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Abstract—In this paper, using the Hypercube Diagonal Ex-
periment we first investigate the convergence rates of sampling-
based path-planning algorithms in terms of the dimensionnality
of the search space. We show that the probability of sampling
a point that improves the solution decreases exponentially with
the dimension of the problem. We then analyze how the samples
can be repositioned in the search space in order to minimize the
approximation error. Finally, we present the DRRT (Deformable
Rapidly Exploring Random Tree) algorithm that utilizes opti-
mization of sample location in the framework of RRT algorithms
to improve convergence. It is shown that the DRRT algorithm
significantly outperforms all current sampling-based algorithms
in terms of convergence.

I. INTRODUCTION

The problem of path-planning in a d-dimensional continu-
ous search space S is considered in this paper. Specifically,
the problem is to find a feasible path π = [π0, π1, . . . , πN ]
for some N > 0, starting from π0 = xstart ∈ S to
πN = xgoal ∈ S , that minimizes a cumulative cost function
of the form

J =

N∑
i=1

c(πi−1, πi), (1)

where c(πi−1, πi) is the cost to go from πi−1 to πi. We assume
in this paper that the cost function c is differentiable.

This problem is well-studied in the literature, and the family
of Rapidly-Exploring Random Trees (RRT) algorithms is a
very popular method to find a solution. All the algorithms in
the RRT family share the same algorithmic structure, that is,
they build a policy, represented as a tree T , to go from xstart
to any other point in the space S, based on a set of iteratively
sampled points of S.

The original RRT algorithm [9] simply connects the new
sample to the closest point in T and thus results in a very
fast algorithm. Karaman and Frazzoli showed in [6] that
the original RRT algorithm finds a suboptimal solution with
probability one, and introduced the RRT* algorithm that uses
local rewiring of the tree connections in order to converge
to an optimal solution with probability one as the number of
iterations goes to infinity. The RRT# algorithm [1] goes one
step further by doing a cascaded rewiring in order to maintain
optimality of the wiring of the tree at each iteration. Other
variants, such as BIT∗ [4] and RRTX [12], use batch process-
ing or pseudo-optimality conditions in order to accelerate the
execution of the algorithm but rely on the same algorithmic
idea as in RRT#.

The previous algorithms have been proven to find an optimal
solution as the number of samples tends to infinity, but conver-
gence might be slow, especially in large search spaces. Several
techniques have been proposed to aleviate this problem. Post-
processing [10] of the solution is a common technique, but
it only allows for local optimization of the current solution.
In order to converge to the optimal solution, the planning
algorithm needs to always return a path near the optimal
solution and in the same homotopy class, which cannot be
guaranteed in general.

Given an admissible heuristic h(x1, x2), that is, a lower-
bound on the cost from x1 ∈ S to x2 ∈ S , and assuming a
solution from xstart to xgoal has cost J , the relevant region
is defined by

Xrel(J) = {x|h(xstart, x) + h(x, xgoal) ≤ J}. (2)

It is well known that the optimal solution will lie in Xrel(J),
thus samples outside this region will not be near the optimal
solution and will not help convergence. Two methods have
been proposed to utilize this information: a) Rejection sam-
pling, which samples points in S but only keeps the points in
Xrel(J); b) Informed sampling [5], which allows to directly
sample in Xrel(J), and thus generates only good new samples,
but it only works with specific forms of the heuristic, such
as Euclidean distance. In addition, for these methods to work
well, a good heuristic is required, and finding the best heuristic
is often equivalent to solving the original problem.

In [7] the idea of displacing the new sample is used for
systems with drift. A correction term is computed according
to the vector field describing the drift of the system and then
added to the new sample to reposition it in a lower cost
region. Coming from a very different perspective, [2] shows
how a path-planning problem can be solved as an optimization
problem following a stochastic gradient descent. The algorithm
applies to shortest Euclidean path and relies on the fact that
for this problem, the optimal solution consists of an alternate
of straight line segments in free space and geodesics on the
obstacles boundaries. The solution can then be defined by the
points of intersection between the geodesics and the straight
lines, giving a parametrization of the solution. The gradient
descent allows the minimization of the cost, while the use of
intermittent diffusion allows to escape local minima in order
to converge to a global solution.

