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Multiresolution Motion Planning for Autonomous
Agents via Wavelet-Based Cell Decompositions

Raghvendra V. Cowlagi, Member, IEEE, and Panagiotis Tsiotras, Senior Member, IEEE

Abstract—We present a path- and motion-planning scheme that
is “multiresolution” both in the sense of representing the environ-
ment with high accuracy only locally and in the sense of addressing
the vehicle kinematic and dynamic constraints only locally. The
proposed scheme uses rectangular multiresolution cell decompo-
sitions, efficiently generated using the wavelet transform. The
wavelet transform is widely used in signal and image processing,
with emerging applications in autonomous sensing and perception
systems. The proposed motion planner enables the simultaneous
use of the wavelet transform in both the perception and in the
motion-planning layers of vehicle autonomy, thus potentially re-
ducing online computations. We rigorously prove the completeness
of the proposed path-planning scheme, and we provide numerical
simulation results to illustrate its efficacy.

Index Terms—Discrete wavelet transforms, dynamics, mobile
robots, motion planning, path planning.

I. INTRODUCTION

MOTION planning for autonomous terrestrial and aerial
vehicles has been extensively studied [1], [2]. How-

ever, important issues, such as dealing with uncertain, partially
known, and/or dynamically changing environments, and the
satisfaction of vehicle kinematic and dynamic constraints are
yet to be thoroughly and satisfactorily addressed, particularly
when considering additional constraints stemming from the
limited computational resources on-board the vehicle.

In this paper, we present a fast multiresolution motion-
planning scheme that guarantees the satisfaction of the vehicle’s
kinematic and dynamic constraints. To introduce the various
interrelated aspects of the proposed scheme, we will use the
following terminology: We will use the term path to refer to the
locus of continuous motion of a point and the term trajectory
to refer to a path parameterized by time. Depending on the
context, we will use the term path to also refer to a sequence
of successively adjacent vertices in a graph. Finally, we will
synonymously use the terms workspace and environment to
refer to a planar region over which the vehicle moves.

Manuscript received May 14, 2011; revised August 25, 2011 and
December 21, 2011; accepted March 2, 2012. Date of publication May 7,
2012; date of current version September 12, 2012. This work was supported
in part by the NSF under Award CMMI-0856565 and in part by ARO-MURI
under Award W911NF-11-1-0046. This paper was recommended by Associate
Editor J. Su.

R. V. Cowlagi is with the Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, Cambridge, MA 02139-4307 USA
(e-mail: rcowlagi@mit.edu).

P. Tsiotras is with the School of Aerospace Engineering, Georgia Institute of
Technology, Atlanta, GA 30332-0150 USA (e-mail: tsiotras@gatech.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCB.2012.2192268

Multiresolution path planning involves the representation
of the vehicle’s environment with different levels of accuracy.
For example, the popular quadtree method [3]–[5] generates
a planar cell decomposition consisting of small cell sizes that
accurately capture obstacle boundaries and larger cell sizes that
efficiently represent large areas in the free space. Other path-
planning schemes that use multiresolution cell decompositions
have appeared, for instance, in [6]; in [7] (triangular cells); in
[8] (receding horizon path-planning scheme using multiresolu-
tion estimates of object locations); in [9] (multiresolution po-
tential field); and in [10] (hierarchy of imaginary encapsulating
spheres for collision avoidance).

We consider planar cell decompositions such that the envi-
ronment is represented with high accuracy (i.e., using small
cell sizes) in the agent’s immediate vicinity, and with lower
accuracy in regions farther away, similar to the multiresolution
grids considered in [6] and [11]. Multiresolution cell decompo-
sitions are compact data structures that encode large environ-
ment maps, and thus enable efficient online path- and motion
planning. Furthermore, multiresolution decompositions of the
environment naturally capture the graded levels of uncertainty
about the environment as functions of the distance from the cur-
rent location of the agent. In other words, such decompositions
encode the notion that the uncertainty or incomplete knowledge
about the environment is higher in regions farther away from
the vehicle’s current location.

The discrete wavelet transform (DWT) is a mathematical
tool widely used in multiresolution signal processing [12], [13].
Applications of the DWT to vision-based navigation and
vision-based simultaneous localization and mapping (SLAM)
for autonomous vehicles have recently appeared in [14]
(appearance-based vision-only SLAM); in [15] and [16] (local
feature extraction); and in [17] (stereo image processing). With
the plethora of available sensors and in light of the fact that
multiple sensors are typically used for autonomous navigation
[11], the wavelet transform may soon become the common stan-
dard for representing and analyzing signals [18]. In this context,
wavelet-based data representation for path-planning problems
has been recently addressed in [19] (occupancy grids); in [20]
(standardized representation of road-roughness characteristics);
in [21] (terrain depiction for pilot situational awareness); and in
[22] (image registration for vision-based navigation).

In light of the ubiquitous use of the DWT in signal
and image processing and its emerging applications in au-
tonomous sensing and perception, it is natural to investigate
the seamless integration of sensing and path planning using
multiresolution wavelet analysis. To this end, we propose a
path-planning scheme that directly uses a DWT representation
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of the environment. Applications of the DWT in multiresolution
path-planning schemes have previously appeared, for instance,
in [23] and [24] (preliminary implementations of the proposed
path-planning scheme); in [25] (path refinement based on
successively finer approximations of a terrain map); and in
[26] and [27] (multiresolution schemes for vision-based path
planning).

H-Cost Motion Planning: Motion-planning schemes often
involve a geometric path planner that uses an abstract discrete
representation (e.g., graphs associated with cell decomposi-
tions) of the workspace and deals with the satisfaction of
task specifications such as obstacle avoidance. However, the
resultant geometric path may be found to be infeasible or un-
acceptably suboptimal if the vehicle’s kinematic and dynamic
constraints are ignored. To address this issue, we introduced
in [28] a motion-planning approach based on assigning costs,
called H-costs, to multiple-edge transitions in the cell decom-
position graph. These H-costs allow the vehicle’s kinematic
and dynamic constraints to be incorporated in the geometric
path planner via the (implicit) construction of a so-called lifted
graph, which is closely related to the original cell decom-
position graph. In this paper, we discuss a multiresolution
implementation of this H-cost motion-planning approach, such
that the overall scheme is “multiresolution,” both in the sense
of representing the environment with high accuracy only locally
and in the sense of considering the vehicle dynamical model for
path planning only locally.

In summary, the proposed motion-planning scheme consists
of the following main elements: 1) a wavelet-based multires-
olution cell decomposition algorithm that creates and modi-
fies a graph that represents the environment (see Section II);
2) a local trajectory generation algorithm called TilePlan that
associates H-costs in the aforesaid cell decomposition graph
to (implicitly) construct a “partially” lifted graph (see [29] and
[30]); and 3) a discrete path planner that finds paths in the
“partially” lifted graph, which, in turn, correspond to trajecto-
ries that satisfy the vehicle’s kinematic and dynamic constraints
(see Section IV). The interactions between the various models
and methods involved in the proposed scheme are illustrated in
Fig. 1; here, hollow arrows indicate the creations and modifi-
cations of various models by the methods shown, whereas bold
arrows indicate the dependency between the various models and
methods shown. For example, the hollow arrow from TilePlan
to the “partially” lifted graph model indicates modification of
the edge transition costs of the latter.

The main contributions of this paper are as follows. First,
we present a multiresolution cell decomposition technique that
is completely encoded in the DWT coefficients of the envi-
ronment map. This approach allows for the development of
highly integrated and efficient navigation and path-planning ar-
chitectures, where the DWT coefficients are used as a common
data structure both for scene understanding and motion plan-
ning. Second, we demonstrate one such integrated approach by
proposing a path-planning scheme based on the aforesaid cell
decompositions, and we rigorously prove its completeness. To
the best of our knowledge, such proofs of completeness are ab-
sent from other similar multiresolution path-planning schemes
[6], [11]. Finally, we discuss a method of incorporating vehi-

Fig. 1. Schematic of the proposed motion-planning scheme.

cle dynamic constraints in the multiresolution path-planning
scheme using the H-cost motion-planning approach in [28].
The issue of consistency between the geometric and dynamic
planning layers is well known in the robotics community [31].
To date, this problem has been addressed by planning in the
(high-dimensional) state space, instead of the workspace, where
the obstacles naturally lie. We show that, for mobile robotic
applications, planning can be restricted to the low-dimensional
workspace. The overall motion-planning scheme is thus an
important step in the development of a hierarchically consistent
autonomous navigation and motion-planning system, i.e., one
that guarantees the satisfaction of vehicle kinematic and dy-
namic constraints while retaining the computational efficiency
of discrete multiresolution path planning.

