendezvous and which leads to a feasible
C-P2P solution. To this end, let us assign to each edge the binary variable

yijk =

⎧⎨
⎩

1, if < 〈i, j〉, k >∈ Mc,

0, otherwise.
(32)

The following optimization problem yields the optimal C-P2P solution, given the fuel transactions depicted
by the infeasible solution Me:

min
Mc⊆Ec

∑
<〈i,j〉,φk>∈Ec

cij |φk
yijk, (33)

subject to ∑
φk∈Φ′

yijk = 1, for all 〈i, j〉 ∈ Me, (34)

∑
〈i,j〉∈Me

yijk ≤ 1, for all φk ∈ Φ′, (35)

Constraint (34) signifies that all fuel transactions need to be assigned a slot for rendezvous, while constraint
(35) signifies that an orbital slot can be assigned to at most one refueling transaction. The solution to
this optimization problem yields the cheapest feasible C-P2P solution corresponding to the fuel transactions
determined by Me.
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NUMERICAL EXAMPLES

In this section, we will consider sample constellations and will determine the optimal C-P2P refueling
strategy for each one of them. We will also compare the total fuel expenditure incurred using C-P2P and
P2P refueling of the satellites for the constellations given in Table 1. These numerical examples demonstrate
the usefulness of a C-P2P refueling strategy.

Example 3. C-P2P refueling strategy for constellation C1.

For this example the orbital slots for cooperative rendezvous to take place have been assumed to be equally
spaced at intervals of 9 deg along the orbit. Hence, there are 40 available slots for the cooperative rendezvous
to take place, including the 10 orbital slots occupied originally by the satellites. The optimal assignments
obtained from the solution of the optimization problem (CP2P-IP) were found to be non-cooperative. Note
that since Φ ⊆ Φ′, the optimal solution of (CP2P-IP) will be the optimal P2P solution if there exists no
cooperative solution that is cheaper than the optimal P2P case. In other words, cooperative maneuvers in
cases such as in this example do not help in reducing the fuel expenditure of the overall refueling process.

Example 4. C-P2P refueling strategy for constellation C ′
1.

As in the previous example, the orbital slots for cooperative rendezvous to take place are equally spaced
at intervals of 9 deg along the orbit. The assignments are determined by solving the optimization problem
(CP2P-IP), and are given by: s1 ↔ s4, s2 ↔ s5, s8 ↔ s6, s9 ↔ s7 and s10 ↔ s3. All of these maneuvers are
cooperative. For instance, satellites s1 and s4 rendezvous at the orbital slot with a lead angle of 54 deg with
respect to satellite s1. Similarly, satellites s8 and s6 engage in a cooperative maneuver in which both satellites
cooperatively rendezvous at the orbital slot with a lead angle of 27 deg. The solution to the C-P2P integer
program yields no conflict that violates the additional constraint. Hence, the above solution corresponds to
the optimal C-P2P assignments. The fuel expenditure corresponding to this set of C-P2P assignments is
27.19 units, a reduction of about 8% over the optimal P2P fuel expenditure. This example demonstrates
the benefit of allowing satellites to engage in cooperative rendezvous when the fuel-deficient satellites do
not have enough fuel to complete the non-cooperative rendezvous. Figure 4(a) shows the optimal C-P2P
assignments obtained for this example. An important observation for this example is that for each of the
C-P2P maneuvers, the cooperative rendezvous takes place in a slot at which the fuel-deficient satellite arrives

(a) Constellation C′
1 (b) Constellation C2

Figure 4. Optimal assignments for C-P2P refueling.

by having exhausted almost all of its fuel. In other words, the fuel-deficient satellite moves as close to the
fuel-sufficient satellite as it is permitted by its onboard fuel. The final fuel contents of the satellites after the
C-P2P maneuvers have taken place are 12.0, 12.0, 13.1, 13.1, 13.1, 12.0, 12.0, 15.5, 15.5 and 12.0 respectively.

Example 5. C-P2P refueling strategy for constellation C2.
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Let us now consider the constellation C2 given in Table 1. The fuel expenditure incurred in the P2P
refueling of the satellites in the constellation is 39.67 units. The optimal C-P2P assignments, as determined
by solving the (CP2P-IP), are given as follows: s1 ↔ s14, s2 ↔ s12, s3 ↔ s9, s4 ↔ s7, s5 ↔ s8, s6 ↔ s10,
s15 ↔ s11 and s16 ↔ s13. Of these maneuvers, two are non-cooperative, namely the assignments s1 ↔ s14 and
s16 ↔ s13. For these, the fuel-deficient satellites have enough fuel to be active. The remaining maneuvers
are cooperative. Allowing for cooperative maneuvers reduces the overall fuel expenditure to 36.98 units,
which is about 6.8% less than the optimal P2P fuel expenditure. Similarly to the previous example, we have
that for the cooperative maneuvers, the fuel-deficient satellites move as close to the fuel-sufficient satellites
as permitted by their onboard fuel. Figure 4(b) shows the C-P2P assignments. The final fuel contents of
the satellites in the constellation are given by 16.2, 12.3, 12.0, 16.1, 16.1, 14.8, 12.0, 12.0, 12.2, 12.0, 12.0,
12.0, 12.0, 12.0, 14.9 and 16.2 units. The solution generated by the optimization problem (CP2P-IP) does
not violate the additional constraint (31). Hence, this is the optimal C-P2P solution.

Fuel expenditure in P2P refueling
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Figure 5. Comparison of P2P and C-P2P refueling strategies for the sample constellations of Table 1.

Figure 5 summarizes the results for the sample constellations of Table 1. The optimal P2P and C-
P2P fuel expenditure for these constellations are shown. For the constellations C1 and C4, the optimal
non-cooperative P2P solution is the cheapest way to redistribute fuel in the constellation. For these, the
fuel-deficient satellites have enough fuel to complete a non-cooperative rendezvous. Whenever this is not
possible, as in case of the remaining constellations, cooperative maneuvers turn out to be beneficial.

CONCLUSIONS

In this paper we have studied a cooperative P2P (C-P2P) strategy for refueling satellites in a circular
constellation. This strategy allows for cooperative rendezvous between the satellites engaging in a fuel
exchange via P2P maneuvers. We have proposed a formulation of the C-P2P refueling problem, and have
shown that the satellites exchange fuel in such a way that the one making the costlier ΔV transfer returns
with just enough amount of fuel to be fuel-sufficient. Finally, with the help of numerical examples, we point
out the benefits of a C-P2P strategy, particularly when the fuel-deficient satellites in the constellation do
not have enough fuel to complete non-cooperative rendezvous.
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