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Abstract—Path-planning (equivalently, path-finding) problems
are fundamental in many applications, such as transportation,
VLSI design, robot navigation, and many more. In this paper,
we consider dynamic shortest path-planning problems on a graph
with a single endpoint pair and with potentially changing edge
weights over time. Several algorithms exist in the literature that
solve this problem, notably among them the Lifelong Planning
A∗ (LPA∗) algorithm. The LPA∗ algorithm is an incremental
search algorithm that replans the path when there are changes
in the environment. In numerical experiments, however, it was
observed that the performance of LPA∗ is sensitive in the number
of vertex expansions required to update the graph when an edge
weight value changes or when a vertex is added or deleted. Al-
though, in most cases, the classical LPA∗ requires a relatively small
number of updates, in some other cases the amount of work re-
quired by the LPA∗ to find the optimal path can be overwhelming.
To address this issue, in this paper, we propose an extension of the
baseline LPA∗ algorithm, by making efficient use of a multiscale
representation of the environment. This multiscale representation
allows one to quickly localize the changed edges, and subsequently
update the priority queue efficiently. This incremental multiscale
LPA∗ (m-LPA∗ for short) algorithm leads to an improvement
both in terms of robustness and computational complexity–in
the worst case–when compared to the classical LPA∗. Numerical
experiments validate the aforementioned claims.

Index Terms—A∗ algorithm, beamlet-like structure, dynamic
programming, LPA∗ algorithm, path-planning, quadtrees.

I. INTRODUCTION

DYNAMIC path-planning deals with the solution of
shortest-path problems on a graph, when the edge weights

in the graph change over time. The Lifelong Planning A∗

algorithm (or LPA∗ for short) [1] is well-known and widely
used algorithm to solve dynamic path-planning problems, espe-
cially in mobile robotic applications. In numerical experiments
it was observed that LPA∗ can have unfavorable worst-case
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complexity. In particular, if a vertex located close to the original
optimal path changes, a large number of vertex expansions may
be required to replan the optimal path to the destination. In
other words, LPA∗ is sensitive (i.e., not “robust”), in the sense
that the number of required vertex updates can vary widely,
depending on the location of the updated vertex in the graph.
To demonstrate this point, consider the dynamic shortest-path
problem illustrated in Fig. 5. The objective in this figure is to
find the shortest path while some of the vertices may become
blocked over time. In Fig. 6 (in blue line), we observe that the
number of vertex expansions in the LPA∗ varies significantly for
this problem. Although most of the time, LPA∗ requires only a
few expansions, in several noticeable occasions, the number of
expansions is huge. Such a variation in the number of vertex
expansions is not desirable, as it reveals unfavorable worst-case
performance. Ideally, one would like the number of expansions
to be relatively immune to the location of the updated vertices.
Our objective is to introduce a modification of the LPA∗ that
keeps the number of expanded vertices approximately constant
(compared to the classical LPA∗ implementation), regardless of
the location of the updated vertex.

The main idea of the proposed multiscale LPA∗ (m-LPA∗)
algorithm is to utilize pre-computed multiscale information of
the environment to formulate an associated search graph of
smaller size, therefore reducing the computational complexity.
The intuition behind the proposed algorithm is summarized
as follows. Consider a uniform n-by-n grid representing the
world (or an image) assuming, without loss of generality, four-
nearest-neighbor connectivity. Given a source and a destination,
the search graph is abstracted from the environment before
applying any path-planning search algorithm. When a change
in the environment leads to the update of a certain vertex in the
graph, the amount of computations required by LPA∗ during
replanning varies dramatically, depending on the location of
the updated vertex. Specifically, when the update happens to
induce a “local dead-end” or if it is near the source, the
number of vertex expansions can be extremely high. Fig. 6
demonstrates this point. The proposed m-LPA∗ algorithm, on
the other hand, takes advantage of multiscale information ex-
tracted from the environment and therefore reduces the compu-
tational complexity in both the initial planning and replanning
steps simultaneously. This is achieved by making extensive
use of a beamlet-like graph structure, which is based on a
suitably pruned quadtree representation of the environment
(called in the sequel as path finding reduced recursive dyadic
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partitioning or PFR-RDP). The PFR-RDP encodes the infor-
mation of the environment in a hierarchical, multiscale fashion,
keeping track of “long-range” interactions between the vertices
in the underlying beamlet graph. Therefore, when a vertex
update that would induce a “local-dead-end” in the nearest
neighbor graph takes place, this information is “transmitted”
in the beamlet graph by modifying the hierarchical structure
of the PFR-RDP to include new vertices and edges, so that no
more dead-end exists in the new (beamlet) graph.

In the initial planning step, m-LPA∗ works exactly the
same way as the previously proposed m-A∗ algorithm [2], by
formulating a smaller-size search graph from the multiscale
information obtained from a specifically designed bottom-up
fusion algorithm (see Algorithm 2 in Section IV-B). This leads
to a significant reduction in computational complexity (see
Section III for a brief review of the A∗ and m-A∗ algorithms).
When a vertex is updated, m-LPA∗ will further decompose
the area where the updated vertex is located and will update
the graph before replanning. The number of vertex expansions
during the replanning step is therefore reduced, owing to the
smaller-size search graph obtained in the initial planning.

The theoretical analysis of the associated computational
complexity reveals that, in the worst case, the proposed algo-
rithm has a lower order of complexity than the LPA∗ algorithm.
In our numerical experiments, it was found that the m-LPA∗

algorithm can dramatically reduce the number of vertex ex-
pansions, in the worst case. To ensure a fair comparison, the
implementation of both LPA∗ and m-LPA∗ algorithms was
based on Fibonacci heaps, which is known to be one of the most
efficient data structures for sorting problems [3]. We believe
that a comparison using Fibonacci heaps is more accurate than
using a binomial heaps [1]. In addition, the use of Fibonacci
heaps allows one to find the minimum vertex in the priority
queue faster. Based on these numerical studies, it is shown that
the proposed method is very stable when tested under several
different scenarios.