In the rest of the paper, we first present a simple numerical
experiment exhibiting the convergence rate of sampling-based



algorithms and perform a theoretical analysis of the probability
of sampling relevant points as a function of the dimensionality
of the search space. We then study how to optimize the
location of the samples in order to minimize the error in
the solution. We subsequently introduce the DRRT algorithm,
which merges the optimization of sample position within the
RRT framework. Finally, we compare the results of the DRRT
algorithm against other similar state-of-the-art algorithms.

II. THE HYPERCUBE DIAGONAL EXPERIMENT (HDE)

In this section, we present a simple numerical experiment
that will be used to compare results of algorithms converging
to an optimal solution. Let the search space S be a hypercube
of dimension d with each dimension taking values from -1
to 1, namely S = [−1, 1]d. Assume momentarily that S is
obstacle free. Let the starting point be

xstart = [−1,−1, ...,−1], (3)

and the goal point be

xgoal = [1, 1, ..., 1], (4)

that is, xstart and xgoal are the two opposite corners of the
hypercube S. The cost function c is the length of the path,
normalized by 2

√
d,

c(x1, x2) =
‖x1 − x2‖

2
√
d

, ∀x1, x2 ∈ S. (5)

Clearly, the optimal solution of the HDE is the straight
line connecting xstart and xgoal, that is, the diagonal of the
hypercube. The length of the diagonal is 2

√
d, so the cost

of the optimal solution is c∗ = 1. Using a normalized cost,
such that the optimal solution is independent of the dimension,
allows us to easily compare the convergence results across
multiple dimensions.

In order to study convergence, we enforce a maximal
distance between consecutive elements of the solution path
π. In the RRT family, this parameter is often called the range
of the algorithm and it is used as the maximum length allowed
when creating a new edge in the tree T . Let the range for the
HDE be

range = 0.1
√
d. (6)

Similarly to the cost, the range is normalized, such that the
optimal solution can be built with the same number of nodes,
independently of the dimension d. Specifically, an optimal
solution can be built using exactly 19 nodes spread uniformly
between xstart and xgoal for any dimension d, as can be seen
in Figure 1.

III. PURE SAMPLING STRATEGY

In this section, we analyze the probability of sampling
“good” points using a uniform sampling strategy. A “good”
sample is a point of the search space that is likely to help
the convergence of the algorithm, that is, the point has to
be sampled close to the optimal solution. Note that for real
applications, the optimal solution is unknown, so it cannot be
used to generate samples.
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Fig. 1: The Hypercube Diagonal Experiment in three dimen-
sions. The red line shows the optimal solution and the stars
(∗) show the nodes for the optimal solution with the minimal
number of nodes.

Let π∗ be the optimal path from xstart to xgoal and let
ε > 0 be a distance threshold. Define a tube for the path π∗

and radius ε to be the set of points within a distance ε from
π∗,

tube(π∗, ε) =

{
x ∈ S

∣∣∣∣∣∃i ∈ [1, N ],

distance(x, [π∗
i−1, π

∗
i ]) ≤ ε

}
, (7)

where distance(x, [a, b]) is the shortest distance between the
point x and the segment [a, b]. Let also xrand be a random
variable, uniformaly distributed over the sampling space Xs.
Define the event GS (“good” sample) to be the event that
xrand is within ε from the optimal path, that is,

GS = {xrand ∈ tube(π∗, ε)}. (8)

The probability of sampling a “good” point is then equal to
the ratio of the volume of tube(π∗, ε) and the volume of Xs,

P (GS) =
|tube(π∗, ε)|
|Xs|

. (9)

Consider now the case of the HDE with a uniform sampler
within the hypercube. Since the optimal solution π∗ is the
diagonal of the hypercube and the sampling space Xs is the
entire hypercube, it follows that

P (GS) =
2
√
dVd−1(ε)

2d
(10)

=
2
√
dεd−1Vd−1(1)

2d
(11)

=
(ε
2

)d−1√
dVd−1(1), (12)

where Vd(r) is the volume of a d-ball of radius r. It can be
seen that

√
dVd−1(1) reaches the maximum of

√
7π3/6 for

d = 6, so

P (GS) ≤
√
7π3

6

(ε
2

)d−1

. (13)

The dominant term in (13) is εd−1. Hence, as ε gets smaller,
the probability of sampling “good” points decreases, especially
when d is large.



