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Abstract: Tt 1s a well known fact that a symmetric spacecraft with two control torques supplied by gas
jet actuators is not controllable, if the two control torques are along axes that span the two-dimensional
plane orthogonal to the axis of symmetry. However, feedback control laws can be derived for a restricted
problem corresponding to attitude stabilization about the symmetry axis. In this configuration, the final
state of the system is a uniform revolute motion about the symmetry axis. The purpose of this paper 1s
to present a new methodology for constructing feedback control laws for this problem, based on a new
formulation for the attitude kinematics.
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1. Introduction

The problem of stabilization of a rigid body has recently received renewed attention in the
literature. Most recent results are concerned, however, with the problem of the stabilization of
the angular velocities [1, 3, 4, 5, 6, 8, 16, 20], although a few important results have also been
derived for the more difficult problem of complete attitude stabilization [9, 11, 14]. Moreover,
the majority of the results in the literature are for the case of rigid body stabilization using
three independent control torques. On the contrary, the problem of attitude stabilization with
less than three independent control torques has only recently been dealt with [9, 11, 14].

A complete mathematical description of the attitude stabilization problem was first given by
Crouch [11], where he provided necessary and sufficient conditions for controllability of a rigid
body in the case of one, two, or three independent acting torques. Byrnes and Isidori in [9]
showed that a rigid spacecraft controlled by two pairs (couples) of gas jet actuators cannot be
asymptotically stabilized to an equilibrium using a continuously differentiable, i.e. C', feedback
control law. In [14] the problem of attitude stabilization of a symmetric spacecraft was treated,
using control torques supplied by two pairs of gas jet actuators about axes spanning a two
dimensional plane orthogonal to the axis of symmetry. The complete dynamics of the spacecraft
system fail to be controllable or even accessible in these cases, thus the methodologies of [9]
and [11] are not applicable. However, the spacecraft dynamics is strongly accessible and small
time locally controllable in a restricted sense, namely when the spin rate remains zero. It is
shown in [14] that the restricted (non-spinning spacecraft) dynamics cannot be asymptotically
stabilized using smooth C' feedback. A nonsmooth control strategy was also developed in [14] for
the restricted spacecraft dynamics which achieves arbitrary reorientation of the spacecraft. This
nonsmooth control law is based on previous results on stabilization of nonholonomic mechanical
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systems [7].

In this paper the problem of attitude stabilization of a rigid body (spacecraft) is revisited.
Specifically, we consider the stabilization of a symmetric spacecraft about its axis of symmetry
using two control torques supplied by a pair of gas jets about axes spanning a two-dimensional
plane orthogonal to the axis of symmetry. Without loss of generality, we can assume that
the torques act along the principal axes. We derive globally asymptotically stabilizing (GAS)
and globally exponentially stabilizing (GES) feedback controls using the new formulation of
the kinematic equations developed in [22]. The final configuration corresponds to spin-axis
stabilization, i.e., to a uniform revolute motion about the axis of symmetry. This is of prime
practical importance, since spin stabilization is often utilized during deployment and station-
keeping of modern satellites in orbit.

The control laws achieve global stabilization of the complete spacecraft dynamics to a circular
attractor rather than to an isolated equilibrium. Feedback stabilization on reduced equilibrium
manifolds or about attractors has received attention recently, since it appears to be an important
extension of stabilization about an equilibrium, yielding bounded trajectories [9]. A major
purpose of this paper is also to illustrate the novel new formulation of the kinematics used here,
which promises to be extremely useful in the design of control laws for problems in rigid body
attitude dynamics.