The proposed algorithm belongs to the general class of
multiscale/multiresolution, dynamic path-planning algorithms.
Multiresolution decomposition techniques for path-planning
have been used extensively in the literature. See, for example,
[4]–[8] and references [9]–[11] where wavelets that are used
to create several levels of abstraction for the environment. The
approach in [10], [11] uses a higher resolution close to the
agent where is needed most, and a coarser resolution at large
distances from the current location of the agent. The motivation
for this approach stems from the fact that the agent’s immediate
reaction to an obstacle or a threat is needed only in the vicinity
of its current position. Faraway obstacles or threats do not have
a great impact on the vehicle’s immediate motion. Therefore, it
makes sense from a computational point of view to generate a
solution with greater accuracy only locally, around the current
location of the agent, with decreasing resolution further away.
Multiresolution strategies are indispensable for on-line imple-
mentation when the agent has limited computational resources.
In this paper, we go beyond the use of wavelets to encode
the environment information across different scales. Although
wavelets are very efficient in that respect, they also have some
drawbacks. Most importantly, they lack orientation information

and can be roughly characterized as isotropic. Beamlets provide
a framework for multiscale analysis, in which line segments
play a role analogous to the role played by points in wavelet
analysis. They add two crucial elements missing from wavelet
processing: 1) orientation; and 2) elongation information. They
provide an optimal way to approximate curvelinear features
in 2-D. Beamlets connect points that may be far apart, thus
encoding “far away” interactions in the environment. In this
paper, we show that multiresolution/multiscale strategies based
on beamlet-like ideas, can also lead to increased computational
robustness at the execution level.

The rest of the paper is organized as follows. 1) Section II
formulates the path-planning problem in a dynamically chang-
ing environment; 2) Section III reviews the multiscale A∗

algorithm and the LPA∗ algorithm. These two algorithms are the
foundation of the m-LPA∗ algorithm proposed in this paper; 3)
Section IV offers the details of the proposed m-LPA∗ algorithm.
Its complexity analysis is conducted in Section V; 4) Section VI
provides numerical examples to compare m-LPA∗ with LPA∗;
5) while Section VII compares m-LPA∗ with other closely re-
lated search algorithms, pinpointing their apparent similarities
and their main differences; and 6) Section VIII summarizes
the findings of the paper and suggests some possible future
extensions.

II. PROBLEM FORMULATION

In a path-planning problem we are given a graph G = (V,E),
with vertex set V and edge set E ⊆ V × V . For instance, V is
typically the set of possible vehicle locations and E represents
transitions between these locations. The weight of each edge
denotes the cost of transitioning between the two locations
represented by the vertices connected by the corresponding
edge. Planning a path in G can thus be cast as a single-pair
shortest path problem on this graph.

In a deterministic environment, a graph has constant edge
weights over time. Dijkstra’s algorithm and the A∗ algorithm
and their numerous variants are classical methods to compute
optimal paths to the destination from every location or from
a single location in the graph, respectively. In many practical
applications (especially in the area of robotic mobile vehicles)
it is common to obtain updated information about the environ-
ment over time. This leads to a replanning problem on a graph
with changing edge weights. If the replanning is done from
scratch (that is, without using any prior information of the graph
structure or the edge weights), this may result in wasted time
and/or computational resources. Therefore, several efficient
algorithms have been developed in the literature to adjust the
current shortest path when a change takes place, without per-
forming redundant calculations. References [1] and [12], in par-
ticular, proposed the Lifelong Planning A∗ (LPA∗) algorithm
which considers the dynamic path-planning problem with fixed
source and destination. Another popular replanning algorithm
for a vehicle navigating in a dynamically changing environment
that combines heuristic and incremental searches is D∗ (or
dynamic A∗) [13]. In [14] the authors extended the LPA∗

algorithm and proposed the D∗-Lite algorithm, which is similar
in spirit, but much simpler than D∗. In many applications,
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the curvature of the resulting path is also of interest in order
to guarantee kinematically feasible vehicle trajectories. In this
context, references [15]–[18] incorporate curvature information
to make the planned route as realistic as possible.

In this paper, we consider a path-planning problem in a
dynamically changing 2-D environment. Without loss of gen-
erality, it is assumed that the environment can be represented
by an n-by-n square image, where n is dyadic, i.e. n = 2J

and J is a positive integer. Note that such an image-based
formulation is quite common in the path-planning literature
[15]. It is assumed that the image contains two types of pixels:
1) gray pixels (representing non-traversable obstacles); and
2) white pixels (representing traversable free cells). The path-
planning problem is to find the shortest path between a given
pair of source and destination pixels. Under this binary image
assumption, a change in the environment is formulated as a
change in the traversability properties between certain cells.1

The task of replanning then consists of finding another shortest
path inside the new environment, while avoiding a large number
of further vertex expansions.

Among the several existing replanning algorithms mentioned
previously, in this paper we focus exclusively on LPA∗ since it
represents a widely used, state-of-the-art algorithm in the area
of incremental replanning. It is reminded that LPA∗ operates
essentially the same as the well-known A∗ algorithm in the
initial planning step but, in addition, it utilizes the concept
of “local inconsistency” of vertices to control the size of the
priority queue and hence the number of vertex expansions.

As mentioned earlier, numerical examples indicate that the
number of vertex expansions in the LPA∗ algorithm can vary
significantly depending on the obstacle location. Specifically,
in several cases when the blocking vertex happens to be some-
where along the initial shortest-path resulting in a “local dead
end,” or when there are too many obstacles in the environment,
the number of vertex expansions in the LPA∗ replanning part
can blow up. We want to avoid such undesirable behavior.
Our objective is to devise an algorithm that retains the nice
properties of LPA∗, while at the same time it maintains an
almost constant number of vertex expansions when the envi-
ronment is changed. The proposed multiscale LPA∗ (m-LPA∗)
algorithm takes advantage of the sparse information induced by
the quadtree decomposition in a hierarchy of dyadic squares.
This is the same technique adopted in our previously proposed
multiscale A∗ (m-A∗) algorithm [2]. As shown in Section V,
such a strategy can reduce the number of vertex expansions
significantly, and therefore also reduce the overall worst-case
replanning complexity.