If a heuristic h is available, smarter sampling can be
performed. In particular, sampling can be done only in the
relevant region, Xs = Xrel(J). Assuming J∗ is the cost of
the optimal solution, we have J∗ ≤ J and thus Xrel(J

∗) ⊂
Xrel(J) and |Xrel(J

∗)| ≤ |Xrel(J)|.
Assume |Xrel(J

∗)| > 0. If |Xrel(J
∗)| was equal to 0, the

optimal value function would already be known along the
optimal path and the problem would thus already be solved.
Then

P (GS) =
2
√
dVd−1(ε)

|Xrel(J)|
(14)

≤ 2
√
dVd−1(ε)

|Xrel(J∗)|
(15)

≤
√
7π3

3|Xrel(J∗)|
εd−1. (16)

Thus, if a heuristic is known, smart sampling can be used to
improve the probability of “good” samples, but the dominant
term is still εd−1.

For instance, with ε = 0.2 in the case of two dimensions,
the probability upperbound is around 20%, so “good” samples
are likely, but in dimension 10, the probability upperbound is
10−6% so “good” samples become a very rare event.
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Fig. 2: Time and number of iterations to converge within 2.5%
of the optimal cost for the hypercube diagonal experiment as
a function of the dimension of the problem.

Figure 2 shows the number of iterations and the time
required for the RRT* and the RRT# algorithms to converge
within 2.5% of the optimal solution for the HDE. The suffixes
RS and IS correspond to rejection sampling and informed
sampling using a perfect heuristic, that is, a heuristic h(x1, x2)
providing the actual optimal cost, not just a lower bound for
the cost from x1 to x2. We can see from these results that smart
sampling slightly helps convergence, but even with a perfect
heuristic the results are within the same order of magnitude.

Moreover, we see an exponential increase in the number
of iterations required for convergence, which corresponds to
the exponential decrease in the probability of sampling good
points seen in (16).

IV. OPTIMIZING SAMPLE LOCATION

In this section, we analyze how samples can be repositioned
in order to minimize the cost without adding more samples,
and thus increase the convergence rate. The idea is to minimize
the error of the estimated value function with a fixed number
of samples. In our case, the value function at x ∈ S is the
optimal cost to go from xstart to x.

Suppose a certain number of samples has been drawn and
the information gathered has been stored in a tree T . The
tree is a set of nodes with root node, start, corresponding
to xstart in the search space. Each node n ∈ T contains the
following information:

• xn: the corresponding state in the search space S,
• pn: the parent node of n in the tree,
• Cn: the list of node children of n,
• cn: the cost from start to node n following the strategy

encoded by T ,
• Nn: the list of nodes that are the nearest neighbors of n

in the search space.
Let V (x), for x ∈ S be the value function we want to

estimate. That is, V (x) is the minimum cost to reach x starting
from xstart. Let S∗ be the subset of S reachable from xstart,
that is,

V (x)

{
<∞, ∀x ∈ S∗,
=∞, ∀x ∈ S \ S∗.

(17)

Let also V̂ : S∗ → R+ be the estimate of the value
function built using the tree, defined as

V̂ (x) =



cn, ∃n ∈ T s.t. xn = x

min
n∈T ,
s.t.

isFeasible(n,x)

cn + c(n, x),
∃n ∈ T s.t.
isFeasible(n, x)

∞, otherwise,
(18)
where isFeasible(n, x) is true if the path from n to x is
obstacle-free. In other words, V̂ is defined at the location of
the samples of the tree by their cost value, and extended to
the entire search space using a feasible path connecting to the
tree with lowest cost. By construction, all trajectories in T are
feasible, thus

V̂ (x) ≥ V (x), (19)

because V is the minimum cost to reach x.
The problem is to find the best location for the samples,

organized in T , such that V̂ estimates V as closely as possible
on S∗. The problem can be formulated as

argminxn,n∈T
1

|S∗|
∫
S∗ |V̂ (x)− V (x)|dx (20)

⇔ argminxn,n∈T
1

|S∗|
∫
S∗(V̂ (x)− V (x))dx (21)

⇔ argminxn,n∈T
1

|S∗|
∫
S∗ V̂ (x)dx. (22)



Equation (19) is used to go from (20) to (21), and noticing
that the integral of V over S∗ is a constant independent of the
samples allows us to simplify the problem to (22).

