
Robotics and Autonomous Systems 114 (2019) 1–18

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Advanced planning for autonomous vehicles using reinforcement
learning and deep inverse reinforcement learning
Changxi You a, Jianbo Lu b, Dimitar Filev b, Panagiotis Tsiotras c,∗

a School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150, USA
b Research & Advanced Engineering, Ford Motor Company, Dearborn, MI 48121, USA
c School of Aerospace Engineering and the Institute for Robotics & Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332-0150, USA

h i g h l i g h t s

• A new MDP is proposed to model highway traffic.
• The optimal policies for overtaking/tailgating are obtained using RL.
• Reward functions in the formulation of MaxEnt IRL can take any nonlinear form.
• NewMaxEnt deep IRL algorithms are proposed to solve the model-free MDP problem.

a r t i c l e i n f o

Article history:
Available online 15 January 2019

Keywords:
Reinforcement learning
Inverse reinforcement learning
Deep neural-network
Maximum entropy
Path planning
Autonomous vehicle

a b s t r a c t

Autonomous vehicles promise to improve traffic safety while, at the same time, increase fuel efficiency
and reduce congestion. They represent the main trend in future intelligent transportation systems. This
paper concentrates on the planning problem of autonomous vehicles in traffic. We model the interaction
between the autonomous vehicle and the environment as a stochastic Markov decision process (MDP)
and consider the driving style of an expert driver as the target to be learned. The road geometry is taken
into consideration in the MDP model in order to incorporate more diverse driving styles. The desired,
expert-like driving behavior of the autonomous vehicle is obtained as follows: First, we design the reward
function of the corresponding MDP and determine the optimal driving strategy for the autonomous
vehicle using reinforcement learning techniques. Second, we collect a number of demonstrations from an
expert driver and learn the optimal driving strategy based on data using inverse reinforcement learning.
The unknown reward function of the expert driver is approximated using a deep neural-network (DNN).
We clarify and validate the application of themaximum entropy principle (MEP) to learn the DNN reward
function, and provide the necessary derivations for using the maximum entropy principle to learn a
parameterized feature (reward) function. Simulated results demonstrate the desired driving behaviors
of an autonomous vehicle using both the reinforcement learning and inverse reinforcement learning
techniques.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

More than six million motor vehicle crashes occurred in the US
in 2015 alone, of which 27 percent resulted in injury or death [1].
From 2014 to 2015 the total number of vehicle crashes increased
by 3.8 percent, and the number of fatal crashes increased by 7
percent [2]. Another study, sponsored by NHTSA, investigated 723
crashes and showed that driver behavioral error caused or con-
tributed to 99 percent of these crashes [3]. Given the increased so-
phistication of automotive active safety systems, these studies sug-
gest that driver behavior still remains the most important factor

∗ Corresponding author.
E-mail addresses: cyou6@gatech.edu (C. You), jlu10@ford.com (J. Lu),

dfilev@ford.com (D. Filev), tsiotras@gatech.edu (P. Tsiotras).

contributing to road accidents. In order to understand, characterize
and, if possible, predict driver behavior in traffic, researchers have
proposed different driver models based on several methodologies
over the past four decades [4]. Nevertheless, drivermodeling is still
a difficult task since driver behavior is affected by different individ-
ual factors, such as gender, age, experience, driver’s aggression, etc.
The most promising idea to eliminate driver behavioral error may
be to completely free the driver from the burden of driving, that is,
to develop fully autonomous vehicles.

An autonomous vehicle is able to detect the environment and
navigate without the driver’s input, by using a variety of sens-
ing techniques such as radar, lidar, ultrasound, localization and
computer vision, along with advanced control techniques that can
analyze the sensory data, in order to plan and achieve the desired
path to the desired destination. Autonomous vehicles are expected

https://doi.org/10.1016/j.robot.2019.01.003
0921-8890/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.robot.2019.01.003
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2019.01.003&domain=pdf
mailto:cyou6@gatech.edu
mailto:jlu10@ford.com
mailto:dfilev@ford.com
mailto:tsiotras@gatech.edu
https://doi.org/10.1016/j.robot.2019.01.003


2 C. You, J. Lu, D. Filev et al. / Robotics and Autonomous Systems 114 (2019) 1–18

to significantly improve traffic congestion, reduce collisions and
resulting injuries, enhance mobility for the children, the elderly
and the disabled, and reduce the need for parking space in cities [5].
Due to the rapid development of sensing and computing technolo-
gies over the past two decades, research in the field of autonomous
vehicles has shown great progress, and related self-driving vehicle
technology has matured significantly in the recent years [5].