III. MULTISCALE A∗ AND LIFELONG

PLANNING A∗ ALGORITHMS

In this section we briefly summarize the key points of the
multiscale A∗ algorithm (m-A∗), which lay the foundation for
m-LPA∗. The m-A∗ algorithm is an extension of the classical A∗

algorithm; it takes advantage of preprocessed multiscale infor-

1A cell is defined to be a collection of pixels in the environment. At the
highest resolution, cell and pixels are equivalent.

Fig. 1. Illustration of the path-finding reduced recursive dyadic partition
(PFR-RDP) on a 32 × 32 image. The black cells are the source and destination.
The red circles denote the free boundary cells (i.e., the vertices in the beamlet
graph). The green arrows show the edge weights between two free cells
constructed via the bottom-up fusion algorithm across several scales in the PFR-
RDP.

mation in order to reduce the overall computational complexity.
Afterwards, we provide a brief overview of the LPA∗ algorithm.
The LPA∗ is an incremental search algorithm that replans the
initial path when a vertex update occurs owing to a change
in the environment. These two algorithms (the m-A∗ and the
LPA∗) are the precursors of m-LPA∗.

A. Multiscale A∗ (m-A∗) Algorithm

The classical A∗ algorithm searches through all free cells in
the environment, which can be overwhelmingly redundant. The
motivation for the multiscale-A∗ (m-A∗) algorithm is to con-
struct a smaller size search graph, on which the computational
complexity of searching for the shortest path is significantly
reduced. The m-A∗ algorithm is based on the following key
elements:

(i) The recursive dyadic partition (RDP) and its extension,
the path-finding reduced RDP (PFR-RDP). The elements
of (PFR-)RDP are the dyadic d-squares, parameterized
by scale and location. For the single-pair, shortest path-
planning problem, the PFR-RDP is first constructed, and
all free cells at the boundaries of each d-square in the
PFR-RDP are selected as the vertices in the search graph.
Fig. 1 shows the d-squares for the shown partition, along
with the additional boundary cells used as vertices in the
search graph.

(ii) The idea of beamlet-like connectivity. This provides an
extension of connectivity between a pair of non-adjacent
free cells. Within each d-square, besides the assumption
of four-nearest-neighbor connectivity, we further con-
sider any pair of free boundary cells to be connected if
there exists an obstacle-free path between the two, which
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Fig. 2. Magnified view of the fusion process in the d-square q(3,2,1) of Fig. 1.
The fusion is conducted in a complete dyadic partition. Notice that the solid red
grid stands for the partition corresponding to the second layer of the associated
quadtree and the dashed red grid corresponds to the partition with respect to
the third layer. The green arrow lines indicate the inter-distance connectivity
between the corresponding free boundary cells. The blue lines show the fusion
process.

lies within that d-square. This shortest path is called a
beamlet. Readers may notice that this is a generalization
of the beamlet concept introduced in [19]. Therein, the
beamlets are defined as straight line segments of variable
length, scale and angle, connecting boundary cells of d-
squares. They have been applied successfully to image
processing applications (i.e., edge detection). Please see
[20]–[22] for more details. The beamlet graph is de-
fined to be the search graph with these two types of
connectivity.

(iii) The bottom-up fusion algorithm designed to obtain the
edge weights of the search graph from different scale
dyadic squares. The algorithm is a recursive method that
employs the RDP in each d-square from the PFR-RDP,
in order to compute the inter-distances between the free
boundary cells for all d-squares in the environment. In
other words, the bottom-up fusion algorithm finds all
shortest paths between the free boundary cells (i.e., the
edge weights in the beamlet graph). The main idea of the
algorithm is based on the observation that if we know
the inter-distances between the free boundary cells within
each of the smaller d-squares, and by considering the
connectivity of the free boundary cells that belong to
neighboring d-squares, we can treat all free boundary
cells of the four d-squares at the next scale as vertices
in a “fused” graph. The distance between free cells from
neighboring d-squares can be defined by direct neigh-
bors. Fig. 2 shows how this “fusion” of distance can be
conducted recursively. The pseudo-code of the bottom-up
fusion algorithm is given in Algorithm 2.

The combination of beamlet-like connectivity and multiscale
decomposition in m-A∗ can reduce the depth of the search
tree from O(n) roughly to O(log n), without increasing the
branching factor in each layer. The beamlet graph thus has
O(n) vertices and O(n2) edges. The worst-case complexity of
running A∗ on the beamlet graph is therefore O(n2), compared
to O(n2 log n) when using the four-nearest-neighbor graph.

B. Incremental Search Algorithm: LPA∗

Heuristic search methods are likely to find the shortest path
faster than uninformed search methods. Incremental search
methods, on the other hand, promise to find shortest paths by
solving a series of similar path-planning problems faster than it
is possible by solving each path-planning problem from scratch.
The Lifelong Planning A∗ (LPA∗) in [1] can be viewed as
an incremental version of the A∗ algorithm, the latter being a
heuristic enhancement of the well-known Dijkstra algorithm.
The LPA∗ repeatedly finds shortest paths from a given source to
a given destination, while the edge weights of the graph change,
or while vertices are added or deleted. The first search of LPA∗

is the same as that of the classical A∗ algorithm. Subsequently,
the algorithm breaks ties in favor of vertices with a smaller g-
value (i.e., the current estimated distance from the start vertex).
As a result, many of the subsequent searches are potentially
faster, because the algorithm reuses those parts of the previous
search graph that are identical to the new one.

To facilitate the subsequent discussion on the proposed
multiscale version of LPA∗, we first need to introduce some
notation as follows. Let Succ(v) ⊂ V denote the set of suc-
cessors of the vertex v ∈ V , let Pred(v) ⊂ V denote the set
of predecessors of vertex v, and let c(v, v′) denote the cost
of moving from vertex v to vertex v′. Let also h(v, vgoal)
denote the heuristic that guides the search direction to the goal
destination. Finally, let g(v) denote the start distance of vertex
v, that is, the length of the shortest path from vstart to v.