Integrating V̂ over S∗ is computationally very expensive,
but it can estimated using the samples of the tree, where V̂
can be evaluated from,

1

|S∗|

∫
S∗

V̂ (x)dx ' 1

|T |
∑
n∈T

V̂ (xn) =
1

|T |
∑
n∈T

cn. (23)

Since |T | is constant, the optimization problem is reduced to

min
xn,n∈T

∑
n∈T

cn. (24)

By the construction of T , we have

cn =

{
0, if n = start,

c(xpn
, xn) + cpn

, if n 6= start.
(25)

We can then compute∑
n∈T

cn =
∑
i∈T

∑
j∈T

nb path(i, j)c(xi, xj). (26)

where nb path(i, j) is the total number of paths in the tree
using the (i, j) edge. Because of the tree structure, there is
exactly one path connecting the root of the tree to each node.
Moreover, this is true for any subtree, so

nb path(i, j) =

{
0, if pj 6= i

1 + nb des(j) = dj , otherwise,
(27)

where nb des(j) is the number of descendants of j in T . The
paths going through the edge from i to j are the path to j plus
the paths to all the descendants of j. We thus get,∑

n∈T
cn =

∑
i∈T

∑
j∈Ci

djc(xi, xj). (28)

By taking the gradient of the previous expression, we find
the direction that minimizes the error on the value function as
follows

∂
∑

n∈T cn

∂xi
=

∑
j∈Ci

dj
∂c

∂xi
(xi, xj) + di

∂c

∂xi
(xpi

, xi). (29)

This gradient with respect to the position of the node i in
the search space is easily computable, as it depends only on
the parent node pi and the children nodes Ci.

A gradient descent can then be used in order to optimize
the position of the samples as long as the tree T stays valid,
that is, every edge of T stays feasible and obstacle-free.

This operation can be seen as an a-posteriori informed
sampling in the sense that the sample positions are updated
after having been added to the tree.

pn

Cn
Nn n

Fig. 3: Computation of the gradient using local information -
Gradient corresponding to the children and the parent node in
green, and total gradient in red.

V. OPTIMIZING SAMPLE LOCATION - RESULTS

Recall the minimization problem, minnx,n∈T
∑

n∈T cn and
note that a trivial solution of this problem is to move every
single node to xstart, reducing the cost of each node to 0. This
solution is of no interest, so the following constraints need to
be added to the problem:

• The start and goal nodes cannot be repositionned as
they are part of the definition of the problem.

• The coverage of the search space should remain un-
changed because we do not want to lose the information
that has been acquired about the search space through
sampling. Leaf nodes of the tree will then be fixed in the
search space.

Define the interior nodes of the tree as the set of nodes that are
not leafs of the tree and are different than start and goal.
The gradient descent is then applied only to the interior nodes
of the tree.

Algorithm 1: Gradient Descent

1 while termination condition is not reached do
2 foreach n ∈ T do
3 if n == start OR n == goal OR isLeaf(n)

then
4 continue;

5 xtemp ← xn − α
∂
∑

n∈T cn
∂nx

;
6 if isFeasible(xpn

, xtemp) AND
isFeasible(xtemp, Cn) then

7 xn ← xtemp;

Algorithm 1 shows the structure of the gradient descent.
Nothing happens to start, goal and the leaf nodes of T . For
the other nodes n, a temporary location xtemp is computed
from xn, following the gradient with a scaling factor α. If
the new location maintains feasibility of the edges of T , that
is, connection between n and its parent pn and connections
between n and its children Cn, the location of n is updated.
The process is iterated until a termination condition is reached,
for example a finite number of iterations has been reached or
a convergence criterion is satisified.