The first autonomous vehicle was developed by Carnegie Mel-
lon University’s Navlab in 1988, and it was able to achieve lane-
following using camera images [6]. Navlab completed the first
autonomous coast-to-coast trip across the United States in 1995,
traveling 2849 miles between Pittburgh and San Diego at an av-
erage speed of 63.8 mph [7]. Another important milestone in the
self-driving vehicle technology was the DARPA Grand Challenge,
which was held three times between 2004 and 2007 [8]. In these
races the vehicles were required to drive autonomously in an
off-road course (2004 and 2005) or an urban area course (2007)
without any human intervention. These tests showed that fully
autonomous off-road driving and fully autonomous urban driving
are indeed technologically possible. Since then, many commercial
companies, startups, and research organizations have launched
their own development of autonomous vehicles.

Google started the self-driving car project in 2009 (called
Waymo after 2016) and has already tested autonomous vehicles
for about 8 million miles on public roads in six states. Waymo
introduced a minivan based on a mass-production platform for
the purpose of full autonomy [9]. The ride-sharing company Uber
tested its first self-driving program in the mobility service sec-
tor in Pittsburgh in 2016, and plans to eventually replace all its
drivers with self-driving cars in the not-so-distant future [10].
Tesla currently provides auto steering, lane changing and parking
capabilities in their ‘‘Autopilot" system and plans to bring semi-
autonomous and autonomous vehicle features to the mass market
with the 2017 Model 3 [11]. In 2016, Ford became the first au-
tomaker to test its autonomous vehicles on snow and in darkness,
and plans to deliver a commercially available fully autonomous
vehicle by 2021 [12]. Volvo introduced the first large-scale au-
tonomous drive project and plans to give 100 customers early-
access to autonomous XC90 on Swedish public roads by 2017[13].
Although there were about 44 large corporations and numerous
automotive driving startups working on autonomous vehicles by
May2017 [14], vehicles currently permitted onpublic roads are not
fully autonomous and they all require a driver to take over control
of the vehicle at a moment’s notice.

Themain technical issues in developing fully autonomous vehi-
cles exist at three levels, namely, perception, planning and control,
as shown in Fig. 1. The perception level comprises of sensing
and filtering of environmental data. The sensing system consists
of a number of sensors and provides information about the ve-
hicle’s state and the environment. The filtering system denoises
the signals from the sensing system and provides a reasonable
estimate for the unmeasurable states [4,15–17]. The planning level
completes three tasks, which include mission planning, where the
vehicle solves a routing problem in order to complete a task, deci-
sion making, where the vehicle chooses an appropriate action for
the next time step from an available action set, and path planning,
where the vehicle plans its future trajectory as a function of space
or time [18–21]. Finally, the control level receives the signals from
the planning level, maintains the stability of the vehicle, and tracks
the desired path.

Many vehicle control techniques have been developed to en-
hance stability and handling performance, such as differential
braking [22,23], torque vectoring [24,25], active steering [26,27]
and integrated chassis control [28,29]. Particularly, driver assist
systems [30–33] have been developed to provide better lane-
keeping and tracking control. Numerous control techniques are

Fig. 1. Autonomous control architecture at different levels.

also available to use at the control level. Higher-level path planning
and decision making is another essential part for developing fully
autonomous vehicles.

For example, in order to generate a smooth path for an au-
tonomous vehicle, Choi et al. [34,35] presented a series of path
planning algorithms based on Bézier curves. The planned paths
have continuous curvature and satisfy the road boundary con-
straints. Shim et al. [36] used a parameterized 6th-order polyno-
mial to represent a smooth path, and planned a feasible path for the
autonomous vehicle satisfying both the initial/final conditions and
the constraint conditions. They implemented their path-planning
algorithm in static/moving obstacle avoidance tasks and designed
the tracking control module using model predictive control tech-
niques. Instead of planning a path geometrically by solving an
optimization problem [34–36], one can also design a path using
optimal control theory. Mousavi et al. [37] applied an extended
Kalman filter to predict the future trajectory of an autonomous
vehicle, and used a linear time-varying model predictive control
scheme to determine the optimal path and the associated optimal
control. This approachwas designed to achieve collision avoidance
and stochastic target tracking in a dynamic environment. Similar
work was devoted to developing fast path planning or decision
making algorithms to achieve fully autonomous driving in real
world scenarios. Ulbrich andMaurer [38] used a partial observable
Markov decision process (POMDP) to model the decision mak-
ing for lane changes, and implemented a two-step algorithm in
real-time to obtain the optimal action for an autonomous vehi-
cle in an urban driving task. Kuwata et al. [20] proposed a real-
time path planning algorithm based on Rapidly-exploring Random
Trees (RRTs). This algorithm was implemented on an autonomous
vehicle which completed a 60 mile simulated military supply mis-
sion in the 2007 DARPA Urban Challenge. A more extensive survey
on path planning for autonomous vehicles can be found in [8,39].