The rest of this paper is organized as follows. In Section II,
we describe the proposed wavelet-based multiresolution cell
decomposition technique. In Section III, we describe a path-
planning scheme using this cell decomposition, and we prove
its completeness. In Section IV, we discuss the inclusion of ve-
hicle dynamical constraints in the multiresolution path planner
via the H-cost approach. In Section V, we provide numerical
simulation results illustrating the successful operation of the
overall motion planner, and in Section VI, we conclude this
paper with comments on possible future extensions.

II. MULTIRESOLUTION CELL DECOMPOSITIONS

USING THE DWT

Cell decomposition is a common technique used in geometric
path planning [1], which involves partitioning the workspace
into convex regions called cells. A graph is associated with this
partition, such that each cell corresponds to a unique vertex
and each pair of geometrically adjacent cells corresponds to
a unique edge. The original path-planning problem is thus
transformed to the problem of finding a path in this graph,
which can be solved, for instance, by the A∗ algorithm [2].
In what follows, we introduce a multiresolution cell decom-
position technique based on the 2-D DWT. We provide a brief
introduction to the DWT in Appendix B, and we refer the reader
to [12] and [13] for further details.
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A. Multiresolution Cell Decompositions

We define an image as a pair (R,F ), where R ⊂ R
2 is

a compact square region and F : R → R, F ∈ L
2(R), is an

intensity map. We will assume that R = [0, 2D] × [0, 2D], with
D ∈ Z, and that the image intensity map F is known at a finite
resolution mf > −D, i.e., the function F is piecewise constant
over each of the square regions Smf ,k,� [defined in (B.2)],
for k, � = 0, 1, . . . , 2D+mf − 1. We will assume, without loss
of generality, that mf = 0. In the context of path planning,
the intensity map F may represent, for instance, terrain ele-
vation [25], a risk measure [23], or a probabilistic occupancy
grid [19], [32].

We assume that the least cell size of interest is 2−mf = 1,
and we define a cell decomposition Ω consisting of uniformly
spaced square cells, each of size 1, i.e.,

Ω :=
{
Smf ,k,� : k, � ∈ {0, 1, . . . , 2D − 1}

}
.

The intention of the geometric path planner is to find a path
in the graph associated with Ω. However, the number of cells
in Ω is 22D, which makes the graph search impractical when
D is large. To enable fast online computation, multiresolution
cell decompositions may be used to approximate large envi-
ronment maps. Such decompositions correspond to graphs with
significantly fewer vertices, thus requiring lesser computational
resources for path planning at each iteration. Furthermore, such
decompositions also naturally capture the vehicle’s sensing
limitations by progressively relaxing, with increasing distance
from the vehicle’s location, the accuracy at which the intensities
of cells in Ω are known.

Let am0,k,� and dp
m,k,� be the DWT coefficients of F , where

m0 ∈ Z is prespecified; let A ⊂ {(m, k, �) ∈ Z
3 : m0 � m <

0, 0 ≤ k, � � 2D+m} be a set of triplets of integers; and let
d̂p

m,k,� be defined by

d̂p
m,k,� :=

{
dp

m,k,� if p = 1, 2, 3 and (m, k, �) ∈ A,
0 otherwise.

Then, the image (R, F̂ ), where F̂ is obtained by the recon-
struction of am0,k,� and d̂p

m,k,�, is called the approximation of
(R,F ) associated with the set A. Informally, an approximation
is obtained by neglecting certain detail coefficients in the DWT
of F ; the set A contains the indices of detail coefficients that
are considered “significant.” A specific approximation that is
of interest in this paper is one that retains detail coefficients
only in the immediate vicinity of the vehicle’s current location
(x0, y0) ∈ R and gradually discards them in regions farther
away. To precisely define this approximation, let � : Z → N be
a “window” function that specifies, for each level of resolution,
the distance from the vehicle’s location up to which the detail
coefficients at that level are significant. The set Awin(x0, y0) of
indices of significant detail coefficients is then defined by

Awin(x0, y0) := {(m, k, �) : m0 � m < 0,

�2mx0� − �(m) � k � �2mx0� + �(m),

�2my0� − �(m) � � � �2my0� + �(m)} ,

(1)

Fig. 2. Example of an image and its multiresolution approximation.
(a) Original image. (b) Approximation.

where m0 ∈ Z. An example of an image and its approximation
using (1) are shown in Fig. 2. In this example, m0 = −10,
(x0, y0) = (390, 449), and �(m) = 4 for each m0 � m < 0.

B. Computing Cell Locations and Intensities

The cell decomposition Ωmr associated with (R, F̂ ) is a
partition of R into square cells of different sizes, such that F̂
is constant over each of the cells. In this section, we describe
a procedure to determine the locations, sizes, and values of F̂
over each of the cells in Ωmr.

In this paper, we use the Haar wavelet family, and the Haar
scaling function satisfies the following dilation equation [13]:

φ(t) = φ(2t) + φ(2t − 1). (2)

Equation (2) implies, for the 2-D case, that the square support
of the scaling functions Φm,k,� is exactly the union of the sup-
ports of Φm+1,k,�, Φm+1,k−1,�, Φm+1,k,�−1, and Φm+1,k−1,�−1.
Consequently, a map F is constant over the support of Φm,k,� if
and only if the detail coefficients of F at level m and at higher
resolution levels m + 1,m + 2, . . . are all zero. Furthermore,
for the Haar scaling function and wavelet, one may associate
with each detail coefficient a region in R

2, such that this
coefficient affects the values of the map only in this region.
Specifically, we make the following association:

dp
m,k,� ↔ Sm,k,� = 2−m ([k, (k + 1)] × [�, (� + 1)]) , (3)

for each m0 � m < mf = 0, where m0 ∈ Z is prespecified.
Based on the preceding observations, we formulate the fol-

lowing Rules to determine the locations and sizes of cells in the
cell decomposition Ωmr associated with a set A of indices of
the significant detail coefficients.

1) {Sm0,k̂,�̂ : 0 � k̂, �̂ < 2D+m0} ∈ Ωmr. If A is empty,
then these cells form a uniform decomposition.

2) {Sm+1,k̂,�̂ : k̂ ∈ {2k, 2k + 1}, �̂ ∈ {2�, 2� + 1}} ∈ Ωmr

whenever (m, k, �) ∈ A. This Rule arises from the fact
that the support of the Haar scaling function at each
resolution level is equal to the union of the supports of
the scaling functions at the next higher resolution level.

3) {Sm̂+1,k̂,�̂ : k̂ ∈ {�2m̂−mk� − 1, �2m̂−mk�}, �̂ ∈
{�2m̂−m�� − 1, �2m̂−m��}, m0 � m̂ < m} ∈ Ωmr

whenever (m, k, �) ∈ A. This Rule decomposes into
square nonconvex regions that arise when the indices of
a detail coefficient at level m are in A, but the indices
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Fig. 3. Computations of cell locations and dimensions from A. (a) Rule 2 for
m = −2. (b) Rule 2 for m = −1.

of coefficients associated with the same region [given
by (3)] at all levels lower than m are not in A.

4) {Sm̂,k̂,�̂ : k̂ = �2m̂−mk�, �̂ = �2m̂−m��,m0 � m̂ �
m} /∈ Ωmr whenever (m, k, �) ∈ A. This rule indicates
that a cell, once decomposed, cannot belong to Ωmr.

Exclusions from Ωmr prescribed by Rule 4 take precedence
over inclusions prescribed by Rule 3. Note that the preceding
rules are valid only for the Haar system.