Iteration 1 Iteration 100

Fig. 4: Evolution of the samples during the gradient descent

Figure 4 shows the evolution of the tree during gradient
descent. The first row shows the tree structure and the second
row shows the position of the interior nodes of the tree.
The interior nodes start with an almost uniform distribution
over the search space, and as gradient descent is applied,
they start to concentrate around the optimal trajectories in
each homotopy class. As the gradient descent continues, at
iteration 100, the samples get sparser even on the optimal
trajectories and start accumulating at specific points of the
environment, namely the corners of obstacles, as expected for
this environment.

Fig. 5: Interior nodes position after applying the gradient
descent

Figure 5 shows in greater detail the distribution of the
interior nodes after applying gradient descent. Circled in red
are the accumulation points, and red lines show the tree built
with these accumulation points. This tree corresponds to the
optimal tree starting from the bottom left corner built on
the visibility graph of this environment. That is, the optimal

solution from the bottom left corner to anywhere in the search
space can be found using this tree and a new node positionned
at the desired goal.

Without any assumption on the type of obstacles, the gradi-
ent descent recovered the important points of the environment.
In particular, for a shortest Euclidean path with polygonal
obstacles, we recovered, as expected, that these points are
located at the corners of obstacles, thus finding the optimal
tree on the visibility graph given the starting position xstart.

Iteration 1 Iteration 100

Fig. 6: Evolution of the samples during the gradient descent
with circular obstacles

Figure 6 shows similar results for an environment with
circular obstacles. In this case, the samples accumulate on the
boundary of the obstacles, which are the points of interrest
when searching for the shortest path in that type of environ-
ment.
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Figure 7 shows the evolution of the cost optimized by the
gradient descent and of the best cost to the goal as a function
of the number of iterations. Each iteration is composed of two
steps:

• Optimize the wiring of the tree, given the samples (in a
similar fashion than the LPA∗ algorithm [8]),

• Optimize the location of the samples, given the tree
structure (gradient descent).

The cost after each step is shown on the plots. We can see
an overall reduction of the cost for the entire environment, as
well as a reduction of the cost to the goal. The goal cost does
not show a smooth decrease because it is not the value being
optimized, and moving a node that is part of the best path can
temporarly increase the cost.

VI. THE DRRT ALGORITHM

In this section we present the Deformable Rapidly-
Exploring Random Trees algorithm that merges the idea of
optimizing the position of the samples in the framework of
RRT-like algorithms.

When samples are added iteratively, there is no need to
do a global gradient descent as changes occur only locally.
Suppose the tree is already optimized with respect to both
wiring of the tree and position of the samples. Then adding
a new sample only creates local changes near that sample,
and perhaps also down the branch of the tree, if it can be
used to improve the cost of other nodes. The branch from the
root of the tree to the new sample can be optimized, and thus
improve the value function at the new location, before using
it to propagate information through the tree.

Each iteration of the DRRT algorithm can be described in
three main steps:

• Sample a new point xnew and connect to the tree as a
leaf.

• Optimize the location of the nodes on the branch from
the root to xnew.

• Propagate changes through the tree.

Algorithm 2: The DRRT Algorithm

1 T = {start};
2 while termination condition is not reached do
3 Q← ∅;
4 x rand← New Sample();
5 x near ← Near(x rand);
6 x new ← Steer(x rand, x near);
7 if isFeasible(x near, x new) then
8 n new ← New Node(x new, x near);
9 Optimize Parent(n new);

10 b← Branch(n new);
11 Gradient Descent(b);
12 Q.insert(b);
13 Propagate Changes();

The core of the algorithm, shown in Algorithm 2, is similar
to the one of RRT# with an extra step of performing gradient
descent. At each iteration, the queue Q, used to order the nodes
to be updated, is cleared. A new sample x new is drawn,
and the nearest element x near in T is found. The algorithm
steers x new to be within the defined maximum range of
x near. If the path from x near to x new is feasible, a new
node n new is created and added to the tree T . The node is
initialized with x near has its parent and its neighbors are
computed. Within the neighbors, the one that minimizes the
cost is chosen and the node is updated.