Other techniques using ideas from artificial intelligence (AI)
have also been developed to solve planning problems for au-
tonomous vehicles. These include supervised learning [40], deep
learning [41] and reinforcement learning [42]. Lange et al. [43]
used a deep neural encoder to extract feature representations from
the raw visual input of camera images for a racing vehicle, and
successfully learned the optimal control actions (i.e., steering, ac-
celerating and braking) using reinforcement learning. The control
performance was even better than an experienced human player,



C. You, J. Lu, D. Filev et al. / Robotics and Autonomous Systems 114 (2019) 1–18 3

in the sense that the car was able to move along a closed track as
fast as possible without crashing. The approach in [43] concen-
trated on improving the driving performance of a single vehicle
without considering the traffic. Shalev-Schwartz et al. [18] took
the traffic into consideration and divided the planning problem
into two phases. They first modeled the state transition of the
traffic using a deep neural network, such that they could apply
supervised learning to predict the near future states of the system.
Subsequently, they used a recurrent neural network to model the
trajectory and learn the optimal driving policy of the autonomous
vehicle. This approach does not rely on anyMarkovian assumption,
and hence it is considered to be robust to the stochastic behavior of
the environment. The learning procedurewas validated using both
an adaptive cruise control task and a roundabout merging task.

Application of reinforcement learning requires knowledge of
the reward function, which needs to be carefully designed. An
alternative is to learn the optimal driving strategy using demon-
strations of the desired driving behaviors. Abbeel and Ng [44]
used a driving simulator to collect two minutes of driving data
from an expert driver, and assumed that the reward function of
this expert driver is a linear combination of a number of known
features. In order to recover the reward function and the expert
driving policy, they proposed a max-margin algorithm along with
a projection algorithm to solve the inverse reinforcement learning
problem. Although one can approximately recover expert driving
behaviors using this approach, the matching between the opti-
mal policy/reward and the features is ambiguous, as indicated by
Ziebart and his colleagues [45]. In order to address this ambi-
guity, Ziebart introduced the maximum entropy principle (MEP)
to uniquely match the rewards with the features. He proposed
the maximum entropy inverse reinforcement learning (MaxEnt
IRL) algorithm [45,46], which was shown to be computationally
efficient in [45]. It was implemented on a routing problem (mission
planning). The researchers in [47–50] developed different versions
of theMaxEnt IRL algorithmbased on [45,46]. Among these, the au-
thors of [49] formulated the maximum entropy inverse reinforce-
ment learning problem using a deep neural network (DNN) to rep-
resent the unknown reward function. All the above formulations
of the MaxEnt IRL problem require complete knowledge of the
environment dynamics, and they all employ a state reward instead
of a state–action–reward so that they cannot learn a complicated
driving behavior showing preference on certain actions.

This paper focuses on the problem of planning for autonomous
vehicles in traffic. Specifically, we wish to reproduce the decision
making of an expert driver, that is, we wish to duplicate the
optimal driving strategy involving several typical driver actions
such as lane-shifting, lane and speedmaintaining, accelerating and
braking, by also considering the stochastic driving behaviors of the
environmental vehicles in traffic.

The contribution of this paper is summarized as follows: (1)We
propose a newMDPmodel to represent the stochastic behaviors of
the environmental vehicles in highway traffic. This model differs
from previous similar MDP models [51–54] in the sense that we
take the road geometry into consideration in order to compare
and analyze different driving strategies during cornering. Another
advantage is that themodel is easily scalable to havemore vehicles
and more lanes in traffic. Unlike the MDP models [53,54] that
need to discretize the velocity of each vehicle in traffic, which,
consequentially, tend tomake the problemhave a large state space,
we remove the velocities of the vehicles from the MDP model
and consider them either in the perception layer or in the control
layer. The optimal control policy for the proposed MDP is solved
using both reinforcement learning (RL) and inverse reinforcement
learning (IRL). (2)We generalize the formulation of theMaxEnt IRL
by using a reward function in the form of a linear combination of
the parameterized features, and we show, for the first time, that

Fig. 2. The agent–environment interaction.

the reward function in the MaxEnt IRL formulation can take any
nonlinear form. Previous results ofMaxEnt IRL either assumed that
the reward function can be represented using a linear combination
of fixed features [45–48,50], or directly used a deep neural network
(DNN) to represent the reward function in the MaxEnt IRL formu-
lation without clarifying the relation between the DNN and the
parameterized feature functions [49]. (3) We propose three new
MaxEnt deep IRL algorithms to solve themodel-freeMDP problem.
Although several researchers have proposed different versions of
MaxEnt IRL algorithms [45–50], these algorithms cannot be used
to solve a model-free problem. Specifically, we use a deep neural
network to approximate the state–action–reward, instead of the
state reward, as in most of existing MaxEnt IRL formulations.