Figs. 3 and 4 illustrate the application of the preceding rules
for the approximation associated with A = {(−2, 0, 2), (−2,
3, 2), (−1, 3, 4), (−1, 4, 2), (−1, 4, 3), (−1, 5, 2), (−1, 6, 5)}.
In Fig. 3(a), the cells with dotted borders are due to Rule 1,
and the cells with solid borders are due to Rule 2 for the
indices with m = −2. The shaded cells in Fig. 3(b) illustrate the
nonconvex regions that may arise due to nonzero coefficients at
higher resolution levels, which need to be decomposed using
Rule 3. The shaded cells in Fig. 4(a) are those that arise
twice: due to Rule 2 for level m = −2 coefficients and due
to Rule 3 for level m = −1 coefficients. Fig. 4(b) shows the
final cell decomposition. After determining the elements of the
multiresolution cell decomposition, i.e., the locations and sizes
of all the cells, the adjacency relations between cells can be
determined by geometric arguments (cf., [24]). To calculate the
cell intensities, we recursively use the following relation:


F̂ (Sm+1,2k,2�)
F̂ (Sm+1,2k+1,2�)
F̂ (Sm+1,2k,2�+1)
F̂ (Sm+1,2k+1,2�+1)


 = 2m0E




2−mF̂ (Sm,k,�)
d1

m,k,�

d2
m,k,�

d3
m,k,�


 , (4)

for 0 � k, � < 2D+m, with F̂ (Sm0k�) = 2m0am0,k,� for 0 �
k, � < 2D+m0 , where E is a constant matrix. The intensities
of the cells due to Rule 2 for a triplet (m, k, �) ∈ A are
given in (4). The intensities of the cells due to Rule 3 for
a triplet (m, k, �) ∈ A are each equal to F (Sm1,k1,�1), where
(m1, k1, �1) ∈ A is the triplet with the greatest m1 < m sat-
isfying Sm,k,� ⊂ Sm1,k1,�1 . If no such triplet exists, then the
intensities of these cells are each equal to F (Sm0,k1,�1), where
k1, �1 are the unique indices satisfying Sm,k,� ⊂ Sm0,k1,�1 .

We re-emphasize that all information needed to completely
define the cell decomposition Ωmr is encoded in set A, and
it is straightforward to extract this information. Furthermore,
expression (1) lends itself to a fast update of set A in accordance
with the changes in the vehicle’s position in the environment, as
we will demonstrate in Section III-B.

Fig. 4. Computations of cell locations and dimensions from A. (a) Rule 3 for
m = −1. (b) Overall decomposition.

III. MULTIRESOLUTION PATH PLANNING

We denote by Ḡ = (V̄ , Ē) the graph associated with the cell
decomposition Ω, such that each cell in Ω corresponds to a
unique vertex in V̄ . We will denote by cell(j; Ωmr) the cell in
Ωmr associated with a vertex j ∈ V̄ and by vert(c; Ḡ) the vertex
of Ḡ associated with a cell c ∈ Ωmr. Two vertices are adjacent
if the corresponding cells are geometrically adjacent, and Ē is
the collection of all ordered pairs (̄i, j̄) of vertices in V̄ , such
that ī and j̄ are adjacent. In what follows, we will distinguish
by overlines symbols denoting vertices, paths, or functions
associated with Ω or Ḡ. We introduce an edge cost function
ḡ : Ē → R+ that assigns to each edge of Ḡ a nonnegative cost
of transitioning this edge.

For given initial and terminal vertices īS , īG ∈ V̄ , an ad-
missible path π̄(̄iS , īG) in Ḡ is a finite sequence (̄i0, . . . , īP̄ )
of vertices (with no repetition) such that {̄ik−1, īk} ∈ Ē for
each k = 1, . . . , P , with ī0 = īS and īP = īG. For brevity, and
when there is no ambiguity, we will henceforth suppress the
arguments in π̄. The cost J̄ (π̄) of an admissible path π̄ in
Ḡ is the sum of costs of edges in π̄, and the path-planning
problem is to find an admissible path π̄∗(̄iS , īG) with minimum
cost.

Next, we associate with the multiresolution cell decompo-
sition Ωmr a graph G = (V,E) such that each cell in Ωmr

corresponds to a unique vertex in V . Note that each vertex
j ∈ V corresponds to a set W (j, V ) ⊂ V̄ , and the collection
{W (j, V )}j∈V is a partition of V̄ . Specifically,

W (j, V ) :=
{
j̄ ∈ V̄ : cell(j̄; Ω) ⊆ cell(j; Ωmr)

}
.

The multiresolution cell decomposition graph G approximates
graph Ḡ by representing each set of vertices W (j, V ) ⊂ V̄ with
a single vertex j ∈ V . For the Haar wavelet, it can be shown
that, for each j ∈ V

F̂ (cell(j; Ωmr)) =
1

|W (j, V )|
∑

j̄∈W (j,V )

F (cell(j̄; Ω)) . (5)

Finally, two vertices i, j ∈ V are said to be adjacent in G,
i.e., (i, j) ∈ E, if and only if there exist ī ∈ W (i, V ) and j̄ ∈
W (j, V ) such that {̄i, j̄} ∈ Ē. We will denote by cell(j; Ωmr)
the cell in Ωmr associated with the vertex j ∈ V and by
vert(S;G) the vertex in G associated with the cell S ∈ Ωmr.
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A. Path-Planning Algorithm

We present an algorithm that iteratively finds an admis-
sible path π̄ in Ḡ by first constructing multiresolution cell
decompositions, then by finding paths in these multiresolution
cell decompositions, and then by moving along these paths.
The proposed algorithm is a modification of the multiresolution
path-planning algorithm presented in [23], and these modifica-
tions ensure that the proposed algorithm is complete.

We assume that F (cell(j̄; Ω)) ∈ [0, 1] for each j̄ ∈ V̄ , such
that more favorable cells in the environment have a lower
intensity and such that cell(j̄; Ω) represents an obstacle if
F (cell(j̄; Ω)) > 1 − ε, for some prespecified ε ∈ (0, 1). We
define the transition cost of an edge (̄i, j̄) ∈ Ē by

ḡ ((̄i, j̄)) :=
{
λ1F (cell(j̄; Ω))+λ2, F (cell(j̄; Ω))�1−ε
M, otherwise,

(6)

where λ1, λ2 ∈ (0, 1] and M 
 2|V̄ | are constants.
We denote by F̂n the approximation of the environment

constructed at iteration n of the proposed algorithm, by A(n)
the associated set of detail coefficients, by Ωmr(n) the as-
sociated multiresolution cell decomposition, and by G(n) =
(V (n), E(n)) the associated topological graph. We define the
goal vertex iG,n ∈ V (n) as the unique vertex that satisfies
īG ∈ W (iG,nV (n)).

For each vertex j̄ ∈ V̄ , the proposed algorithm maintains an
estimate KG(j̄) of the least cost of any path in Ḡ from the
vertex j̄ to the goal vertex īG and a record KS(j̄) of the least
cost of any path in Ḡ from the initial vertex īS to the vertex j̄.
The algorithm also associates with each vertex j̄ ∈ V̄ another
vertex b(j̄) ∈ V̄ called the backpointer of j̄. At each iteration,
the algorithm performs a computation (see Line 18 or Line 20
in Fig. 5) whose result is a unique vertex in V̄ . We refer to
this computation as a visit to this vertex, and we denote by
j̄n the vertex visited at iteration n, with j̄0 := īS . Finally, let
jn := vert(cell(j̄n; Ωmr(n));G(n)).

An admissible path πn(jn, iG,n) in G(n) is a finite sequence
(i0, . . . , iP (n)) of vertices (with no repetition) in V (n) exclud-
ing b(j̄n) and excluding vertices in V (n) corresponding to cells
in the path from īS to j̄n. Note that this definition precludes
cycles in the concatenation of path (j0, . . . , jn−1) with path πn.
We introduce an edge cost function gn : E(n) → R+, which
assigns to each edge of G(n) a nonnegative cost of transitioning
this edge, defined by

gn ((i, j)) :=
{
(λ1F̂j +λ2)|W (j, V (n)) |, F̂j �1 − ε
M, otherwise,

(7)

where F̂j := F̂ (cell(j; Ωmr(n))). The cost J (πn) of path πn

is the sum of the costs of edges in the path. Note that, by (5)
and (7), the cost of an obstacle-free path in G(n) is less than
or equal to 2|V̄ |, and hence, an admissible path πn in G(n) is
obstacle-free if and only if J (πn) < M .