2. System Dynamics and Kinematics

2.1.  Fuler’s Equations of Motion

Let wy,ws,ws denote the angular velocity components along a body-fixed reference frame
located at the center of mass and aligned along the principal axes of a rotating rigid body.
The dynamics of the rotational motion of a rigid body are described by the celebrated Fuler’s
equations. For a symmetric body (/1 = I3), subject to two control torques along the principal
axes perpendicular to the symmetry axis, they take the form

wl = Qa1Waws + (751 (1&)
wz = QaWsWw + (15) (1b)
wg =0 (1C)

where a1 2 (Iy = I3)/11, ay 2 (Is — )/I3, uwy 2 My /I and uy 2 My /I;. Here My, My are the
acting torques and Iy, I3, Is denote the principal moments of inertia. Introducing the complex

variables w = wy + twy and uw = uy + @ ug, we rewrite (1a)-(1b) in the compact form
W= —tajwagw + u (2)

where wsg = w3(0) and dot represents differentiation with respect to time. A complete for-
mulation of the attitude problem requires the description of the kinematics, in addition to the
dynamics introduced here. In contrast to the dynamics formalism, there is more than one way
to describe the kinematics of a rotating body. In the next section we give a brief overview of
the attitude kinematics question and we derive a new formulation for describing the kinematics
of a rotating body.
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2.2, Kinematics

The kinematic equations relate the components of the angular velocity vector with the rates of
a set of parameters, that describe the relative orientation of two reference frames (commonly the
inertial and the body-fixed frames). Any two reference frames are related by a rotation matrix R.
The set of all such matrices form what is commonly known as the (three-dimensional) rotation
group, consisting of all matrices which are orthogonal and have determinant 41, denoted by
S0(3). That is, SO(3) is the subgroup of all invertible 3 X 3 matrices, defined by SO(3) =
{R € GI(3,R) : RR" = I, detR = +1}, where GI(n,IR) is the general linear group of all
n X n invertible matrices with real entries. Henceforth, we will refer to SO(3) simply as the
rotation group. In fact, SO(3) carries an inherent smooth manifold structure, and thus, forms
a (continuous) Lie group. The attitude history of the moving reference frame with respect
to the constant (inertial) reference frame can therefore be described by a curve traced by the
corresponding rotation R(t) € SO(3), with SO(3) taken with its manifold structure. The
differential equation satisfied while R(¢) is moving along this trajectory is given by Poisson’s
system of equations

R = S(wl,wg,wg)R (3)
where S(w1,ws,ws) is the skew-symmetric matrix

) é 0 w3 —W2

S(wi,ws,ws —ws3 0 w

Wy —wW 0

There is more than one way to parameterize the rotation group, i.e., to specify a set of parameters
such that every element R € SO(3) is uniquely and unambiguously determined [21]. The
commonly used three-dimensional parameterization of the rotation group leads to the familiar
Eulerian angle formulation of the kinematics of a rotating rigid body.

Introducing, for example, the three-dimensional parameterization of SO(3), based on a 3-2-1
FEulerian angle sequence [13], one has that the rotation matrix R = R(1, 6, ¢) is given by

cpcl sipch —sb
R = | —stped + cipshsp ciped + sipsfsd  chso (4)
sthsp + cpsbed  —cipse + ssbed cle

where ¢ and s denote cos and sin, respectively. The associated kinematic equations are

é = wi+ (wgsin ¢ 4+ w3 cos @) tan § (5a)
f = Wy COS P — w3 sin ¢ (5b)
Y = (wysin ¢+ wscos¢)sech (5¢)

Using this parameterization of SO(3), the orientation of the local body-fixed reference frame
with respect to the inertial reference frame is found by first rotating the body about its 3-axis
through an angle 1, then rotating about its 2-axis by an angle # and finally rotating about its 1-
axis by an angle ¢. With this choice of Fulerian angles, ¢ and # determine the orientation of the
local body-fixed 3-axis (the symmetry axis) with respect to the inertial 3-axis, and v determines
the relative rotation about this axis [13]. The manifold SO(3) is an imbedded submanifold
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of IR**? of dimension three, and the Fulerian angles provide a local coordinate system for this
submanifold, when considered as taking values from IR>. In the present analysis we will also often
consider the Eulerian angles as taking values from an appropriate submanifold of S1 x §1 x §1,
since we don’t want to distinguish between orientations corresponding to angles that differ by an
integer multiple of 27. Another parametrization of SO(3) (in terms of quaternions) is provided
by SU(2), the unitary group of complex 2 x 2 matrices with unit determinant, which also gives
the double (universal) covering of SO(3). In the subsequent discussion, and for the purpose of
exposition, we will restrict ourselves to the Fulerian angle parameterization, although any other
parameterization of SO(3) is equally valid.