The LPA∗ algorithm uses two estimates of the start dis-
tance, namely: 1) g(v); and 2) rhs(v). The rhs-values are
the one-step lookahead values based on the g-values for each
vertex, and thus they are potentially better informed than the g-
value. Specifically, rhs(v) = minv′∈Pred(v)(g(v′) + c(v′, v)).
A vertex is defined to be locally consistent if and only if
g(v) = rhs(v); otherwise it is said to be locally inconsistent.
It should be clear from the above definitions that all vertices
are locally consistent if and only if their g-values are equal to
their respective start distances. LPA∗ also maintains a priority
queue, which always contains exactly the locally inconsistent
vertices. The priority of vertices in the queue is based on
the key value, which is defined to be k(v) = [k1(v), k2(v)],
where k1(v) = min(g(v), rhs(v)) + h(v, vgoal), and k2(v) =
min(g(v), rhs(v)). The keys of the vertices in the priority
queue roughly correspond to the f -values used by A∗. LPA∗

always recalculates the g-value of the vertex (i.e., expands the
vertex) in the priority queue with the smallest key value. This is
similar to A∗, which always expands the vertex in the priority
queue with the smallest f -value. LPA∗ keeps expanding the
vertices until vgoal is locally consistent and the key of the vertex
to be expanded next is no less than the key of vgoal. This is
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similar to A∗, which expands vertices until it expands vgoal, at
which point the g-value of vgoal equals its start distance, and
the f -value of the vertex to be expanded next is no less than the
f -value of vgoal. If g(vgoal) = ∞ after the search, then there is
no finite-cost path from vstart to vgoal.

Note that LPA∗ does not make every cell locally consistent.
Instead, it uses an informed heuristic to focus the search and
the subsequent updates only on the vertices whose g-values are
relevant for finding the shortest path. This is the main principle
behind LPA∗, and this is what makes LPA∗ a very efficient
replanning algorithm.

IV. MULTISCALE STRATEGY IN DYNAMIC PATH

PLANNING: M-LPA∗

The proposed multiscale Lifelong Planning A∗ (m-LPA∗)
algorithm is an extension of the previously proposed m-A∗

algorithm [2] for the case of a dynamically changing environ-
ment. Recall that we consider a discrete 2-D environment of
dimension n × n containing only obstacles and free cells. Each
free cell is a vertex in the underlying topological graph and is
connected to the free cells among its four nearest-neighbors.
We assume, without loss of generality, that each edge has unit
weight. We describe our approach in three steps. In Section IV-
A, we describe the dynamic path-finding reduced recursive
dyadic partition (DPFR-RDP) step. This serves as the starting
point of the proposed replanning scheme. We then describe
how to update the beamlet graph for the purpose of replanning
when a change that alters the traversability of the original
path takes place. This is done in Section IV-B. The approach
hinges upon the bottom-up fusion algorithm that collects the
multiscale information of the graph. Section IV-C presents
the proposed multiscale LPA∗ algorithm, which essentially
runs LPA∗ iteratively on the aforementioned updated beamlet
graph.

A. Dynamic Path-Finding Reduced Recursive Dyadic Partition

We define two types of recursive dyadic partitions (RDP),
namely, the complete RDP and the path-finding reduced RDP
(PFR-RDP). The PFR-RDP is a partial recursive partition in
the sense that not all d-squares are partitioned to the finest
level. Fig. 1 shows an example of a PFR-RDP on a 32-by-32
image.

In order to make efficient use of the multiscale information in
a dynamically changing environment, we extend this recursive
dyadic partition to obtain a dynamic version of PFR-RDP: the
Dynamic PFR-RDP (DPFR-RDP). This is just one more step
in the construction of the PFR-RDP, in the sense that when
a certain cell in the gridworld suffers from a traversability
change, we first identify the d-square in the PFR-RDP in which
this candidate cell is located, and we then conduct a further
partial dyadic partition (only) in this candidate d-square. Fig. 3
shows the DPFR-RDP for a 64-by-64 image. The pseudo code
for the DPFR-RDP is given in Algorithm 1.

The DPFR-RDP enables us to obtain high resolution infor-
mation around the cells in the environment that have changed.
All free boundary cells for each d-square obtained from further

Fig. 3. (a) Illustration of the DPFR-RDP. The red grid shows the original
PFR-RDP before any vertex update; the dashed red grid stands for the further
partitioning after the green cell has been updated. The blue frame encloses the
candidate d-square that is selected for further dyadic partitioning. (b) Magnified
upper-right candidate d-square in (a). The free boundary cells are indicated
by red circles. Except for one of the smallest newly-generated d-squares, all
other d-squares contain the same inter-distance information as before, which is
obtained through the bottom-up fusion process.

dyadic partitioning are included as new vertices in the beamlet
graph. This is the vertex update step of the beamlet graph.

Algorithm 1 DPFR-RDP (dynamic path-finding reduced
recursive dyadic partition)

1: Set the largest scale to J = log2 n, where the image size
is n by n.
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2: Initialize the list dptree = [1, 1, 1]–the d-square at the
coarsest level.

3: for s = 1 : J − 1 do
4: For d-square at scale s in dptree
5: if vs (source) or ve (destination) is in this d-square then
6: In dptree, remove the line corresponding to this d-

square;
7: Partition into four equal, smaller d-squares, and insert

them as new lines in dptree
8: end if
9: end for
10: if v′ (update) �= ∅ then
11: Locate the d-square in PFR-RDP where v′ locates,

denoted as [sv′ , av′ , bv′ ]
12: Conduct PFR-RDP (which is the first for loop above)

on [sv′ , av′ , bv′ ] by setting vs = ve = v′

13: end if
14: return dptree

B. Update of Multiscale Information in the Beamlet Graph

In order to update the edge weights in the beamlet graph that
were influenced by the updated cell, it would be far more redun-
dant if we were to recalculate from scratch the inter-distances
between all free boundary cells. In fact, this information has al-
ready been obtained during the bottom-up fusion process when
we run m-A∗ at the initialization step (later on we show that
LPA∗ runs exactly the same way as m-A∗ before the updates).