Function 1: Optimize Parent(n)

1 pn ← argminnbh∈Nn
c(xnbh, xn) + cnbh;

2 cn ← minnbh∈Nn c(xnbh, xn) + cnbh;

The core of the DRRT algorithm involves the creation of
a branch b by following parent pointers up to the start

node. This branch contains every node encountered except
for n new and start. These nodes are excluded because we
want to ensure that their position is not changed. Moreover
excluding these two nodes guarantees that every element of
the branch has both a parent and at least one child.

Function 2: Gradient Descent(b)

1 while termination condition is not reached do
2 foreach bi ∈ b do
3 t← 1;
4 while JV (xbi − t ∂JV

∂xbi
) > JV (xbi)− t

2‖
∂JV

∂xbi
‖2 do

5 t← βt;

6 temp← xbi − t ∂JV

∂xbi
;

7 if isFeasible(xpbi
, temp) AND

isFeasible(temp, Cbi) then
8 xbi ← temp;

9 foreach bi ∈ b do
10 if xbi has changed then
11 Update bi in nearest neighbor data structure;

The location of the nodes of the branch is then updated
using gradient descent, as shown in Function 2. The gradient
descent is applied to minimize JV =

∑
n∈T cn, similarly to

the previous section. Line 4 of the algorithm implements a
backtracking line search for the step of the gradient descent.
It guarantees a decrease of the cost function depending on the
norm of the gradient and has be shown to be fast and stable.
After the gradient descent is applied, for all the nodes of the
branch updated, the location is updated in the nearest neighbor
data structure.

Once the branch has been updated, all its elements are added
to the queue Q in order to propagate the changes in the rest
of the tree. As in the RRT# algorithm, the queue is ordered



by cost + heuristic and the element with the smallest key
is treated at each iteration. The element is tried as a parent
candidate for all its neighbors and is chosen if it improves
the cost. The cost is propagated to all its children, and the
modified nodes are added to the queue. The process stops
when all nodes in the relevant region Xrel are processed, that
is, when the smallest element of the queue has a key larger
than the goal.

Function 3: Propagate Changes

1 while Q is not empty do
2 el← Q.pop min();
3 if Key(el) > Best Cost then
4 break;

5 foreach nbh ∈ Nel do
6 if cel + c(xel, xnbh) < cnbh then
7 cnbh ← cel + c(xel, xnbh);
8 pnbh ← el;
9 Q.update(nbh);

10 foreach c ∈ Cel do
11 cc ← cel + c(xel, xc);
12 Q.update(c);

VII. NUMERICAL RESULTS

A. The Hypercube Experiment

In this experiment, we use the HDE and run the algorithms
for different dimensions of the problem until the cost is within
3% of the optimal solution. The DRRT algorithm was imple-
mented in the Open Motion Planning Library (OMPL) [13],
which provides efficient implementations of the state-of-the-
art sampling-based path-planning algorithms, and can be easily
integrated with many robotic systems and simulation envi-
ronments. The DRRT algorithm is compared here against
RRT* and RRT#. For all three algorithms we used the regular
algorithm as well as rejection sampling and informed sampling
variants.

In each dimension, and for each variant, 10 simulations
were run and the mean and standard deviation were computed.
These are shown in Figure 8. We see here again, a very min-
imal influence of the sampling variants. In lower dimensions,
the probability of sampling good points is high enough that
both RRT* and RRT# find a near optimal solution faster than
DRRT. But the time to find a near optimal solution for those
two algorithms increases extremelly fast with the dimension
of the problem, whereas for the DRRT algorithm, the time is
almost constant. Thus, the DRRT algorithm is faster on this
problem by multiple orders of magnitude for any dimension
larger than three.

Figure 9 shows the results of the same experiments, only for
the plain variant of each algorithm, in terms of iterations. In
dimension two, all algorithms need the same number of nodes
to solve the problem, but as the problem dimensionality grows,
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Fig. 8: Time to converge within 3% of the optimal cost for the
hypercube diagonal experiment as a function of the dimension
of the problem.
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Fig. 9: Iterations to converge within 3% of the optimal cost
for the hypercube diagonal experiment as a function of the
dimension of the problem.

this number stays almost constant for the DRRT algorithm,
whereas it increases exponentially for the RRT* and the RRT#

algorithms.