3. Alternative Formulation of the Kinematics

In this section we present a reformulation of the kinematics that will simplify the ensuing
analysis significantly. This new formulation is based on an idea by Darboux [12], and was initially
applied to the problem of attitude dynamics in [22], although it appears that Leimanis [15] was
also aware of this possibility. Let [a, b, c]' denote any column vector of the matrix representation
of R having entries r;;, for ¢,7 = 1,2,3 (where superscript ¢ denotes the transpose). That is,
[a,b,c]" = [r1;,re), 734", for some j = 1,2,3. Clearly from (3) one has that

a 0 w3 —wy a
= —W3 0 W b (6)
Wy  —wi 0 c

Note that these three parameters a,b, ¢ do not provide another three-dimensional parameteri-
zation of the rotation group, as one might expect. In order to do this, one needs at least two
columns of the matrix R (the third column being just the cross product of the first two). This
choice would lead to a global, nonsingular, six-dimensional parameterization of SO(3) [21]. Nev-
ertheless, the entries of each column of R denote the direction cosines of the corresponding local
body-fixed axis with respect to the inertial axes, and this information will be very useful in the
sequel.

Because of the constraint a® + 6% + ¢ = 1 between the elements of each column of R we
can eliminate one of the three parameters a, b, ¢, to get a system of two first order differential
equations. The most natural and elegant way to reduce the third order system (6) to a second
order system is by the use of sterecographic projection [10]. That is, if we let a, b, and ¢ represent
coordinates on the unit sphere $% = {(z1,22,73) € R? : 23 + 22+ 22 = 1} in R?, then, for
(a,b,c) € 52, the stereographic projection o : $2\{(0,0,—1)} — C defined by

b—a 1—c¢
w:a(a,b,c)é TTe¢ = bria (7)

leads to the following differential equation for the complex quantity w

w = —iwgw—l—g—l—ng (8)
2 2
where w = wy + twy and the bar denotes complex conjugate. Equation (8) is a scalar Riccati
equation with time-varying coeflicients. The real and imaginary parts of w = wy 4 ¢ wo satisfy
the differential equations

. w
Wy = wawy +wawiwy + 71(1 + w? — w%)
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. w
Wy = —wawy +wiwiwy + 72(1 + wi — w%)

In (7) we have chosen the base point (pole) of the projection to be the point (0,0,—1) € S2.
Recall that the stereographic projection o establishes a one-to-one correspondence between the
unit sphere S$? and the extended complex plane C, 2 cu {o0}. It can be easily verified that
the inverse map o~ ! : C — S2\{(0,0,-1)}, w — (a, b, c) is given by

i(w—w) w4 w |w]? — 1
O = —5—7, =5 = —T—5——
[w]? +1 [w]? +1 [w]? +1
and can be used to find a, b, c once w is known. Here | - | denotes the absolute value of a complex

number, i.e., 2z = |2]%, z € C.

In order to establish the relationship between w and the particular parametrization of SO(3)
used, notice that we can, in principle, identify [a, b, ¢]' with any column vector of the rotation
matrix R, where R can be expressed in terms of any of the parameterizations of SO(3). By
nulling the appropriate elements of a given column of the rotation matrix we can align the
corresponding body-fixed axis with any inertial axis. If, for example, one needs to stabilize the
3rd-body axis to a uniform rotation about the jth inertial axis (j = 1,2,3), one suffices to make
r1; = ro; = 0 and r3; = 1. This gives a great deal of flexibility in the analysis and design of
control laws for attitude stabilization.

