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Abstract	 It is a well known fact that a symmetric spacecraft with two control torques supplied by gas
jet actuators is not controllable� if the two control torques are along axes that span the two�dimensional
plane orthogonal to the axis of symmetry� However� feedback control laws can be derived for a restricted
problem corresponding to attitude stabilization about the symmetry axis� In this con�guration� the �nal
state of the system is a uniform revolute motion about the symmetry axis� The purpose of this paper is
to present a new methodology for constructing feedback control laws for this problem� based on a new
formulation for the attitude kinematics�
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�� Introduction

The problem of stabilization of a rigid body has recently received renewed attention in the
literature� Most recent results are concerned� however� with the problem of the stabilization of
the angular velocities ��� �� �� �� �� �� ��� 	
�� although a few important results have also been
derived for the more di�cult problem of complete attitude stabilization �
� ��� ���� Moreover�
the majority of the results in the literature are for the case of rigid body stabilization using
three independent control torques� On the contrary� the problem of attitude stabilization with
less than three independent control torques has only recently been dealt with �
� ��� ����

A complete mathematical description of the attitude stabilization problem was �rst given by
Crouch ����� where he provided necessary and su�cient conditions for controllability of a rigid
body in the case of one� two� or three independent acting torques� Byrnes and Isidori in �
�
showed that a rigid spacecraft controlled by two pairs �couples� of gas jet actuators cannot be
asymptotically stabilized to an equilibrium using a continuously di�erentiable� i�e� C�� feedback
control law� In ���� the problem of attitude stabilization of a symmetric spacecraft was treated�
using control torques supplied by two pairs of gas jet actuators about axes spanning a two
dimensional plane orthogonal to the axis of symmetry� The complete dynamics of the spacecraft
system fail to be controllable or even accessible in these cases� thus the methodologies of �
�
and ���� are not applicable� However� the spacecraft dynamics is strongly accessible and small
time locally controllable in a restricted sense� namely when the spin rate remains zero� It is
shown in ���� that the restricted �non�spinning spacecraft� dynamics cannot be asymptotically
stabilized using smooth C� feedback� A nonsmooth control strategy was also developed in ���� for
the restricted spacecraft dynamics which achieves arbitrary reorientation of the spacecraft� This
nonsmooth control law is based on previous results on stabilization of nonholonomic mechanical
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systems ����

In this paper the problem of attitude stabilization of a rigid body �spacecraft� is revisited�
Speci�cally� we consider the stabilization of a symmetric spacecraft about its axis of symmetry
using two control torques supplied by a pair of gas jets about axes spanning a two�dimensional
plane orthogonal to the axis of symmetry� Without loss of generality� we can assume that
the torques act along the principal axes� We derive globally asymptotically stabilizing �GAS�
and globally exponentially stabilizing �GES� feedback controls using the new formulation of
the kinematic equations developed in �		�� The �nal con�guration corresponds to spin�axis
stabilization� i�e�� to a uniform revolute motion about the axis of symmetry� This is of prime
practical importance� since spin stabilization is often utilized during deployment and station�
keeping of modern satellites in orbit�

The control laws achieve global stabilization of the complete spacecraft dynamics to a circular
attractor rather than to an isolated equilibrium� Feedback stabilization on reduced equilibrium
manifolds or about attractors has received attention recently� since it appears to be an important
extension of stabilization about an equilibrium� yielding bounded trajectories �
�� A major
purpose of this paper is also to illustrate the novel new formulation of the kinematics used here�
which promises to be extremely useful in the design of control laws for problems in rigid body
attitude dynamics�

�� System Dynamics and Kinematics

���� Euler�s Equations of Motion

Let ��� ��� �� denote the angular velocity components along a body��xed reference frame
located at the center of mass and aligned along the principal axes of a rotating rigid body�
The dynamics of the rotational motion of a rigid body are described by the celebrated Euler�s
equations� For a symmetric body �I� � I��� subject to two control torques along the principal
axes perpendicular to the symmetry axis� they take the form