The proposed algorithm associates with each vertex j̄ ∈ V̄
a binary value VISITED(j̄) that records whether vertex j̄ has
been previously visited by the algorithm; at any iteration of the
algorithm’s execution, for each j̄ ∈ V̄ , VISITED(j̄)=0 indicates
that the algorithm has never visited j̄ in any previous iteration,

Fig. 5. Pseudocode for the proposed path-planning algorithm.

whereas VISITED(j̄)=1 indicates that the algorithm has visited
j̄ during a previous iteration. The algorithm also maintains a
cumulative cost J̄ (π̄) of the path π̄(̄iS , j̄n) in Ḡ. The proposed
multiresolution path-planning algorithm is described by the
pseudocode in Fig. 5. Here, x(j̄) and y(j̄) respectively denote
the x- and y-coordinates of the center of cell(j̄; Ḡ), and MR-
GRAPH denotes the procedure described in Section II-B to
obtain the cell decomposition graph associated with a set of
indices of significant detail coefficients.

Remark 1: The constrained optimization problem in Line 8
can be solved by an algorithm that finds the K shortest paths
in a graph. Such algorithms have been reported, for instance,
in [33]. We assume that the K shortest paths will have strictly
increasing costs. This assumption is not required for the algo-
rithm’s successful execution, but it enables a concise statement
of the algorithm. �

Remark 2: Due to Line 9, the cost of “backtracking” is not
added to the cumulative cost J̄ (π̄). In addition, it follows from
(7) and Line 21 that KG(j̄) = 0 if and only if j̄ = īG. �

We may now state the main result of this section as follows.
Proposition 1: The proposed algorithm is complete: If there

exists an obstacle-free path in Ḡ from īS to īG, then the
algorithm finds an obstacle-free path in a finite number of
iterations. Otherwise, the algorithm reports failure after a finite
number of iterations.

Proof: See Appendix A. �
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B. Efficient Updates of A(n) and G(n)

The set A(n) of the significant detail coefficient indices and
the associated multiresolution cell decomposition graph both
depend on the vehicle’s current position. Consequently, both
A(n) and G(n) are updated (see Lines 5 and 6 in Fig. 5) at each
iteration of the algorithm. To enable faster computations, we
describe, in this section, a method to obtain A(n) incrementally
from A(n − 1). Specifically, we first compute the elements of
sets B1 := A(n) ∩ Ac(n − 1) and B−1 := A(n − 1) ∩ Ac(n),
and we then evaluate A(n) = A(n − 1) ∪ B1\B−1. To this
end, we observe that for each j̄ ∈ V̄ , x(j̄) = �x(j̄)� + 1/2. It
follows that, for every m � 0

�2mx(j̄n)� = �2m (�x(j̄)� + 1/2)� . (8)

Next, we note that �x(j̄n)� = �x(j̄n−1)� + ∆x, where, at it-
eration n, ∆x = 1 if the vehicle moves one cell to the right,
∆x = −1 if the vehicle moves one cell to the left, and ∆x = 0
otherwise. From (8), it may be shown [30] that

�2mx(j̄n+1)� = ��2mx(j̄n)� + 2m∆x + rm
x � , (9)

where rm
x := 2m(�2mx(j̄n)� + 1/2) − �2mx(j̄n)�. Similarly

�2my(j̄n+1)� =
⌊
�2my(j̄n)� + 2m∆y + rm

y

⌋
, (10)

where rm
y := 2m(�2my(j̄n)� + 1/2) − �2my(j̄n)�. The ele-

ments of sets B1 and B−1 are then determined from (9) and
(10) as follows. We first define scalars δx and δy by

δα :=

{−1, 0 > 2m∆α + rm
α ,

0, 0 � 2m∆α + rm
α < 1,

1, 1 � 2m∆α + rm
α ,

for α ∈ {x, y},

(11)

and for p ∈ {−1, 1}, we define sets Bm,x
p and Bm,x

p by

Bm,x
p := {(m, k, �) : k = �2mx(j̄n)� + pδx,

�2my(j̄n)� − �(m) � � � �2my(j̄n)� + �(m)}
Bm,y

p := {(m, k, �) : � = �2my(j̄n)� + pδy,

�2mx(j̄n)� − �(m) � k � �2mx(j̄n)� + �(m)} .

Then, sets B−1 and B1 are given by the following equation:

Bp =
⋃

α∈{x,y}

⋃
m0�m<0

Bmα
p , p ∈ {−1, 1}. (12)

The advantage of computing A(n) using the modified pro-
cedure MOD-MR-APPROX described in Fig. 6 instead of
the procedure MR-APPROX is that sets B−1 and B1 have
significantly fewer elements than A(n). More precisely, the
number of elements in set A(n) is O(�̄2), whereas the numbers
of elements in sets B−1 and B1 are both O(�̄), where �̄ :=
maxm0�m�0{�(j)}.

Fig. 7(a) and (b) shows data that confirm the preceding ob-
servations; these figures show the ratio of the execution time re-

Fig. 6. Pseudocode for the procedure mod-mr-graph.

quired by the combination of the procedures MR-APPROX and
MR-GRAPH to the execution time required by the combination
of the procedures MOD-MR-APPROX and MOD-MR-GRAPH
for computing the graph G(n). The data shown in Fig. 7(a)
and (b) are averages computed over 30 simulations. As it is
evident from these results, the multiresolution path-planning
algorithm with the modified procedures of construction of A(n)
and G(n) executes up to 10 times faster than that with the
original procedures.

IV. MULTIRESOLUTION H -COST MOTION PLANNING

It has been noted in several previous works [34]–[36],
including ours [28], that single-edge transition costs in cell
decomposition graphs cannot adequately capture the vehicle’s
kinematic and dynamic constraints. In light of this observation,
we introduced in [28] a motion-planning approach based on
assigning costs to multiple-edge transitions (called histories) in
cell decomposition graphs.

Consider the multiresolution cell decomposition graph1 G =
(V,E) at any iteration of the path-planning algorithm previ-
ously discussed. To formalize the concept of cell histories, we
define, for every integer H � 0, set

VH := {(j0, . . . , jH) : {jk−1, jk} ∈ E, k = 1, . . . , H,

jk = j�, for k, � ∈ {0, . . . , H}, with k = �} .

An element of VH+1 is called an H-history. Let I ∈ VH , and
denote by [I]k the kth element of this (H + 1)-tuple and by [I]�k
the tuple ([I]k, [I]k+1, . . . , [I]�) for k < � � H + 1. We asso-
ciate with each H a nonnegative cost function gH : VH+1 →
R+ and we state a shortest path problem with transition costs
defined on histories as follows.

Problem 1 (H-Cost Shortest Path Problem): Let H � 0,
and let iS , iG ∈ V be initial and goal vertices such that
any admissible path in G contains at least H + 1 vertices.

1For the sake of clarity, we drop from the notation of the cell decomposition
graph the explicit reference to the nth iteration.
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Fig. 7. Sample data illustrating benefits of incremental updates to A and G. (a) Comparisons of execution times for the computations of A and G. (b) Comparisons
of execution times for overall path planning.

The H-cost of an admissible path π = (j0, . . . , jP ) in G is
defined by

JH(π) :=
P∑

k=H+1

gH ((jk−H−1, jk−H , . . . , jk)) . (13)

Find an admissible path π∗ in the graph G such that JH(π∗) �
JH(π) for every admissible path π in G.

Problem 1 may be transformed into an equivalent standard
shortest path problem on a lifted graph GH . The vertices of GH

are the elements of VH , and the edge set EH of the lifted graph
GH is the set of all ordered pairs (I, J), such that I, J ∈ VH ,
with [I]k = [J ]k−1, for every k = 2, . . . , H + 1, and [I]1 =
[J ]H+1. For given initial and terminal vertices iS , iG ∈ V , an
admissible path Π in GH is a finite sequence (J0, . . . , JQ) of
vertices (with no repetition) such that (Jk−1, Jk) ∈ EH , for
each k = 1, . . . , Q, with [J0]1 = iS , and [JQ]H+1 = iG. Note
that every admissible path Π = (J0, . . . , JQ) in GH uniquely
corresponds to an admissible path π = (j0, . . . , jP ) in G, with
P = Q + H and [Jk]� = jkH+�−1, for each k = 0, 1, . . . , Q −
1, and JQ = (jP−H , . . . , jP ).