In the case of the three-dimensional 3-2-1 Eulerian angle parameterization the matrix R =
R(1,0,¢) is given by (4). Since we are interested in the stabilization of the symmetry axis
(the body 3-axis) we identify [a,b,c]" with the third column of R, establishing the following
correspondence between w and (6, ¢)

sin ¢ cos 8 + 1sin 0

1+ cos¢cosb

w =

or in terms of real and imaginary parts of w,

sin ¢ cos 6 sin @
w= """ Wy = —
! 1+ cospcosh’ 2 1+ cos ¢ cos

4. Feedback Control Strategy

In this section we present a methodology for constructing feedback control laws for the system
of equations (1) and (5a)-(5b), which depends on the alternative formulation of the kinematic
equations presented in Section 3. Asymptotic stability of the closed-loop system is easily demon-
strated via Lyapunov’s direct method.

It is clear from equation (1c) that no control can affect the value of the component of the
angular velocity w3 along the symmetry axis. In fact, the value of ws remains constant for
all t > 0. As already mentioned, the complete system of equations (1)-(5) is not controllable.
Therefore, if the initial condition ws(0) is not zero, no control can drive the system to the origin
(wi=wy=w3=¢p=0=1=0). Of course, if w3(0) # 0 then it is meaningless to require ¢ = 0,
but we may require a control law such that wy =w; = ¢ = 0 = 0. From equation (7) notice
that w = 0 (with the previous identification with the third column of the rotation matrix)
implies that the body-fixed 3-axis is aligned with the inertial 3-axis. However, we have no «
priori information about the relative rotation of the body about its symmetry axis. In fact,
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the stabilizing control laws for the four equations involving wy,ws, ¢, 8 induce a spinning motion
about the symmetry axis, i.e., spin-axis stabilization which is of important practical interest.
The closed-loop trajectories asymptotically approach the set

N:{(wlvw27w37¢707¢)€m,3XS?):wl = W2 :¢:0:0}

That is, stabilization is achieved about the one-dimensional submanifold ¢ = § = 0 of §3 —
the unit sphere in IR*. On this submanifold, the angle ) can have any value. The problem is
closely related with the definition of “stabilization about an attractor” of Byrnes and Isidori
[9]. Recalling that 1 is an ignorable variable for the system (5), in the subsequent analysis we
tacitly discard the equation for .

Using (2) and the kinematic equation (8), the attitude equations for a symmetric body can
be written as

w = —itawsw+u (10a)
W = —iwsgw + d + ng (10b)
2 2
This system of differential equations is in one-to-one correspondence with the system of equations
(la)-(1b) and (5a)-(5b). The system of equations (10) falls within the general class of nonlinear

systems of the form

= hy)+u (11a)
= flz,y) (11b)

where A : R — IR”™ and f : R" x R™ — IR™ are smooth vector fields, with f(0,0) = 0.
Equations (11) represent a system in cascade form and it is a well-known result [2, 18, 19] that
for systems of this form, if the subsystem & = f(x,y) is smoothly stabilizable (regarding y as
a control-like variable), then the extended system (11) is also smoothly stabilizable. In other
words, if in (11) the subsystem (11b) is smoothly stabilizable, then adding an integrator (up
to the new control u = —h(y) + v, if necessary) does not change this property. We will use
this result in order to derive asymptotically stabilizing control laws for the system (10). In the
sequel, | - | denotes the norm (magnitude) of a complex number and || - || denotes the norm of
a vector in C x C defined by ||(21, z2)|| = |z1] + |22]| for 21, 23 € C.
We have the following theorems concerning asymptotic stabilization of the system (10).

Theorem 4.1. The choice of the feedback control law

w=—Kw (12)
with k> 0 globally exponentially stabilizes (10b) with rate of decay /2.
Proof. With the choice of feedback (12) the closed-loop system becomes

= —iwsow — 2(1 + |w[?)w (13)

The positive definite function V : C — IR defined by V(w) = ww = |w|? is a Lyapunov function
for (13). Indeed, differentiating along the closed-loop trajectories one can easily verify that

Viw) = —r(1+|wf)w]* <0
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Since V(w) = 0if and only if w = 0, the closed-loop system (13) is asymptotically stable. Global

asymptotic stability follows from the facts that these statements hold for all w € C and V is

radially unbounded, i.e., V(w) — oo, for |w| — oo. Notice that since V < —kV one, in fact,

guarantees exponential stability for the closed loop system with rate of decay x/2. O
The control law for (10) in terms of u is given by the next theorem.