B. 6DOF Manipulator

The algorithm was used and benchmarked using the OMPL
library [11] against the current state-of-the-art in the V-REP [3]
simulation environment on the Mico robotic arm from Kinova
Robotics. Figure 10 shows the simulation environment. The
robot on the right was used for the benchmarking and the
trajectories found were used to manipulate the cups. The
arm has six degrees of freedom, and the algorithm was
benchmarked on three sets of start and goal positions that can
be seen in Figure 10. For each set, each algorithm was run for
60 seconds and the evolution of the cost over time for each
run was reported.

Figure 11 shows the mean of the best cost over all tra-
jectories, as well as the standard deviation. We can see that
RRT* finds the largest cost, followed by RRT# and RRTX

closely together. All three algorithms have a similar standard
deviation. Three variants of the DRRT algorithm were tested,
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Fig. 10: Start and goal positions used in V-REP for bench-
marking

the standard algorithm DRRT, a delayed optimization version
DRRTd (no optimization is performed until the first solution
is found) and a variant where the node optimization is done
only 30% of the time, DRRT0.3. The three variants gave
significantly better results than the other three algorithms, both
in terms of the mean and the standard deviation of solution.
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Fig. 11: 6DOF - Best Cost vs Time

Figure 12 shows the cost as a function of the convergence
time, the time after the first solution to the goal was found.
This figure allows us to analyze how the algorithms converge
once a feasible solution has been found. We can see for RRT*,
RRT# and RRTX that the convergence rate is small, due to the
unlikelyness of sampling ”good” points in high dimensions.
The three DRRT variants show much lower cost for the first
solution, and the convergence rate is significantly larger.

The solutions found with DRRT are better, but this improve-
ment comes at a cost. More exploitation of the data means less
exploration and thus the DRRT algorithm is slower to find
a first feasible solution. Figure 13 shows the percentage of
solutions found by those algorithms over time. A total of 100
problems were solved for each pair of start and goal position.
We can see that RRT*, RRT#, RRTX and DRRTd quickly
find a feasible solution in all cases, but the DRRT and the
DRRT0.3 variants are much slower and do not always find a
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Fig. 12: 6DOF - Best Cost vs Convergence Time

feasible solution within the allocated 60 seconds.
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Fig. 13: 6DOF - Number of solutions found vs Time

As expected, the ordering of the algorithms by best cost
is in the reverse order of the algorithms by time to find the
first feasible solution. There is a compromise between time it
takes to find the first solution and optimality of the solution
found. These results suggest that, if time is not a constraint,
the DRRT algorithm is the best option as it has the fastest
convergence and the lower cost once a solution is found. In
the case of limited computational time, a hybrid approach like
the DRRTd variant allows to quickly find a feasible solution
before spending computational time in optimization.

VIII. CONCLUSION

In this paper, we introduced a new experiment exhibiting
the convergence caracteristics of sampling-based planning al-
gorithms as a function of the dimension of the search space of
the problem. This experiment was then used to show the limits
of uniform sampling as the dimension grows. We introduced
a way to optimize the sample location in the search space in
order to optimize the cost with a given number of samples.
Finally, this optimization was integrated in the RRT framework
to create the DRRT algorithm, whose results significantly
outperform the state-of-the-art sampling algorithms.
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[11] M. Moll, I. A. Şucan, and L. E. Kavraki. Benchmarking
Motion Planning Algorithms: An Extensible Infrastruc-
ture for Analysis and Visualization. IEEE Robotics &
Automation Magazine, 22(3):96–102, September 2015.
doi: 10.1109/MRA.2015.2448276.

[12] M. Otte and E. Frazzoli. RRT X: Real-Time Motion Plan-
ning/Replanning for Environments with Unpredictable
Obstacles. In Algorithmic Foundations of Robotics XI,
pages 461–478. Springer, 2015.
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