By taking advantage of the hierarchical inter-distance struc-
ture via the bottom-up fusion algorithm, the edge weights in
the beamlet graph can be updated promptly. For instance, in
Fig. 3(b), except for the smallest d-square where the green cell
is located, no change of edge weights happens in any other d-
square. Only the updates of the edge weights in the smallest
d-square that contains the updated cell need to be recalculated,
which is trivial, given the fact that the finest scale d-square
contains only four cells. The main effort thus involves running
an all-shortest path algorithm on the graph constructed from all
the free boundary cells of the newly added d-squares during
the further partitioning. More generally, multiple updates at the
same time can be processed the same way. Fig. 4 shows a
typical example of multiple updates performed simultaneously.

Algorithm 2 BottomUpFusion (For each d-square)

1: Read the parameters of each d-square: s (scale), a, b
(location);

2: if s = log2 n − 1 then
3: Compute the free boundary cells as vertices (Trivial

case: only four cells in the d-square)
4: Calculate the four nearest neighbor connectivity (edges)

within each d-square
5: Run Johnson’s algorithm on the resulting graph to obtain

all pairs of shortest paths: cgraph and pathList.
6: end if
7: if s > 1 then

Fig. 4. Illustration of processing multiple updates simultaneously. The red
grid shows the original PFR-RDP obtained from m-A∗; the dashed red
grid stands for the further partitioning after the green cells have been up-
dated. The blue frame encloses the candidate d-squares marked for further
partitioning.

8: [graph1, path1]=BottomUpFusion(s+1, 2a−1, 2b−1)
9: [graph2, path2] = BottomUpFusion(s + 1, 2a, 2b − 1)
10: [graph3, path3]=BottomUpFusion(s+1, 2a−1, 2b)
11: [graph4, path4] = BottomUpFusion(s + 1, 2a, 2b)
12: Merge graph1, . . . , graph4 into Graph by adding the

connected edges between neighboring d-squares
13: Run Johnson’s algorithm on Graph and get cgraph

and tmpPathList
14: Insert the missing parts of paths in tmpPathList from

path1, . . . , path4 to obtain pathList
15: return cgraph, pathlist (i.e., the beamlet graph)
16: end if

C. LPA∗ Algorithm on the Beamlet Graph

Now that we have established a method for updating the
beamlet graph, we turn our attention to finding the shortest path
on this graph. Given the source and destination, the first step of
m-LPA∗ is to run m-A∗. This gives us the beamlet graph and the
initial optimal path. If there is no change in the environment,
the algorithm terminates. When any cell is updated by some
event, the dynamic PFR-RDP is constructed, and the multiscale
inter-distance information obtained from the bottom-up fusion
algorithm during the first step is used to update the vertices
and edge weights in the beamlet graph. The final step is to run
the LPA∗ algorithm on the updated beamlet graph. The whole
algorithm is summarized in Algorithm 3.

Algorithm 3 Multiscale Lifelong A∗ (m-LPA∗)

1: procedure Key(v)
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2: return [g(v) ∧ rhs(v) + h(vs, v); g(v) ∧ rhs(v)]
3: procedure Initialize()
4: OPEN = ∅;
5: for all v ∈ V rhs(v) = g(v) = ∞;
6: rhs(vs) = 0;
7: insert vs with Key(vs) into OPEN
8: procedure UpdateState(v)
9: if v �= vs then
10: rhs(v) = minv′∈Pred(v)(c(v, v′) + g(v′))
11: end if
12: if v ∈ OPEN then
13: remove v from OPEN
14: end if
15: if g(v) �= rhs(v) then
16: insert v into OPEN with Key(v)
17: end if
18: procedure ComputeShortestPath()
19: while minv∈OPEN (key(v)) < key(vgoal)|rhs(vgoal) �=

g(vgoal) do
20: remove state v with min key from OPEN ;
21: if g(v) > rhs(v) then
22: g(v) = rhs(v);
23: for all v′ ∈ Succ(v) UpdateState(v′);
24: else
25: g(v) = ∞;
26: for all v′ ∈ Succ(v) ∪ {v} UpdateState(v′);
27: end if
28: end while
29: procedure Main()
30: Initialize img, vs, ve;
31: Conduct PFR-RDP and obtain dptree
32: Run the Bottom-Up Fusion algorithm on each d-square

in dptree and get beamlet graph
33: for ever do
34: ComputeShortestPath();
35: Wait for changes in edge costs;
36: quadtree = FurtherPartition();
37: Update beamlet graph via Bottom-up Fusion;
38: for all directed edges (u,w) with changed cost do
39: Update edge cost c(u,w);
40: UpdateState(u);
41: end for
42: end for

V. COMPLEXITY ANALYSIS AND DATA STRUCTURE

In this section we discuss the cost of replanning and the
influence of the data structure used to maintain the priority
queue on the overall computational complexity of the m-LPA∗

algorithm. Roughly speaking, complexity of any search algo-
rithm depends on two factors: the number of vertex expansions,
and the number of heap percolations. In Section V-A the
worst-case scenario analysis of the algorithmic complexity in
terms of vertex expansions is provided, lending support to the
benefits of the proposed m-LPA∗ algorithm. Section V-B con-
siders the implementation issues to reduce the heap percolation
overhead.

A. Worst-Case Complexity Analysis

In order to investigate the complexity of the replanning step,
and without loss of generality, we assume that only one vertex
update occurs every single time. Let us denote the number of
vertex expansions as Ve. We have the following theorem.

Theorem 1: In the worst case, |Ve| = O(n2) on the nearest
neighbor graph, and |Ve| = O(n) on the beamlet graph.