We introduce a nonnegative cost function g̃H : EH → R+

defined by g̃H((I, J)) := gH(([I]H+1
1 , [J ]H+1)), for every pair

(I, J) ∈ EH . It follows that Problem 1 is equivalent to the
standard shortest path problem on GH , where the cost of an edge
(I, J) ∈ EH given by g̃H((I, J)). However, solving the H-cost
shortest path problem by first transforming it to the standard
problem is computationally intensive because |GH | is large and
exponentially grows with H .

In [30], we discuss an efficient and flexible algorithm for
solving the H-cost shortest path problem, as well as a motion-
planning framework that incorporates vehicle kinematic and
dynamic constraints by obtaining H-costs from a local tra-
jectory generation algorithm called the tile motion planner
(TilePlan). A precise statement of the tile motion-planning
problem and its solution based on model predictive control are
available in [30]. Briefly, we specify TilePlan as an algorithm
that takes as the input a sequence of cells and an initial state and
returns as the output a control input (if it exists) that enables
vehicle’s traversal through the given sequence of cells from the
given initial state.

The overall motion planner searches for H-cost shortest
paths in the multiresolution cell decomposition graphs de-
scribed in Section III. However, it is unnecessary and computa-
tionally expensive to consider history-based transition costs on
the entire multiresolution cell decomposition graph due to the

following reasons: a) Large cells in Ωmr correspond to coarse
information about the environment in the regions associated
with those cells, and hence, trajectories passing through large
cells will be refined and/or replanned in future iterations; and
b) curvature-constrained paths are guaranteed to exist [37]
in rectangular channels wider than a certain threshold width
(compared to the upper bound on curvature).

In light of the preceding observations and in keeping with the
multiresolution idea of using high-accuracy information only
locally, the proposed motion planner searches for H-cost short-
est paths on a “partially” lifted graph, such that the vehicle dy-
namical constraints are considered (via history-based transition
costs) only locally. To precisely state this notion of a “partially”
lifted graph, we define, for each J = (j0, . . . , jH) ∈ VH and
each L ∈ {1, . . . , H − 1}, the projection PL(J) of J onto VL

by PL(J) := (j0, . . . , jL) ∈ VL. For each L ∈ {1, . . . , H}, we
define set UL ⊆ VL by

UL :=
{

(j0, . . . , jL) ∈ VL : size (cell(jk)) < d̂,

for k = 0, . . . , L − 1, and size (cell(jL)) � (d)
}

, (14)

where d̄ is prespecified and size(cell(jk)) denotes the size of
the cell that corresponds to the vertex jk in the multiresolution
cell decomposition graph. By (14), set UL consists of (L + 1)-
tuples of vertices in the cell decomposition graph such that the
sizes of the first L cells in each (L + 1)-tuple are strictly lower
than d̄, whereas the size of the (L + 1) cell is at most d̄. This
definition alludes to the previously stated notion of including
in the “partially” lifted graph only the cells small enough for
the curvature constraints to be significant. The “partially” lifted
graph G̃H = (ṼH , ẼH) is then defined by

ṼH :=
H⋃

L=1

UL\PL(UH)

ẼH :=
H⋃

L=1

{
(I, J) : I ∈ UL, J ∈ UL−1, [I]L1 = J

}
.

The overall motion planner then operates as follows. At
each iteration, a multiresolution cell decomposition is first
constructed. The cells in this decomposition may be categorized
into two classes, namely, cells with sizes at most d̄ and cells
with sizes greater than d̄. We define boundary cells as the cells
of sizes at most d̄ that have at least one neighboring cell in
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Fig. 8. Pseudocode describing the overall motion planner.

each of the two previously defined classes [see Fig. 17(a)].
A multiple-source single-goal implementation of the A∗ algo-
rithm may be used to determine the costs of optimal paths in
the multiresolution cell decomposition graph from the vertices
associated with each of the boundary cells to the goal vertex.
These costs are then used as terminal penalty costs in the
execution of the H-cost path planner on the “partially” lifted
graph previously discussed. This H-cost path planner returns
a sequence of cells from the current location to one of the
boundary cells, along with an admissible vehicle control input
that enables the traversal of this sequence of cells. The vehicle
state is advanced by traversing one cell using this control input,
and the process is repeated until the vehicle reaches the goal.

The pseudocode for the overall motion planner is provided in
Fig. 8. Note that Line 7 in Fig. 8 involves local trajectory gen-
eration (TilePlan) for the particular vehicle dynamical model
considered. We refer the reader to [28] for further details on
finding the shortest path in the lifted graph in conjunction with
TilePlan.

V. SIMULATION RESULTS AND DISCUSSION

In this section, we present numerical simulation results of
implementations of the proposed multiresolution path- and
motion-planning schemes. All of these simulations were imple-
mented in the MATLAB environment, on a computer with an
Intel Core i5-2410M 2.3-GHz CPU and 4-GB RAM.

A. Completeness of the Path-Planning Algorithm

First, we focus on the path-planning algorithm, which does
not consider vehicle dynamics. Figs. 9 and 10 illustrate a
simulation example demonstrating the capability of the mul-
tiresolution path-planning scheme to recover from a cul-de-sac.
This simulation “illustrates” the path planner’s completeness.

Fig. 9. Illustration of the multiresolution path-planning algorithm’s ability to
recover from a cul-de-sac: the red-colored cells were multiply visited. (a) Map
of the environment. (b) Resultant path.

Fig. 10. Intermediate iterations in the multiresolution path-planning algo-
rithm’s implementation for the environment shown in Fig. 9(a). (a) An iteration
before the cul-de-sac is explored. (b) Iteration at which the cul-de-sac is
encountered. (c) Location of the vehicle at the iteration illustrated in Fig. 10(b).
(d) Iteration at which the algorithm finds a channel that contains a path to the
goal.

As shown in Fig. 9(a), we designed the shape of the ob-
stacle and the location of the goal to lead the multiresolution
path-planning algorithm into the cul-de-sac in the “central”
region of the obstacle, whereas the goal can be only reached
from the “top” region of the obstacle. Fig. 10 illustrates some
intermediate iterations in the execution of the multiresolution
path-planning algorithm on this environment. Specifically, the
algorithm leads the vehicle into the cul-de-sac, but in later
iterations, it successfully recovers and finds a path to the goal.

B. Optimality of the Path-Planning Scheme

Whereas we can guarantee the algorithm’s capability of
finding a feasible path whenever such a path exists, we do not
yet have theoretical results on the optimality of the resultant
path. Here, we present numerical simulation results concerning
the optimality of paths resulting from the multiresolution path-
planning algorithm.
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TABLE I
WINDOW FUNCTION VALUES

Fig. 11. Histogram showing the distribution according to percentage subopti-
mality of simulated cases, for different window functions.

We compared the cost of the resultant paths with the cost
of an optimal path found by executing the A∗ algorithm on
the finest level decomposition graph Ḡ. For these comparative
simulations, we chose an environment represented by the image
shown in Fig. 2(a), with three different “window” functions, as
described in Table I. Window �1 retains very few significant
detail coefficients and results in a multiresolution cell decom-
position with high-fidelity representation of the environment in
a very small neighborhood of the vehicle’s location, whereas
windows �2 and �3 result in decompositions with progres-
sively larger neighborhoods of high-fidelity representations. We
scaled the environment with D = 6, 7, 8, 9, and for each value
of D, we performed 30 simulations with the initial and goal
cells randomly chosen for each simulation. We executed the
multiresolution path-planning algorithm proposed in Section III
with each window function for each simulation (a total of
120 simulations for each window function), with m0 = −D.

Fig. 11 shows the distribution of the number of simulated
cases according to percentage suboptimality, where the cost of
a path in Ḡ by (6) was defined with λ1 = 1 and λ2 = 0.1. For
all three window functions, the suboptimality in most cases is
under 20%, with window �3 resulting in the most cases of low
suboptimality, as intuitively expected. Overall, Fig. 11 shows
that very few cases of extremely high suboptimality occurred;
these cases typically occurred when the algorithm encountered
cul-de-sacs.