The rest of the paper is organized as follows: Section 2 intro-
duces the traffic model using a stochastic MDP. Section 3 designs
the reward function and solves theMDP problem using Q-learning.
Section 4 introduces the maximum entropy principle and formu-
lates the inverse optimal control problem. Section 5 summarizes
and refines the MaxEnt deep IRL algorithms, and Section 6 imple-
ments both RL and IRL algorithms, and analyzes the results. Finally,
Section 7 summarizes the results of this study.

2. Traffic modeling

In this section we first introduce a Markov decision process
(MDP) to model the interaction between the autonomous vehicle
and the surrounding vehicles in traffic. In the following sections
we use both RL and IRL techniques to solve the MDP problem for
the optimal policy that achieves the desired driving behaviors. We
start with a brief summary of MDPs.

2.1. Markov decision process

Markov decision processes (MDPs) are used in a wide area
of applications such as robotics, economics, manufacturing and
automatic control. An MDP is a mathematical framework that
probabilistically models the interaction between an agent and the
environment, pioneered by the work of Bellman [55]. The agent
is assumed to be a learner or decision maker, who interacts with
the environment [42]. It receives a reward and a representation of
the environment’s state at each time step, and exerts an action on
the environment that may change its future state. This interaction
between the agent and the environment is shown in Fig. 2.

A typical MDP is represented using a 6-tuple (S, A, T , γ ,D, R),
where S is a (finite) set of possible states that represent a dynamic
environment, A is a (finite) set of available actions that the agent
can select at a certain state,1 T is the state transition probability
matrix that provides the probability of the system transition be-
tween every pair of the states, γ ∈ [0, 1) is the discount rate that
guarantees the convergence of total returns, D is the initial-state
distribution, and R is the reward function that specifies the reward
gained at a specific state by taking a certain action.

1 WLOG we will assume that all actions are available in each state.



4 C. You, J. Lu, D. Filev et al. / Robotics and Autonomous Systems 114 (2019) 1–18

Fig. 3. The traffic on multi-lane road.

MDPs assume that the effect of taking an action at a given state
only depends on the present state–action pair, and not on the
previous states and actions, that is,

P(st+1|st , at , st−1, at−1, . . . , s0, a0) = P(st+1|st , at ). (1)

Eq. (1) is called Markov property [56].
The core problem of an MDP is to find a policy π for the agent,

where the policy π : S → A specifies the action to take at
the current state st . The goal is to find the optimal policy π∗

that maximizes the cumulative discounted reward over an infinite
horizon:

π∗ = argmax
π

E
[ ∞∑
t=0

γ tR(st , π (st ))
]
, (2)

where γ is the discount rate, and the term R(st , π (st )) represents
the reward the agent receives by taking an action determined by
policy π at the present state st . Given a policy π , the MDP in (1) is
reduced to a Markov chain with transition probabilities Pπ , given
by

Pπ (st+1|st ) = P(st+1|st , π (st )). (3)

2.2. System modeling

The MDP to be used to model the traffic is based on the follow-
ing observations. Consider a typical scenario of traffic on a multi-
lane road as shown in Fig. 3. Each vehicle moves in the middle of
each lane with the average speed of the traffic flow.

Let us now consider the driving behavior of the blue vehicle in
the middle of the red rectangle shown in Fig. 3. There are several
actions the blue vehicle can take. For instance, it can maintain its
current speed, accelerate or brake to occupy the vacant positions
ahead of it or behind it, or move to the left or to the right lane
if there is no chance for a collision. Assuming that each driver
intends to maximize a certain reward function, if one can obtain
the reward function of an ‘‘expert’’ driver by either constructing it
manually or from observing real driving data, one should be able
to reproduce this expert driver’s behaviors using reinforcement
learning techniques [42].