Proof: In the worst case, the complexity of replanning
has the same order as the initial path-planning [1], and hence
|V NNG

e | = O(n2), where |V NNG
e | denotes the number of vertex

expansions for the nearest neighbor graph.
In the replanning part, multiscale information has already

been obtained via the bottom-up fusion algorithm. There are
two scale-1, d-squares, and six scale-s, d-squares when s ≥
2. Furthermore, for a d-square at scale s, there are at most
n22−s free boundary pixels. Therefore, the initial beamlet
graph has |V1| ≤ 2 × 2n + 6 × n + 6 × (n/2) + 6 × (n/4) +
· · · = 4n + 6n + 3n + (3/2)n + · · · ≤ 16n vertices. Further-
more, the number of vertices added during the replanning
step has an upper bound of |V2| ≤ 3 × n + 3 × (n/2) + 3 ×
(n/4) + · · · = 6n. This is because during further partitioning
of the d-square where the update of a vertex takes place, we
have three new d-squares at each scale (see Fig. 1 for an
example). Hence, the total number of vertices during replanning
is |V | = |V1| + |V2|, which is bounded by |V | ≤ 22n. Thus,
in the worst case, the number of vertex expansions in the
replanning for the beamlet graph is of order O(n). �

B. Fibonacci versus Binomial Heap Implementation

An efficient data structure is required in order to maintain the
priority queue and to find the minimum cost vertex at each step
of the search algorithm with the least effort. A Fibonacci heap is
used in m-LPA∗ to maintain the priority queue, instead of a bi-
nomial heap (used in [1]), because the Fibonacci heap has a bet-
ter amortized running time than the binomial heap. During the
search step of the LPA∗, there are mainly three operations that
change the content of the heap: 1) insert; 2) find-minimum; and
3) delete-minimum. The complexity of these operations is im-
portant because they are used to calculate the heap percolation,
which is a metric for comparing the performance of algorithms.
It is computed as the sum of the total number of operations
that maintain the heap structure (i.e., number of swapped parent
and child pairs in the heap). In a Fibonacci heap, the operations
insert and find-minimum work in constant (i.e., O(1)) amortized
time, while the operation delete-minimum works in O(log n)
amortized time [23]. In a binomial heap, on the other hand,
the complexity of these operations is the same for all, namely
O(log n). Hence, the heap percolation for a binomial heap
is (ni + nd + nf )O(log n), whereas using a Fibonacci heap
the heap percolation is (ni + nf )O(1) + ndO(log n). Here,
ni, nd and nf denote number of insert, delete-minimum and
find-minimum operations. This shows that the Fibonacci heap
is a better choice for the data structure implementation in a
replanning algorithm in terms of heap percolations.

Also, note that the core component of m-LPA∗ is the beamlet
graph obtained from the preprocessed multiscale information,
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which has a reduced number of vertices, but an increased
number of insertion operations, due to the generalization
of connectivity between non-adjacent cells. As a result, the
operation complexity of m-LPA∗ is dominated by insertion
operations, which is approximately of order O(1), compared
to that O(log n) of LPA∗. This observation also justifies the
advantage of m-LPA∗ over LPA∗ in terms of heap percolations.

VI. SIMULATION STUDIES

In this section we provide numerical experiments from sev-
eral different scenarios, comparing the m-LPA∗ with the origi-
nal LPA∗ algorithm. For each scenario, five randomly generated
gridworlds are constructed, on which the comparison between
m-LPA∗ and LPA∗ takes place. In the first scenario, we created
an n-by-n image, assuming that the probability of a certain
cell (indexed as (x, y), where 1 ≤ x, y ≤ n) to be obstacle-free
is given by p(x, y) = exp(−γ|ϕ(x, y)|), where the constant γ
will be specified later. The intuition behind this model is that
pixels (i.e., fine resolution cells) near the curve defined by
ϕ(x, y) = 0 have higher probability to be free than the pixels
far away from this curve.

In all numerical experiments, the total number of vertex
expansions (Ve, the number of updates of the g-value of the
vertices) is used as the metric to compare the efficiency of
the two algorithms. We did not use heap percolation or CPU
time, because CPU time is a machine-dependent metric, and
heap percolation is approximately of order O(1) per vertex
expansion, as a direct result of using both a Fibonacci heap and
a beamlet graph (see Section V-B above).

First, we compare the shortest paths and the number of
expanded vertices during the initial planning step of LPA∗

and m-LPA∗. Fig. 5 shows the results for one of the sample
environments for the case when ϕ(x, y) = y − x2/n. As seen
in these plots, the number of expanded vertices during the
initial planning step using the beamlet graph is much smaller
than the one using the nearest neighbor graph. Multiscale
information used in the initial step of planning significantly
reduces the number of vertex expansions, and because of the
use of Fibonacci heaps, the number of vertex expansions is the
only step that is time-consuming.

Next, the number of vertex expansions during the replanning
step of both LPA∗ and m-LPA∗ algorithms are compared. To
this end, recall that the nearest neighbor graph and the beamlet
graph are the underlined graphs in the LPA∗ and m-LPA∗

algorithms, respectively. Based on the intuition that when the
updated vertex does not belong to the shortest path identified by
either the LPA∗ or the m-LPA∗ algorithm, the number of vertex
expansions tends to be small, in these examples we imposed
the blocking vertex to belong in the set of vertices of the initial
shortest path, except for the source and destination vertices.

For the scenario shown in Fig. 5, we conducted five ex-
periments with randomly generated gridworlds. For each ex-
periment, the updated vertices were on the initial shortest
path and they were updated one-at-a-time sequentially. Fig. 6
shows the pattern of the number of vertex expansions for LPA∗

and m-LPA∗ for one of these numerical experiments, but the

Fig. 5. (a) The shortest path identified by the first step of LPA∗ in the nearest
neighbor graph. The black cells are the source and destination, whereas the gray
cells stand for the obstacles. The red sequence of circles denotes the shortest
path. The yellow crosses denote the expanded vertices in the initial planning.
(b) The shortest path identified by the first step of m-LPA∗ in the beamlet graph.

pattern was consistent in all five experiments. The following
observations are evident from Fig. 6:

1) The number of vertex expansions during replanning in
LPA∗ varies dramatically from case to case. Specifically,
when the updated vertex is closer to the source, or when
the update generates a “local dead-end,” a huge number
of g-values may need to be recalculated.

2) The number of vertex expansions in m-LPA∗ is relatively
insensitive with respect to the location of the updated
vertices. The use of multiscale information reduces the
number of vertex expansions when the blocking happens
near the source; on the other hand, there will be a
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Fig. 6. Blue curve and the red curve denote the number of vertex expansions
for LPA∗ and m-LPA∗ respectively. The number on the x-axis is the index
of the updated vertex along the initial shortest path. For LPA∗, the number of
vertex expansions is highest when the updates occur close to the source, while
for m-LPA∗, the use of multiscale information alleviates the computations
during replanning when the update is close to the source (with slightly increased
computational burden when the update happens in the largest d-square); the net
gain in terms of worst-case computational complexity is clear from this figure.

somewhat larger number of vertex expansions than that of
LPA∗ when the update happens in the largest d-square in
the dynamically recursive dyadic partition tree, because
in this case more vertices will be added to the beamlet
graph during the replanning step.