Fig. 12 shows the distribution of the number of simulated
cases according to suboptimality for different values of cost
function parameters λ1 and λ2, all with window function �1.
From (6), note that λ1 simply scales the image intensity,
whereas λ2 is a constant penalty on each edge in the path. As
shown in Fig. 12, the proposed multiresolution path planner
results in paths of low suboptimality more often2 for small

2Note that Fig. 12 shows a large number of cases of low suboptimality for all
values of λ2.

Fig. 12. Histogram showing the distribution according to percentage subopti-
mality of simulated cases, for different values of λ2 with λ1 = 1.

Fig. 13. Comparison of the number of vertices in the multiresolution cell
decomposition graphs with different window functions and with the finest level
cell decomposition Ω.

values of λ2. This behavior occurs due to the fact that, for
each edge (i, j) ∈ E(n), expression (12) involves a worst case
estimate3 of the number of vertices of Ḡ in the path in Ḡ
corresponding to the path searched in G(n). Furthermore, by
(7), the multiresolution path planner’s estimate of the cost of
the actual path becomes progressively more conservative with
increasing values of λ2.

C. Performance of the Path-Planning Scheme

Fig. 13 shows the comparison of the (average) number of
vertices in the graphs associated with the multiresolution cell
decompositions corresponding to different window functions
and with the finest level cell decomposition Ω. As expected,
window function �3, which has the largest neighborhood of
high-fidelity approximation of the environment (i.e., a large
number of significant detail coefficients), results in cell decom-
positions with the largest number of cells among the three mul-
tiresolution decompositions. Note, however, that the numbers
of vertices in each of the three multiresolution decompositions

3This worst case estimate is necessary for completeness of the path planner.
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TABLE II
COMPARISONS BETWEEN VARIOUS MULTIRESOLUTION

MOTION PLANNERS

are of the same order of magnitude, whereas the numbers of
vertices in Ḡ are one to three orders of magnitude greater
than those in the multiresolution cell decomposition graphs.
For instance, with D = 9, the number of vertices in Ḡ was
262 144, whereas the average number of vertices was only 561
for the multiresolution cell decomposition with window �1. In
this context, one may recall that the time complexity of the
execution on a sparse graph G = (V,E) of Dijkstra’s algorithm
and the A∗ algorithm is O(|V | log |V |), whereas the memory
complexity is O(|V |) [2].

D. Comparisons With Other Multiresolution Path Planners

In this section, we present a comparison between the pro-
posed multiresolution motion-planning scheme and some of
the standard multiresolution planners reported in the literature
(e.g., [6], [10], and [11]). The comparison will be based on
the numbers of vertices and edges of the resulting graph, as
the main objective of all multiresolution planners is to provide
graph representations of the environment with low complexity.
These graphs are then searched using standard algorithms such
as the A∗ algorithm. This allows a fair comparison of the
available multiresolution motion cell decompositions, as the
particular search algorithms of the resulting graph are the same
across all such schemes.

The multiresolution approximations of the environment re-
ported in the literature belong to either of the following two
broad classes: those primarily governed by the environment
map and those primarily governed by the vehicle’s location
in the environment. The former ones (such as those based on
quadtree decompositions [4]) ensure that the resulting path will
be entirely obstacle free, but they tend to create larger graphs.
The latter methods (e.g., [6]) result in smaller graphs, but
obstacle-free cells are ensured only in the immediate vicinity
of the vehicle’s location, and replanning of paths is necessary
as the vehicle moves through the environment. The main dis-
advantage of multiresolution planners that use such vehicle
location-dependent decompositions is that they are prone to
a lack of completeness. The proposed approach in this paper
belongs to the second class of planners, but we provide a
guarantee of its completeness.

Fig. 14. Environment maps used for comparative analysis. (a) Sparse large
obstacles. (b) Cluttered small obstacles.

Fig. 15. Comparison in the numbers of vertices of the resultant cell decompo-
sitions of the proposed approach against the quadtree decomposition.

Table II provides a qualitative comparison between the pro-
posed work and the various multiresolution motion-planning
schemes reported in the literature.

To quantitatively illustrate our claim (echoed also in [6]) that
environment-dependent cell decompositions usually consist of
significantly more cells than vehicle location-dependent cell
decompositions, we chose three environment maps, i.e., a ter-
rainlike environment similar to Fig. 2(a), an environment con-
sisting of a small number of large obstacles, and an environment
consisting of a large number of small obstacles (see Fig. 14).
We used the basic quadtree decomposition described in [4] as
the basic example of an environment-dependent multiresolution
cell decomposition. Fig. 15 shows a comparison of the number
of vertices in the cell decomposition graphs arising from this
quadtree decomposition, using different thresholds4 and levels
of decomposition, against those arising from the proposed
wavelet-based decomposition, the latter using different window
functions.

The number of cells from the environment-dependent
quadtree decomposition for the environment with a sparse
obstacle distribution is an order of magnitude larger than that
obtained by the proposed vehicle-dependent decomposition.
Improvements to environment-dependent decompositions, such
as allowing for large “gray” cells, can reduce the number of
vertices by an order of magnitude [4], and hence, for this
environment with sparse obstacles, we may consider the two
schemes of decomposition to be equally efficient. However, for

4The threshold τ , applicable for the terrain-like environment map, governs
the quadtree decomposition as follows: A cell is further decomposed if and only
if the difference in the maximum and minimum intensities of pixels within that
cell exceeds τ .
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the terrain-like environment, where cell intensities take values
in the interval [0, 1] (as opposed to binary values in the previous
case), the difference in the number of cells is up to three orders
of magnitude. A similar observation holds true for the highly
cluttered environment [see Fig. 14(b)]. Such a large difference
in the number of vertices in the cell decomposition graph may
render infeasible the implementation of environment-dependent
decompositions (particularly for large environments) for on-
board computing systems with limited processing and memory
resources.

Cell decompositions governed by the vehicle’s location
in the environment are numerically more efficient. However,
as the corresponding graph changes with the vehicle’s motion,
the completeness of the overall path-planning scheme is not
guaranteed a priori, although the graph search algorithm used at
each iteration may be complete. Specifically, the path planner
can get trapped in loops where it visits a certain sequence of
cells ad infinitum.

In addition to showing completeness, the most significant
difference of our work compared with other similar works on
multiresolution path planning in the literature is the system-
atic incorporation of vehicle kinematic/dynamic constraints in
path planning. In particular, we note in the third column of
Table II that most of the other works do not address vehi-
cle kinematic/dynamic constraints. Reference [8] discusses a
receding horizon scheme for incorporating vehicle dynamical
constraints, but this scheme is disconnected from the high-level
discrete path planner. Consequently, there is no consistency
between the two levels of planning (i.e., a guarantee that the
path found by the high-level planner can be feasibly traversed
by the vehicle). This issue is addressed in this paper via the
H-cost motion-planning approach discussed in Section IV. In
[28], we have also provided extensive comparative analysis es-
tablishing the superiority of the H-cost approach using uniform
cell decompositions over state-of-the-art randomized sampling-
based algorithms.

E. Multiresolution Motion-Planning Example

To illustrate a typical application of the overall multireso-
lution motion-planning scheme that incorporates the vehicle
dynamic constraints, we consider the problem of navigating
an aircraft among a topographic relief of varying elevation.
The equations of motion and the implementation of a local
trajectory generation algorithm for this vehicle are described
in detail in [30].

Fig. 16 shows the result of the numerical simulation of the
proposed motion planner for the aircraft navigational model.
Aircraft speed was assumed to be constant, and the control input
is the heading angle, which is controlled by the bank angle. To
show the flexibility of the algorithm in incorporating dynamic
constraints, an asymmetric bound on the bank angle control
input was assumed (for instance, owing to an aileron failure
[38]) as follows: φmin = −45◦ and φmax = 20◦. The objective
was to minimize a cost defined on the environment (indicated
by regions of different intensities in Fig. 16, where the darker
regions correspond to higher costs).

Fig. 16. Result of motion-planning simulation using the aircraft navigational
model. The blue curve corresponds to the resultant state trajectory, whereas the
channel of cells in black is the result of executing the A∗ algorithm (without
vehicle dynamical constraints). The initial position is at the top left corner.