Theorem 4.2. The choice of the feedback control law

U =1 ajwsow + m(iwgow—%— %wz) — o(w + Kw) (14)

with K > 0 and a > 0, globally asymptotically stabilizes system (10).
Proof. With this choice of feedback, the closed-loop system becomes

W o= —k(—twzw + % + %wz) — o(w+ Kw) (15a)
W = —twsw + % + %wz (15b)

The set £ = {(w,w) € CXC :w + kw = 0} is a positively invariant set and a global asymptotic

. A .
attractor for (15). To see this, let 2 = w + kw. Then the system equations become

2 = —az (16a)

W = —iwgow—iw—l— —Ew|w|2—|—§w2 (16b)

z
2 "2 2
LaSalle’s theorem guarantees the global asymptotic stability of (15), if the trajectories of (15),
or equivalently of (16) remain bounded [17]. To this end, let V be the positive definite function
of Theorem 4.1, i.e., let V(w) = |w|?. We will show that V is nonincreasing outside a bounded
set that contains the origin; in particular, we claim that V(w) < 0 on the set D = {weC:
|w| > |2(0)|/x}. This will imply boundedness of solutions of w, hence of (16). Differentiating
along trajectories of (16b) one obtains

V(w) = —rlw* —wlw|* + Re(z@)(1+ |w]?)
< sl = swl* + |2|lw](1+ [w]*)

where Re(.) denotes the real part of a complex number and where we made use of the fact
that Re(z) < |z| for all z € C. From (16a) one has that z(¢) = 2(0)e™®* and in particular
|2(8)] < [2(0)]. Thus,

V(w) < —rlwl’= kol + [2(0)]|w|(1+ |w]*)
—(L+ Jwl*)w|(slw] — |2(0)])

For |w| > |2(0)|/x one has V(w) < 0 as claimed. This completes the proof. 0

The argument of the previous theorem is equivalent to the results of Sontag [18, 19] about
global asymptotic stability of interconnected systems of the form (11). Indeed, subsystem (16b)
with z = 0 is GAS according to Theorem 4.1, while subsystem (16a) is obviously also GAS.
Boundedness of solutions of (16b) imply that this subsystem satisfies the Convergent Input
Bounded State (CIBS) condition, according to the terminology of [18], hence also the Convergent
Input Convergent State (CICS) condition. The global asymptotic stability of the whole system
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is then a consequence of a cascade connection of a GAS with a CICS system. In general, for
cascade systems of the form (11) it suffices to show that the control-independent subsystem (11b)
satisfies some kind of existence of solutions property for small inputs (e.g. a global Lipschitz
condition as in [24], or an Input to State Stability (ISS) condition as in [19]) and then make the
control-driven system GAS.

The control law of Theorem 4.2 is not the only choice of stabilizing feedback for the system
(10). The especially simple structure of equations (10) allows the derivation of several other
globally asymptotically stabilizing control laws.

Theorem 4.3. The choice of the feedback control law

U = 1 ajwsgw — K(—twsow + % + %wQ) — a(w + kw) — w(1 + |w]?) (17)
with k > 0 and a > 0, globally exponentially stabilizes system (10) with rate of decay [3/2, where
8 = min{2a, k}.

Proof. The positive definite function V : CxC — R defined by V(w,w) = |w|* + |w + kw|*/2
is a Lyapunov function for the closed loop system. Indeed, by differentiating along the closed
loop trajectories of the system, one can easily verify that

V(w,w) = —alw + kwl® = klwl(1 + [w]?)