These observations are illustrated in greater detail in Figs. 7
and 8. Fig. 7 shows two cases of replanning obtained from the
LPA∗ algorithm, which exhibited widely different numbers of
vertex expansions. The black cells are the source and desti-
nation. The gray cells indicate obstacles. The solid blue dots
denote the cells that changed their status and are not traversable.
The red circles identify the original path during the first step of
LPA∗ (essentially A∗), and the green stars indicate the updated
shortest path obtained from the replanning part of LPA∗. The
yellow crosses denote the expanded vertices during replanning.
In Fig. 7(a), the blocking of a vertex in the gridworld induces a
local “dead-end,” and therefore all the g-values afterward are
recalculated. The updated shortest path deviates a few steps
before the location of the blocking cell, before converging back
to the original path afterward. Because the blocking cell in
Fig. 7(a) is much closer to the source than that in Fig. 7(b), the
number of vertex expansions is also much higher, as expected.

Fig. 8 shows two cases of m-LPA∗ replanning. In Fig. 8(a)
the blocking occurs near the source, as in Fig. 7(a), but the
number of vertex expansions is much smaller, since the usage of
multiscale information provides a smaller size graph, and hence
a smaller number of vertex expansions as well. Fig. 8(b) illus-
trates the reason for an occasional increase in the number of ver-
tex expansions in m-LPA∗, especially when the vertex update
occurs inside the largest d-square. In those cases, a larger num-

Fig. 7. (a) Shortest path obtained from LPA∗ in the nearest neighbor graph
with a large number of vertex expansions during replanning. (b) Shortest path
obtained from LPA∗ in the nearest neighbor graph with a small number of
vertex expansions.

ber of free boundary cells is added to the beamlet graph as new
vertices, following the recursive dyadic partitioning induced
by the modified vertex. If the increased computational burden
due to the newly-added vertices outperforms the gain from the
multiscale structure of the beamlet graph, the number of vertex
expansions can be higher than that of the LPA∗ implementation.

To further investigate the computational benefits obtained
from the use of m-LPA∗, we examined two more simulation
scenarios as follows. We generated a gridworld similar to the
previous case, but now we changed the parabolic curve to
a circle. As before, comparisons were conducted using five
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Fig. 8. Shortest path-planning obtained from m-LPA∗ in the beamlet graph.

randomly generated gridworlds. Fig. 9 shows the shortest paths
obtained from the initial planning based on the nearest neigh-
bor graph and the beamlet graph, respectively, while Fig. 10
shows two cases of replanning obtained from the LPA∗ and the
m-LPA∗, respectively.

The third scenario involves a sinusoidal curve embedded in
the environment. Fig. 11 shows the initial planning obtained
from the LPA∗ and the m-LPA∗, and Fig. 12 shows two cases of
replanning based on the nearest neighbor graph and the beamlet
graph, respectively. Fig. 13 summarizes the results in terms of
the number of vertex expansions for LPA∗ and m-LPA∗ for
the last two scenarios. The number of vertex expansions for
both LPA∗ and m-LPA∗ follows the same trend as in Fig. 6.
For LPA∗, the number of vertex expansions is highest when

Fig. 9. (a) The shortest path obtained from LPA∗ in the nearest neighbor
graph. Notice that all free cells in the nearest neighbor graph are expanded.
(b) The updated shortest path obtained from m-LPA∗ in the beamlet graph. The
use of m-LPA∗ results in a much smaller number of vertex expansions in the
initial planning step.

the update happens close to the source, while for m-LPA∗ this
number varies according to the closeness of the vertex updates
to the source, and whether the updates are located in the larger
d-squares.

Finally, we reproduced a large-scale gridworld based on
actual topographic data (i.e., elevation map) of a certain area
in the US. Fig. 14 shows two cases of replanning based on
the nearest neighbor graph and the beamlet graph, respectively.
The difference in the number of expanded vertices for the
two cases, is clearly shown in Fig. 14. Fig. 15(a) provides a
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Fig. 10. (a) The updated shortest path obtained from LPA∗ in the nearest
neighbor graph. The blocking happens near the source, and hence all the g-
values afterward are recalculated. (b) The updated shortest path obtained from
m-LPA∗ in the beamlet graph. The blocking happens in the upper-right coarsest
scale d-square where further recursive dyadic partition takes place. Use of
the multiscale information structure encoded in the DFPR-RDP significantly
reduces the number of vertex expansions during replanning.

magnified version of Fig. 14(a) around the replanning area so
that it can be seen clearly how the replanned path avoids the
blocked vertex. Fig. 15(b) summarizes the results in terms of
the number of vertex expansions for LPA∗ and m-LPA∗ for
this example, which illustrates the effectiveness of our proposed
m-LPA∗ algorithm for large scale, realistic maps.

The results of the numerical simulations in this section con-
firm that m-LPA∗ is a more robust algorithm than the LPA∗ in
terms of the number of vertex expansions during replanning for

Fig. 11. (a) The initial shortest path obtained from the LPA∗ in the nearest
neighbor graph. Notice that all free cells in the nearest neighbor graph are
expanded in the initial planning. (b) The initial shortest path obtained from
the m-LPA∗ in the beamlet graph. The use of multiscale information greatly
reduces the number of vertex expansions during the initial planning step.

a large variety of test scenarios. It is observed that the number of
vertex expansions in m-LPA∗ does not vary dramatically with
the location of the updated vertex whose traversability prop-
erties change. This mitigation of the volatility in the number
of vertex expansions achieved by m-LPA∗ can be a desirable
property in many applications.