Fig. 17 illustrates an intermediate iteration of this simulation
example. Fig. 17(a) shows the cells of size at most d̄, with
the boundary cells indicated in red. The sequence of cells
outlined in blue and the blue-colored curve within this cell
sequence are the results of the H-cost motion planner. The
yellow-colored cells indicate the vertices explored during the
H-cost search. Fig. 17(b) shows the overall multiresolution
cell decomposition at the same iteration. The blue-colored cells
indicate the optimal path to the goal from the boundary cell
chosen by the H-cost motion planner. The blue-colored curve in
Fig. 17(b) indicates the geometric path traversed by the vehicle
in previous iterations.

VI. CONCLUSION

In this paper, we have introduced a multiresolution path-
and motion-planning scheme that considers accurate models
of the environment and the vehicle dynamics only for local
planning and considers coarse models for global planning. The
proposed path planner uses cell decompositions obtained from
multiresolution wavelet processing of the environment map.
Specifically, we introduced a scheme that encodes in the DWT
coefficients of the environment map all the necessary informa-
tion about these cell decompositions. We provided a method
for fast incremental updates to these cell decompositions in
accordance with changes in the vehicle’s location.

We rigorously proved the completeness of the proposed path-
planning scheme, where such proofs of completeness have been
so far absent in the literature related to dynamic multiresolution
path planning. Furthermore, we provided numerical simulation
data demonstrating that the proposed path planner results in
near-optimal paths in a large majority of the simulated cases.
Finally, we proposed a method, based on the H-cost approach,
for incorporating vehicle kinematic and dynamic constraints for
planning the vehicle’s motion in its immediate vicinity.

Future work includes generalizations of the proposed
multiresolution path-planning scheme to allow a dynamic
“window” and the incorporation of a D∗-like update of the
multiresolution environment map based on newly acquired
information. The generalization of the wavelet-based cell
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Fig. 17. Illustration of an intermediate iteration of the overall motion planner.
(a) Local perspective: the vehicle’s configuration is indicated in red. (b) Global
perspective.

decomposition algorithm for wavelet families other than the
Haar family will be also beneficial, particularly when the en-
vironment map is processed and encoded using other wavelets.

APPENDIX A

We provide a series of technical results, concerning the algo-
rithm in Fig. 5, that are needed for the proof of Proposition 1.
To this end, we associate with each path πn(jn, iG,n) =
{i0, . . . , iP (n)} in G(n) set W(πn) defined by

W(πn) :=
P (n)⋃
p=0

W (ip, V (n)) . (A.1)

The algorithm is said to meet a setback at iteration n if there
exists no obstacle-free path πn(jn, iG,n) in G(n) satisfying
W(πn) ⊆ W(π∗

n−1).
Proposition A.1: Let j̄ ∈ V̄ , and A =MR−APPROX(j̄). Let

Ωmr and G = (V,E) be, respectively, the multiresolution cell
decomposition and the topological graph associated with A. If
there exists an obstacle-free path in Ḡ from j̄ to īG, then there
exists an obstacle-free path in G from j := vert(cell(j̄; Ωmr);G)
to iG, where iG ∈ V is the unique vertex that satisfies īG ∈
W (iG, V ).

Proof: Let π̄(j̄, īG) = (j̄0, . . . , j̄P̄ ) be an obstacle-free path
in Ḡ from j̄0 = j̄ to j̄P̄ = īG. For each m = 0, . . . , P̄ , there
exists a unique set Wm ∈ {W (j, V )}j∈V such that j̄m ∈ Wm.
Let im ∈ V be such that Wm = W (im, V ). Since π̄ is a path
in Ḡ, (j̄m−1, j̄m) ∈ Ē for each m = 1, . . . , P̄ , and it follows
that either Wm−1 = Wm or (im−1, im) ∈ E. Thus, π(j, iG) :=
{j0, . . . , jP }, where P � P̄ , is a path in G.

To show that the path π is also obstacle free in G, we note
that, since π̄ is obstacle free in Ḡ, F (j̄m) � 1 − ε, for each m =
0, 1, . . . , P̄ . It follows by (5) that F̂ (cell(jm; Ωmr)) < (1 − ε)
for each m = 0, 1, . . . , P and by (7) that J (π) < M , i.e., π is
an obstacle-free path. �

Corollary A.1: If there exists an obstacle-free path in Ḡ from
the initial vertex īS to the goal vertex īG, then the cost of the
initial path π∗

0 computed by the algorithm is finite.
Proof: By Proposition A.1, if there exists an obstacle-free

path in Ḡ from j̄ to īG, then there exists an obstacle-free path
π∗

0(iS , iG,0) in G(0) from vertex iS := vert(cell(̄iS); Ω);G(0)
to vertex iG,0, where iG,0 ∈ V (0) is the unique vertex that satis-
fies īG ∈ W (iG,0, V (0)). Because π∗

0 is obstacle free, J (π∗
0) <

M , i.e., J (π∗
0) is finite. �

Proposition A.2: Suppose that the algorithm does not meet a
setback at iteration n ∈ N of its execution, and suppose also that
VISITED(j̄n) = 0. If there exists a path in the graph G(n) from
vertex jn = vert(cell(j̄n; Ωmr(n));G(n)) to vertex iG,n, then
KG(j̄n−1) −KG(j̄n) � λ2, where iG,n ∈ V (n) is the unique
vertex that satisfies īG ∈ W (iG,n, V (n)).

Proof: Let π∗
n(jn, iG,n) = (j0, . . . , jP (n)) denote the opti-

mal path in the graph G(n) computed by the algorithm at
Line 11. First, suppose that the cell decomposition Ωmr(n)
is identical to the cell decomposition Ωmr(n − 1) (in partic-
ular, iG,n−1 = iG,n). If there exists a path in G(n) from jn

to iG,n, then there exists an optimal path in G(n) from jn

to iG,n because G(n) is finite. Then, by Bellman’s principle
of optimality, the path π∗

n−1(jn−1, iG,n−1) = (i0, . . . , iP (n−1)),
computed at iteration n − 1 of the algorithm, contains the path
π∗

n, with P (n) = P (n − 1) − 1, and jm−1 = im for each m =
1, 2, . . . , P (n), and hence, J (π∗

n) � J (π∗
n−1).

Next, suppose that the cell decomposition Ωmr(n) is
not identical to the cell decomposition Ωmr(n − 1). Let
πn(jn, iG,n) and πn−1(jn−1, iG,n−1) be paths in graphs G(n)
and G(n − 1), respectively. If W(πn) ⊆ W(πn−1), then due
to the second and third terms on the right-hand side of (7),
J (πn) � J (πn−1). In particular, if W(π∗

n) ⊆ W(π∗
n−1), then

J (π∗
n) � J (π∗

n−1).
Now, suppose W(π∗

n) ⊆ W(π∗
n−1). Let πn(jn, iG,n) be any

path in G(n) from un to iG,n satisfying W(πn) ⊆ W(π∗
n−1).

There exists at least one such path πn in G(n) because the algo-
rithm does not meet a setback at iteration n. By the arguments
in the preceding paragraph, J (πn) � J (π∗

n−1). Furthermore,
because π∗

n is an optimal path in G(n) from jn to iG,n,
J (π∗

n) � J (πn), and it follows that J (π∗
n) � J (π∗

n−1).
Finally, note that the cell corresponding to the first

vertex j0 ∈ V (n) in the path π∗
n is the same as the cell

corresponding to the second vertex i1 ∈ V (n − 1) in π∗
n−1,

and furthermore, this cell corresponds to vertex j̄n ∈ V̄ . Then,
KG(j̄n−1) −KG(j̄n)=J (π∗

n−1) − J (π∗
n)� ḡ(j̄n−1, j̄n) � λ2

by (6). �
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Proposition A.3: Let j̄ be an arbitrary vertex in V̄ . Then,
either the algorithm never visits j̄ or the algorithm visits j̄
finitely many times.

Proof: Suppose, for the sake of contradiction, that the
algorithm visits j̄ ∈ V̄ infinitely many times at iterations
n1, . . . , nk . . ., i.e., j̄n1 = j̄n2 . . . = j̄. By Line 8, KG(j̄nk

) −
KG(j̄nk−1) > 0, and hence, there exists N ∈ N, such that
KG(j̄nN

) � M . It follows that the algorithm terminates in at
most nN iterations, which is a contradiction. �

Propositon A.4: Let π∗
n(jn, iG,n) = (j0, . . . , jP (n)) be the

path found by the algorithm at Line 8 or Line 11 in iteration
n ∈ N, and suppose there exists an obstacle-free path in Ḡ
from j̄n to īG that is contained within set W(π∗

n). Then, the
algorithm does not visit vertex j̄n at any future iteration.