Since V(w,w) < 0 for all (w,w) € CxC\{(0,0)}, the closed loop system is asymptotically
stable. Global asymptotic stability follows from the facts that the previous statements hold for
all (w,w) € CxC and V is radially unbounded, i.e., V(w,w) — oo, for ||(w, w)|| — oco. In fact,
since V < =V, where g = min{2«a, k} the closed loop system is globally exponentially stable
with rate of decay 3/2. O

Surprising enough, there is also a linear feedback control which globally asymptotically sta-
bilizes system (10) (we owe this observation to Prof. M. Corless). This is the result of the
following theorem.

Theorem 4.4. The choice of the linear feedback control law
U= —K1Ww — KW (18)
with k1 > 0 and ry > 0, globally asymptotically stabilizes the system (10).

Proof. With this choice of feedback, the closed-loop system becomes

W= —KWw — Kqw (19a)
W = —iwsgw + % + %wz (19b)

Choose the following positive definite function V : C x C — R
1
Viw,w)= §|w|2—|—/£21n(1—|— |w|?) (20)

Differentiating along trajectories of (19) one has that
V(o w) = —mrfof? <0 (21)
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According to LaSalle’s theorem, the trajectories will approach the largest invariant subset of
the set D = {(w,w) € C x C : V(w,w) = 0}. If however V(w, w) =0, then w = & = 0 and
from (19a) w = 0. Therefore, the only trajectory that maintains V = 0 is the zero trajectory
w =w = 0. The system (19) is therefore asymptotically stable. Since V' is radially unbounded,
the system is, in fact, globally asymptotically stable. a

Corollary 4.1. The choice of the feedback control law
U= —kriw — k(14 |w|H)w (22)
with k1 > 0 and ry > 0, globally asymptotically stabilizes the system (10).

One word of caution should be mentioned here, as far as our terminology of “global” stabiliza-
tion is concerned. Although the previous control laws provide global asymptotic stability of the
system in (w,w) coordinates, our main interest in practice is the configuration of the system in
terms of Fulerian angles, which provide a physical description of the orientation. It is clear that
any control law claiming global asymptotic stability in (w,w) coordinates has to exclude initial
conditions that correspond to w = oo i.e. with (a,b,¢) = (0,0,—1)in (7). However, as a result
of the stabilization of the closed-loop system we have boundedness of the solutions of w for all
t > 0, and thus we avoid the singular orientation corresponding to direction cosines (0,0, —1)in
(7). Therefore, global stability here implies stability from all initial conditions except the initial
condition corresponding to this singular “upside-down” configuration along the body symmetry
axis. The easiest way to remedy this problem is simply to turn the thrusters on to move (even
infinitesimally) away from this singular orientation and then use the results of this section. For
all other initial conditions, the closed-loop trajectories converge to the origin.

As a last comment, we note that Theorems 4.1-4.4 and Corollary 4.1 give asymptotically sta-
bilizing control laws for the (wy,ws, ¢, 8) subsystem of equations. Stabilization of this subsystem
corresponds, in the complete system, to asymptotic stabilization about the axis of symmetry.
The problem of also stabilizing ¢ = 0 (assuming of course that w3(0) = 0) is more difficult. In
fact, in [14] it was shown that any stabilizing feedback control law of the complete system, i.e.,
for (w1, w3, ¢, 8,1), must be necessarily nonsmooth. The stabilization of the complete system
(1)-(5) with w3 = 0 using the kinematic equation (8) is the subject of a forthcoming paper [23].
The control laws thus derived are especially simple and elegant.

5. Conclusions

The problem of stabilization of a symmetric spacecraft with two gas jet actuators aligned
about the principal axes of equal moments of inertia is investigated. Using a new formulation for
the kinematic equations, asymptotically stabilizing controls have been derived for the restricted
problem of spin-axis stabilization. The asymptotic stability of the closed-loop system is proved
by construction of appropriate Lyapunov functions. The stabilizing control laws thus derived
are especially simple and elegant. Moreover, since the control laws are given directly in terms
of the elements of the rotation matrix, they do not depend on the particular choice of the
FEulerian angle set used to describe the attitude orientation in inertial space (or the particular
parameterization of the rotation group, for that matter). This provides a great deal of freedom
in the analysis and design of attitude control laws.
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