��� � a����� � u� ��a�

��� � a����� � u� ��b�

��� � 
 ��c�

where a�
�
� �I� � I���I�� a�

�
� �I� � I���I�� u�

�
� M��I� and u�

�
� M��I�� Here M��M� are the

acting torques and I�� I�� I� denote the principal moments of inertia� Introducing the complex

variables �
�
� �� � i �� and u

�
� u� � i u�� we rewrite ��a����b� in the compact form

�� � �i a���
� � u �	�

where ��
 � ���
� and dot represents di�erentiation with respect to time� A complete for�
mulation of the attitude problem requires the description of the kinematics� in addition to the
dynamics introduced here� In contrast to the dynamics formalism� there is more than one way
to describe the kinematics of a rotating body� In the next section we give a brief overview of
the attitude kinematics question and we derive a new formulation for describing the kinematics
of a rotating body�
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���� Kinematics

The kinematic equations relate the components of the angular velocity vector with the rates of
a set of parameters� that describe the relative orientation of two reference frames �commonly the
inertial and the body��xed frames�� Any two reference frames are related by a rotation matrix R�
The set of all such matrices form what is commonly known as the �three�dimensional� rotation
group� consisting of all matrices which are orthogonal and have determinant ��� denoted by
SO���� That is� SO��� is the subgroup of all invertible � � � matrices� de�ned by SO��� �
fR � Gl��� IR� � RRt � I� detR � ��g� where Gl�n� IR� is the general linear group of all
n � n invertible matrices with real entries� Henceforth� we will refer to SO��� simply as the
rotation group� In fact� SO��� carries an inherent smooth manifold structure� and thus� forms
a �continuous� Lie group� The attitude history of the moving reference frame with respect
to the constant �inertial� reference frame can therefore be described by a curve traced by the
corresponding rotation R�t� � SO���� with SO��� taken with its manifold structure� The
di�erential equation satis�ed while R�t� is moving along this trajectory is given by Poisson�s
system of equations

�R � S���� ��� ���R ���

where S���� ��� ��� is the skew�symmetric matrix

S���� ��� ���
�
�

�
��


 �� ���
��� 
 ��
�� ��� 


�
��

There is more than one way to parameterize the rotation group� i�e�� to specify a set of parameters
such that every element R � SO��� is uniquely and unambiguously determined �	��� The
commonly used three�dimensional parameterization of the rotation group leads to the familiar
Eulerian angle formulation of the kinematics of a rotating rigid body�
Introducing� for example� the three�dimensional parameterization of SO���� based on a ��	��

Eulerian angle sequence ����� one has that the rotation matrix R � R��� �� �� is given by

R �

�
��

c�c� s�c� �s�
�s�c�� c�s�s� c�c�� s�s�s� c�s�

s�s� � c�s�c� �c�s�� s�s�c� c�c�

�
�� ���

where c and s denote cos and sin� respectively� The associated kinematic equations are

�� � �� � ��� sin� � �� cos�� tan � ��a�
�� � �� cos�� �� sin � ��b�
�� � ��� sin �� �� cos�� sec � ��c�

Using this parameterization of SO���� the orientation of the local body��xed reference frame
with respect to the inertial reference frame is found by �rst rotating the body about its ��axis
through an angle �� then rotating about its 	�axis by an angle � and �nally rotating about its ��
axis by an angle �� With this choice of Eulerian angles� � and � determine the orientation of the
local body��xed ��axis �the symmetry axis� with respect to the inertial ��axis� and � determines
the relative rotation about this axis ����� The manifold SO��� is an imbedded submanifold
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of IR��� of dimension three� and the Eulerian angles provide a local coordinate system for this
submanifold� when considered as taking values from IR�� In the present analysis we will also often
consider the Eulerian angles as taking values from an appropriate submanifold of S�� S�� S��
since we don�t want to distinguish between orientations corresponding to angles that di�er by an
integer multiple of 	�� Another parametrization of SO��� �in terms of quaternions� is provided
by SU�	�� the unitary group of complex 	� 	 matrices with unit determinant� which also gives
the double �universal� covering of SO���� In the subsequent discussion� and for the purpose of
exposition� we will restrict ourselves to the Eulerian angle parameterization� although any other
parameterization of SO��� is equally valid�

�� Alternative Formulation of the Kinematics

In this section we present a reformulation of the kinematics that will simplify the ensuing
analysis signi�cantly� This new formulation is based on an idea by Darboux ��	�� and was initially
applied to the problem of attitude dynamics in �		�� although it appears that Leimanis ���� was
also aware of this possibility� Let �a� b� c�t denote any column vector of the matrix representation
of R having entries rij� for i� j � �� 	� � �where superscript t denotes the transpose�� That is�
�a� b� c�t � �r�j� r�j� r�j�

t� for some j � �� 	� �� Clearly from ��� one has that
�
��

�a
�b
�c

�
�� �

�
��


 �� ���
��� 
 ��
�� ��� 


�
��

�
��
a
b

c

�
�� ���

Note that these three parameters a� b� c do not provide another three�dimensional parameteri�
zation of the rotation group� as one might expect� In order to do this� one needs at least two
columns of the matrix R �the third column being just the cross product of the �rst two�� This
choice would lead to a global� nonsingular� six�dimensional parameterization of SO��� �	��� Nev�
ertheless� the entries of each column of R denote the direction cosines of the corresponding local
body��xed axis with respect to the inertial axes� and this information will be very useful in the
sequel�
Because of the constraint a� � b� � c� � � between the elements of each column of R we

can eliminate one of the three parameters a� b� c� to get a system of two �rst order di�erential
equations� The most natural and elegant way to reduce the third order system ��� to a second
order system is by the use of stereographic projection ��
�� That is� if we let a� b� and c represent
coordinates on the unit sphere S� � f�x�� x�� x�� � IR� � x���x���x�� � �g in IR�� then� for
�a� b� c� � S�� the stereographic projection � � S�nf�
� 
����g� C de�ned by

w � ��a� b� c�
�
�

b� ia

� � c
�

�� c

b� ia
���

leads to the following di�erential equation for the complex quantity w

�w � �i ��w �
�

	
�

��

	
w� ���

where � � �� � i �� and the bar denotes complex conjugate� Equation ��� is a scalar Riccati
equation with time�varying coe�cients� The real and imaginary parts of w � w� � i w� satisfy
the di�erential equations

�w� � ��w� � ��w�w� �
��
	
�� � w�

� � w�
��
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�w� � ���w� � ��w�w� �
��
	
�� � w�

� � w�
��

In ��� we have chosen the base point �pole� of the projection to be the point �
� 
���� � S��
Recall that the stereographic projection � establishes a one�to�one correspondence between the

unit sphere S� and the extended complex plane C�
�
� C � f�g� It can be easily veri�ed that

the inverse map ��� � C� S�nf�
� 
����g� w �� �a� b� c� is given by

a �
i �w� �w�

jwj� � �
� b �

w � �w

jwj� � �
� c � �

jwj� � �

jwj� � �

and can be used to �nd a� b� c once w is known� Here j � j denotes the absolute value of a complex
number� i�e�� z�z � jzj�� z � C�
In order to establish the relationship between w and the particular parametrization of SO���

used� notice that we can� in principle� identify �a� b� c�t with any column vector of the rotation
matrix R� where R can be expressed in terms of any of the parameterizations of SO���� By
nulling the appropriate elements of a given column of the rotation matrix we can align the
corresponding body��xed axis with any inertial axis� If� for example� one needs to stabilize the
�rd�body axis to a uniform rotation about the jth inertial axis �j � �� 	� ��� one su�ces to make
r�j � r�j � 
 and r�j � �� This gives a great deal of �exibility in the analysis and design of
control laws for attitude stabilization�
In the case of the three�dimensional ��	�� Eulerian angle parameterization the matrix R �

R��� �� �� is given by ���� Since we are interested in the stabilization of the symmetry axis
�the body ��axis� we identify �a� b� c�t with the third column of R� establishing the following
correspondence between w and ��� ��

w �
sin� cos � � i sin �

� � cos� cos �

or in terms of real and imaginary parts of w�

w� �
sin� cos �

� � cos� cos �
� w� �

sin �

� � cos� cos �
�
�

�� Feedback Control Strategy

In this section we present a methodology for constructing feedback control laws for the system
of equations ��� and ��a����b�� which depends on the alternative formulation of the kinematic
equations presented in Section �� Asymptotic stability of the closed�loop system is easily demon�
strated via Lyapunov�s direct method�
It is clear from equation ��c� that no control can a�ect the value of the component of the

angular velocity �� along the symmetry axis� In fact� the value of �� remains constant for
all t � 
� As already mentioned� the complete system of equations ������� is not controllable�
Therefore� if the initial condition ���
� is not zero� no control can drive the system to the origin
��������� ��� � ���
�� Of course� if ���
� 	� 
 then it is meaningless to require � � 
�
but we may require a control law such that �� � �� � � � � � 
� From equation ��� notice
that w � 
 �with the previous identi�cation with the third column of the rotation matrix�
implies that the body��xed ��axis is aligned with the inertial ��axis� However� we have no a
priori information about the relative rotation of the body about its symmetry axis� In fact�
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the stabilizing control laws for the four equations involving ��� ��� �� � induce a spinning motion
about the symmetry axis� i�e�� spin�axis stabilization which is of important practical interest�
The closed�loop trajectories asymptotically approach the set

N � f���� ��� ��� �� �� �� � IR� � S� � �� � �� � � � � � 
g

That is� stabilization is achieved about the one�dimensional submanifold � � � � 
 of S� �
the unit sphere in IR�� On this submanifold� the angle � can have any value� The problem is
closely related with the de�nition of �stabilization about an attractor� of Byrnes and Isidori
�
�� Recalling that � is an ignorable variable for the system ���� in the subsequent analysis we
tacitly discard the equation for ��
Using �	� and the kinematic equation ���� the attitude equations for a symmetric body can

be written as

�� � �i a���
� � u ��
a�

�w � �i ��
w �
�

	
�

��

	
w� ��
b�

This system of di�erential equations is in one�to�one correspondence with the system of equations
��a����b� and ��a����b�� The system of equations ��
� falls within the general class of nonlinear
systems of the form

�y � h�y� � u ���a�

�x � f�x� y� ���b�

where h � IRm � IRm and f � IRn � IRm � IRn are smooth vector �elds� with f�
� 
� � 
�
Equations ���� represent a system in cascade form and it is a well�known result �	� ��� �
� that
for systems of this form� if the subsystem �x � f�x� y� is smoothly stabilizable �regarding y as
a control�like variable�� then the extended system ���� is also smoothly stabilizable� In other
words� if in ���� the subsystem ���b� is smoothly stabilizable� then adding an integrator �up
to the new control u � �h�y� � v� if necessary� does not change this property� We will use
this result in order to derive asymptotically stabilizing control laws for the system ��
�� In the
sequel� j � j denotes the norm �magnitude� of a complex number and jj � jj denotes the norm of
a vector in C�C de�ned by jj�z�� z��jj � jz�j� jz�j for z�� z� � C�
We have the following theorems concerning asymptotic stabilization of the system ��
��

Theorem ���� The choice of the feedback control law

� � ��w ��	�

with � 	 
 globally exponentially stabilizes ���b� with rate of decay ��	�

Proof� With the choice of feedback ��	� the closed�loop system becomes

�w � �i ��
w �
�

	
�� � jwj��w ����

The positive de�nite function V � C� IR de�ned by V �w� � w �w � jwj� is a Lyapunov function
for ����� Indeed� di�erentiating along the closed�loop trajectories one can easily verify that

�V �w� � ���� � jwj��jwj� 
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Since �V �w� � 
 if and only if w � 
� the closed�loop system ���� is asymptotically stable� Global
asymptotic stability follows from the facts that these statements hold for all w � C and V is
radially unbounded� i�e�� V �w� � �� for jwj � �� Notice that since �V 
 ��V one� in fact�
guarantees exponential stability for the closed loop system with rate of decay ��	� �

The control law for ��
� in terms of u is given by the next theorem�

Theorem ���� The choice of the feedback control law

u � i a���
� � ��i ��
w�
�

	
�
��

	
w��� 
�� � �w� ����

with � 	 
 and 
 	 
� globally asymptotically stabilizes system �����

Proof� With this choice of feedback� the closed�loop system becomes

�� � ����i ��
w �
�

	
�

��

	
w��� 
�� � �w� ���a�

�w � �i ��
w �
�

	
�

��

	
w� ���b�

The set E � f���w� � C�C � � � �w � 
g is a positively invariant set and a global asymptotic

attractor for ����� To see this� let z
�
� � � �w� Then the system equations become

�z � �
z ���a�

�w � �i ��
w �
�

	
w �

z

	
�

�

	
wjwj��

�z

	
w� ���b�

LaSalle�s theorem guarantees the global asymptotic stability of ����� if the trajectories of �����
or equivalently of ���� remain bounded ����� To this end� let V be the positive de�nite function
of Theorem ���� i�e�� let V �w� � jwj�� We will show that V is nonincreasing outside a bounded
set that contains the origin� in particular� we claim that �V �w� 
 
 on the set D � fw �C �
jwj � jz�
�j��g� This will imply boundedness of solutions of w� hence of ����� Di�erentiating
along trajectories of ���b� one obtains

�V �w� � ��jwj� � �jwj� � Re�z �w��� � jwj��


 ��jwj� � �jwj� � jzjjwj��� jwj��

where Re��� denotes the real part of a complex number and where we made use of the fact
that Re�z� 
 jzj for all z � C� From ���a� one has that z�t� � z�
�e��t and in particular
jz�t�j 
 jz�
�j� Thus�

�V �w� 
 ��jwj�� �jwj� � jz�
�jjwj��� jwj��

� ��� � jwj��jwj��jwj � jz�
�j�

For jwj � jz�
�j�� one has �V �w� 
 
 as claimed� This completes the proof� �

The argument of the previous theorem is equivalent to the results of Sontag ���� �
� about
global asymptotic stability of interconnected systems of the form ����� Indeed� subsystem ���b�
with z � 
 is GAS according to Theorem ���� while subsystem ���a� is obviously also GAS�
Boundedness of solutions of ���b� imply that this subsystem satis�es the Convergent Input
Bounded State �CIBS� condition� according to the terminology of ����� hence also the Convergent
Input Convergent State �CICS� condition� The global asymptotic stability of the whole system
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is then a consequence of a cascade connection of a GAS with a CICS system� In general� for
cascade systems of the form ���� it su�ces to show that the control�independent subsystem ���b�
satis�es some kind of existence of solutions property for small inputs �e�g� a global Lipschitz
condition as in �	��� or an Input to State Stability �ISS� condition as in ��
�� and then make the
control�driven system GAS�
The control law of Theorem ��	 is not the only choice of stabilizing feedback for the system

��
�� The especially simple structure of equations ��
� allows the derivation of several other
globally asymptotically stabilizing control laws�

Theorem ���� The choice of the feedback control law

u � i a���
� � ���i ��
w �
�

	
�

��

	
w��� 
�� � �w�� w�� � jwj�� ����

with � 	 
 and 
 	 
� globally exponentially stabilizes system ���� with rate of decay ��	� where
� � minf	
� �g�

Proof� The positive de�nite function V � C�C� IR de�ned by V ���w� � jwj� � j� � �wj��	
is a Lyapunov function for the closed loop system� Indeed� by di�erentiating along the closed
loop trajectories of the system� one can easily verify that

�V ���w� � �
j� � �wj� � �jwj��� � jwj��

Since �V ���w� 
 
 for all ���w� � C�Cnf�
� 
�g� the closed loop system is asymptotically
stable� Global asymptotic stability follows from the facts that the previous statements hold for
all ���w� � C�C and V is radially unbounded� i�e�� V ���w�� �� for jj���w�jj � �� In fact�
since �V 
 ��V � where � � minf	
� �g the closed loop system is globally exponentially stable
with rate of decay ��	� �

Surprising enough� there is also a linear feedback control which globally asymptotically sta�
bilizes system ��
� �we owe this observation to Prof� M� Corless�� This is the result of the
following theorem�

Theorem ���� The choice of the linear feedback control law

u � ���� � ��w ����

with �� 	 
 and �� 	 
� globally asymptotically stabilizes the system �����

Proof� With this choice of feedback� the closed�loop system becomes

�� � ���� � ��w ��
a�

�w � �i ��
w �
�

	
�

��

	
w� ��
b�

Choose the following positive de�nite function V � C�C� IR

V ���w� �
�

	
j�j� � �� ln�� � jwj�� �	
�

Di�erentiating along trajectories of ��
� one has that

�V ���w� � ���j�j
� 
 
 �	��
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According to LaSalle�s theorem� the trajectories will approach the largest invariant subset of
the set D � f���w� � C � C � �V ���w� � 
g� If however �V ���w� � 
� then � � �� � 
 and
from ��
a� w � 
� Therefore� the only trajectory that maintains �V � 
 is the zero trajectory
� � w � 
� The system ��
� is therefore asymptotically stable� Since V is radially unbounded�
the system is� in fact� globally asymptotically stable� �

Corollary ���� The choice of the feedback control law

u � ���� � ���� � jwj��w �		�

with �� 	 
 and �� 	 
� globally asymptotically stabilizes the system �����

One word of caution should be mentioned here� as far as our terminology of �global� stabiliza�
tion is concerned� Although the previous control laws provide global asymptotic stability of the
system in ���w� coordinates� our main interest in practice is the con�guration of the system in
terms of Eulerian angles� which provide a physical description of the orientation� It is clear that
any control law claiming global asymptotic stability in ���w� coordinates has to exclude initial
conditions that correspond to w � � i�e� with �a� b� c� � �
� 
���� in ���� However� as a result
of the stabilization of the closed�loop system we have boundedness of the solutions of w for all
t 	 
� and thus we avoid the singular orientation corresponding to direction cosines �
� 
���� in
���� Therefore� global stability here implies stability from all initial conditions except the initial
condition corresponding to this singular �upside�down� con�guration along the body symmetry
axis� The easiest way to remedy this problem is simply to turn the thrusters on to move �even
in�nitesimally� away from this singular orientation and then use the results of this section� For
all other initial conditions� the closed�loop trajectories converge to the origin�

As a last comment� we note that Theorems ������� and Corollary ��� give asymptotically sta�
bilizing control laws for the ���� ��� �� �� subsystem of equations� Stabilization of this subsystem
corresponds� in the complete system� to asymptotic stabilization about the axis of symmetry�
The problem of also stabilizing � � 
 �assuming of course that ���
� � 
� is more di�cult� In
fact� in ���� it was shown that any stabilizing feedback control law of the complete system� i�e��
for ���� ��� �� �� ��� must be necessarily nonsmooth� The stabilization of the complete system
������� with �� � 
 using the kinematic equation ��� is the subject of a forthcoming paper �	���
The control laws thus derived are especially simple and elegant�

�� Conclusions

The problem of stabilization of a symmetric spacecraft with two gas jet actuators aligned
about the principal axes of equal moments of inertia is investigated� Using a new formulation for
the kinematic equations� asymptotically stabilizing controls have been derived for the restricted
problem of spin�axis stabilization� The asymptotic stability of the closed�loop system is proved
by construction of appropriate Lyapunov functions� The stabilizing control laws thus derived
are especially simple and elegant� Moreover� since the control laws are given directly in terms
of the elements of the rotation matrix� they do not depend on the particular choice of the
Eulerian angle set used to describe the attitude orientation in inertial space �or the particular
parameterization of the rotation group� for that matter�� This provides a great deal of freedom
in the analysis and design of attitude control laws�
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