Proof: We note that the cell corresponding to the second
vertex in the path π∗

n is a cell at the finest resolution, and hence,
W (j1, V (n)) = j̄n+1. Then, it follows due to (A.1) and due
to the hypothesis that there exists an obstacle-free path π̄(j̄n,
īG) = (̄i0, . . . , īP̄ ) in Ḡ from j̄n to īG such that ī1 = j̄n+1.
Thus, there exists an obstacle-free path in Ḡ from j̄n+1 to īG;
in particular, (̄i1, . . . , īP̄ ) is such a path. Then, it follows by
Proposition A.1 that the algorithm does not execute Line 18 at
iteration n + 1.

By the preceding arguments, the following statement is true:
If there exists an obstacle-free path in Ḡ from j̄n+k to īG
contained within π∗

n+k, then the algorithm does not execute
Line 18 at iteration n + k + 1.

Now suppose, for the sake of contradiction, that there exists
� > 1 such that the algorithm visits vertex j̄n again at iteration
n + �, i.e., j̄n = j̄n+� and j̄n+1 = j̄n+�−1. Then, there exists
m < � such that for each k = m,m + 1, . . . , �, the algorithm
executes Line 18 at iteration n + k, i.e., j̄n+k+1 = b(j̄n+k).
Due to the statement in the preceding paragraph, it follows
that either there exists no obstacle-free path in Ḡ from j̄n+k to
īG or the second vertex of every obstacle-free path in Ḡ from
j̄n+k to īG is b(j̄n+k). However, neither of these holds true
for k = � − 1 because we showed earlier that (̄i1, . . . , īP̄ ) is an
obstacle-free path in Ḡ from j̄n+1 = j̄n+�−1 to īG, and this path
does not contain j̄n. Thus, we arrive at a contradiction, and it
follows that there exists no � > 1 such that j̄n = j̄n+�, i.e., the
algorithm does not visit j̄n at any future iteration. �

Proof of Proposition 1: Note that because the set of vertices
in V̄ is finite, it follows by Proposition A.3 that the algorithm
terminates after a finite number of iterations.

To show completeness, suppose first that there exists an
obstacle-free path in Ḡ from īS to īG.

Suppose first that the algorithm never visits any vertex
in V̄ more than once and that the algorithm does not meet
any setbacks. By Proposition A.2, KG(j̄n−1) −KG(j̄n) � λ2,
and sequence KG(j̄n) decreases strictly monotonically. Since
KG(j̄n) ≥ 0 for each n ∈ N and KG(j̄1) is finite (by Corollary
A.1), there exists Q ∈ N, such that KG(j̄n) = 0 for each n �
Q. It follows from Line 22 in Fig. 5 that the algorithm termi-
nates after Q iterations, and since KG(j̄Q) = 0, the algorithm
visits the goal īG at iteration Q.

Next, suppose that the algorithm visits some vertices in V̄
multiple times and that the algorithm never meets any setbacks.
Note that the number of multiply visited vertices is finite

because the algorithm terminates after a finite number of itera-
tions. Then, either of the following statements holds: a) the al-
gorithm terminates at iteration Q∈N, such that j̄Q is a multiply
visited vertex or b) there exists Q∈N such that for each n=Q+
1, Q + 2, . . ., vertex j̄n is visited exactly once by the algorithm.
If statement (a) holds, then j̄Q = īG due to Lines 3 and 22 in
Fig. 5, which, in turn, implies that the algorithm reports failure
in Line 16 in Fig. 5. It follows by Line 15 that j̄Q = īS . Then,
by Proposition A.1 and A.4, there exists no admissible path in
Ḡ from īS to īG, which is a contradiction. On the other hand, if
statement (b) holds, then by the monotonicity arguments in the
preceding paragraph, the algorithm visits the goal after a finite
number of iterations after iteration Q.

Next, suppose that the algorithm never visits any vertex in V̄
more than once, and suppose that the algorithm meets some
setbacks. The number of setbacks met by the algorithm is
finite because the algorithm terminates in a finite number of
iterations. Then, either of the following statements holds: c) the
algorithm terminates at iteration Q ∈ N such that the algorithm
meets a setback at iteration Q or d) there exists Q ∈ N such
that for each n = Q + 1, Q + 2, . . . , such that the algorithm
does not meet any setbacks after iteration Q. Statement (c)
leads to the same contradiction that follows statement (a),
whereas statement (d) leads to the same conclusion that follows
statement (b).

Next, suppose that the algorithm visits some vertices multiple
times and that the algorithm meets some setbacks. We may
combine the arguments in the preceding two paragraphs to
conclude that either the algorithm visits the goal after a finite
number of iterations or (by contradiction) that there exists no
obstacle-free path in Ḡ from īS to īG.

Finally, suppose that there exists no obstacle-free path in the
graph Ḡ from the initial vertex īS to the goal vertex īG. The
set of vertices V̄ is finite; hence, it follows by Proposition A.3
that the algorithm terminates after a finite number of iterations.
Suppose, on the contrary, that the algorithm erroneously finds
a path π̄ from the initial vertex īS to the goal vertex īG. Then,
J̄ (π̄) > M since π̄ is not obstacle free. It follows by Line 24 in
Fig. 5 that J̄ (π̄) > M at some intermediate iteration of the al-
gorithm. However, by Line 3 in Fig. 5, the algorithm terminates
whenever J̄ (π̄) > M , thus leading to a contradiction. Thus, the
algorithm does not erroneously find a path from īS to īG if no
obstacle-free path exists, and by Line 26 in Fig. 5, it reports
failure in this case. �

APPENDIX B

Multiresolution analysis (MRA) of a scalar function of one
variable is the construction of a hierarchy of functional ap-
proximations by projecting the function onto a sequence of
nested linear spaces. The DWT provides a framework for
such MRA of a function. In this framework, the sequence
of nested linear spaces is generated by translated and scaled
versions of two scalar functions φ and ψ of unit energy, called
the scaling function and mother wavelet, respectively, which
satisfy the so-called orthogonality and dilation equations (cf.,
[13]). For each m, k ∈ Z, we define scalar functions φm,k

and ψm,k by φm,k(t) :=
√

2mφ(2mt − k) and ψm,k(t) :=√
2mψ(2mt − k), respectively. The DWT of a scalar function
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f ∈ L
2(R) is defined by am0,k := 〈φm0,k(t), f(t)〉, and

dm,k := 〈ψm,k(t), f(t)〉, where m0 ∈ Z. The 1-D reconstruc-
tion equation is

f(t) =
∞∑

k=−∞
am0,kφm0,k(t) +

∞∑
m=m0

∞∑
k=−∞

dm,kψm,k(t).

Scalars am0,k and dm,k are known as approximation and detail
coefficients, respectively.

For the 2-D extension of the 1-D DWT, a scal-
ing function is defined by Φm,k,�(x, y) := φm,k(x)φm,�(y),
and three wavelets Ψ1

m,k,�, . . . ,Ψ
3
m,k,� are similarly de-

fined by products of the 1-D scaling function and wavelet.
The 2-D DWT coefficients of a scalar function F ∈
L

2(R2) are am0,k,� := 〈Φm0,k,�(x, y), F (x, y)〉 and di
m,k,� :=

〈Ψi
m,k,�(x, y), F (x, y)〉, for i = 1, 2, 3, k, � ∈ Z, and m ≥

m0 ∈ Z. The corresponding 2-D reconstruction equation is
defined analogous to the 1-D case.

An example of a pair of scaling function and wavelet is the
Haar family [12]. For the 1-D Haar family, functions φm,k

and ψm,k are compactly supported over the interval Im,k :=
[2−mk, 2−m(k + 1)], and by consequence, functions Φm,k,�

and Ψm,k,� are compactly supported over

Sm,k,� := Im,k × Im,�, (B.2)

which is a square of size 2−m for k, � ∈ Z.
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