VII. DISCUSSION AND RELATED PRIOR WORK

The proposed m-LPA∗ algorithm provides a novel, non-
trivial extension in the family of incremental search algorithms
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Fig. 12. (a) The updated shortest path obtained from LPA∗ in the nearest
neighbor graph. The blocking happens near the source and hence all the g-
values afterward are recalculated. (b) The updated shortest path obtained from
m-LPA∗ in the beamlet graph. The blocking happens in the upper-right coarsest
scale d-square where further recursive dyadic partition takes place. The use
of multiscale information structure significantly reduces the number of vertex
expansions during replanning.

operating on quadtree-based data structures. Quadtrees are,
in fact, a widely adopted hierarchical representation used to
encode obstacles in a given 2-D image/environment. They par-
tition an image by recursively subdividing it into four smaller
quadrants, and these successive subdivisions continue until
either a subregion which is free of obstacles is found, or the
finest resolution is reached. Because of their efficient memory
requirements, quadtrees have become popular in path-planning
applications.

Fig. 13. Comparison of number of vertex expansions for both LPA∗ and
m-LPA∗. The blue curve and the red curve denote the number of vertex
expansions for LPA∗ and m-LPA∗, respectively. (a) Example environment of
Figs. 9 and 10. (b) Example environment of Figs. 11 and 12.

Several previous path-planning algorithms exploit the nice
properties of quadtrees. One of the earlier approaches is given
in [24]. This work proved that a quadtree structure is better
than the use of regular grids to represent 2-D environments. The
benefits of quadtrees stem from the fact that they allow for an
efficient partitioning of the environment so that single cells can
be used to encode large empty regions. Quadtrees also reduce
the memory requirements since they use a smaller number of
cells. In early path-planning implementations, first a quadtree
is created to represent the 2-D workspace, and then the path
is generated by joining the line segments between the centers
of the cells. However, this method merely finds a suboptimal
solution. To remedy this shortcoming, the “framed quadtree”
data structure was introduced in [25]. In a framed quadtree,
free cells augmented the perimeter of each quadrant; these
free cells are then used to pass through the different quadtree
regions. The optimal path is generated by combining these free
cells with line segments. At first glance, the framed quadtree
data structure resembles the beamlet graph structure in the
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Fig. 14. Comparison between LPA∗ and m-LPA∗ for a large map with real
topographic data. Gray pixels indicate obstacles and white pixels are free. (a)
The blocking happens near the source and hence all the g-values afterward
are recalculated. (b) The updated shortest path obtained from m-LPA∗ in the
beamlet graph.

current paper. However, [25] does not introduce a beamlet-like
connectivity to explore the finer scale information contained in
the quadtree decomposition of the environment. Consequently,
no “fusion” algorithm is used to efficiently organize the pre-
computed information across all levels.

Another recent methodology that is somewhat similar to our
work is the hierarchical path finding A∗ (HPA∗) algorithm of
[26]. This is a popular algorithm for real-time path-finding
problems, especially for video game applications. The key idea
of HPA∗ is to divide the map into clusters (corresponding
to equally-sized squares) and generate a new graph (the so-
called abstract graph) by using the information of the free cells
belonging to the boundary of these clusters. The motivation

Fig. 15. (a) Magnified replanning area of the simulation shows the correctness
of the m-LPA∗. (b) Comparison of vertex expansions for both LPA∗ and
m-LPA∗. The blue curve and the red curve denote the number of vertex
expansions for these two methods, respectively.

behind such an approach is that for many real-time path-finding
applications, the complete path is not needed. Knowing the first
few moves of a valid path often suffices, allowing a mobile
agent to start moving in the right direction, even before the
whole path has been computed. Using this point of view, the
authors of [26] derived a clustering algorithm that groups–when
appropriate–neighboring nodes together to pre-process the grid
and build a higher level graph (repeatedly if necessary) at
multiple levels. The suboptimal path is found by searching
at the top level first and then via recursively planning more
detailed paths at the lower levels. Cached solutions of paths are
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often reused in the hierarchy, so a tradeoff can be made between
memory and computation. Enhancements of the original HPA∗

are provided in [27].
At first glance, HPA∗ bears a strong resemblance with

m-LPA∗, in the sense that they both construct a hierarchical
decomposition of the environment. However, beamlet-like con-
nectivity is absent in [26], [27] and the vertices of the abstract
graph are just a subset of the original gridded map. Further-
more, at least two more significant differences exist compared
with our work: first, the HPA∗ seeks an approximate solution
fast, while the m-LPA∗ (and the m-A∗) will find the exact,
optimal solution to the shortest path problem. As mentioned
above, HPA∗ was designed with computer games in mind,
where only the initial few steps of the shortest path matters.
This explains why the inexact solution is not a concern in
HPA∗. Instead, m-LPA∗ is designed when the exact shortest
path needs to be found. Second, there are significant differences
in the algorithmic design as well. For example, m-LPA∗ refines
the gridworld into the finest resolution near the source and
destination, whereas HPA∗ does not. Handling many scales in
HPA∗ becomes difficult. The numerical examples in [26] use at
most three levels. On the other hand, m-LPA∗ uses log n scales.
The m-LPA∗ adopts a “bottom-up” fusion algorithm to organize
pre-computed information. This is not present in HPA∗ either.

VIII. CONCLUSION

In this paper, we have presented a novel extension of the
well-known Lifelong Planning A∗ (LPA∗) algorithm based on
a multiscale decomposition of the environment. Our algorithm
may be viewed as an extension of both the classical LPA∗

algorithm and the recently proposed multiscale A∗ (m-A∗)
algorithm. The bottom-up fusion algorithm of m-A∗ is used as a
multiscale strategy to preprocess the information at multiple
scales and construct the beamlet graph. The proposed multi-
scale LPA∗ algorithm (m-LPA∗) provides a significant reduc-
tion in terms of vertex expansions over the original LPA∗

algorithm at the worst case. Since the implementation of LPA∗

is based on a Fibonacci heap data structure for maintaining the
priority queue, the vertex re-expansion dominates computa-
tions, which means that a significant reduction in terms of
vertex re-expansions will result in a significant reduction in
terms of computational time. These insights are confirmed by
our numerical examples. Extensions of the proposed multiscale
algorithm that adapts to a moving source, as well as extensions
to higher dimensions are possible, and are currently under
investigation.
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