In the following, we designate the vehicle we want to control
as the host vehicle (HV), and all remaining vehicles in traffic as
the environmental vehicles (EVs). We assume that the drivers of
different vehicles do not communicate with one another, and also
that the vehicles do not share datawith each other. Hence, theMDP
system has only a single actively controlled agent. The available
action set for each vehicle in traffic is given by A ≜ {‘‘maintain’’,
‘‘accelerate’’, ‘‘brake’’,‘‘left-turn’’, ‘‘right-turn’’}.

2.2.1. State definition
By considering the positions of the HV, and the number and

positions of the EVs around the HV, we define the state of the MDP
as shown in Fig. 4.

In Fig. 4, we use the white dashed lines to divide the road into
small cells and use the green vehicle to denote the HV. The states of
the MDP represent either of the three conditions shown in Fig. 4:
(1) the HV is in the middle lane of the road, where we use nine
cells to represent the state, and (2) and (3) where the HV is next to
the road boundaries and we use six cells to represent the current
state. Taking all possible combinations into account, the number
of the internal-lane states is 28

= 256, and the number of the left
(right)-boundary states is 25

= 32. Hence the total number of the
states of theMDP is 256+2×32 = 320. It isworthmentioning that
each vehicle is viewed as a point of mass such that it will not split
acrossmultiple cells. Note that the approach canbe easily extended
to highways with any number of lanes and vehicles.2

Fig. 5 shows a possible overtaking behavior of the HV (green
car) during a left-turn corner. The HV driver may prefer overtaking
the pink car in front from the left rather than from the right. In
order to investigate the effect of the road geometry on the observed
driving behaviors of different drivers, in this workwe take the road
curvature into account and consider three kinds of roads, namely,
left-turn, right-turn, and straight roads. The total number of the
states is therefore 320 × 3 = 960. It is worth mentioning that,
although we only consider three kinds of road geometries, one
can, similarly, divide the road characteristics into more classes, as
needed. For instance, one could also take into account different
slopes of the roads, such as downhill, uphill, flat roads etc.

2.2.2. State transitions
Wewant tomodel the state transition process bymimicking the

traffic in real world scenarios. To this end, we make the following
assumptions: (1) the number of lanes n is free and greater than
equal to two (n ≥ 2), (2) the number of EVs N is free but no larger
than eight, given the cell geometry of Fig. 4 (0 ≤ N ≤ 8), (3) the EVs
have their own policies that may be different from the HV, (4) the
EVs take a random action, (5) no collision arises from the actions
of the EVs, and (6) each vehicle takes a single action at each time
step.

The state transition procedure from the current state st to the
next state st+1 is given in two steps: First, the HV observes the
current state st and selects an action π (st ) following its current
policy. Second, the EVs respond to the action of the HV, and take
an action following their own policies in a random sequence. The
new positions of the HV and the EVs around the HV define the next
state st+1. This state transition process is demonstrated in Fig. 6.

The current state st is defined using the nine cells in the red
rectangle on the left graph in Fig. 6. Based on st , the HV may brake
or switch to the right lane but these actionswill result in a collision.
The available safe actions of the HV are maintaining, accelerating
and switching to the left lane. For instance, suppose that the HV
accelerates and occupies the cell in front of it. As a consequence, the
red rectangle alsomoves since the EVs surrounding the HV change.
Next, all EVs respond to the action of the HV and take an action
following a certain policy in a random order (see Algorithm 7). The
next state st+1 is obtained after all vehicles complete their actions
(see the red rectangle on the right graph in Fig. 6).

3. Reinforcement learning

In order to obtain the desired driving policy for the HV, in
this section we design the reward function and use reinforcement
learning techniques to solve the MDP problem formulated in Sec-
tion 2.

2 The traffic model is also possible to be used for modeling urban traffic by
adjusting the state definition. For instance, the cell size may be defined to change
with the size of each EV and its velocity relative to the HV.



C. You, J. Lu, D. Filev et al. / Robotics and Autonomous Systems 114 (2019) 1–18 5

Fig. 4. The cells and the definition of the state: 1⃝ 9-cell internal-lane state, 2⃝ 6-cell left-boundary state and 3⃝ 6-cell right-boundary state.

Fig. 5. Overtaking during cornering.

3.1. Reinforcement learning algorithms

The main methods used in reinforcement learning can be clas-
sified into two categories, namely, tabular solution methods and
function approximation methods. The tabular solution methods
are suitable for solving MDP problems with a finite (small) num-
ber of states and actions. Such methods mainly include dynamic
programming, Monte Carlo and temporal-difference learning [42].

Classical dynamic programming algorithms use the value func-
tion to organize the search for the optimal policies. Such algo-
rithms include value iteration and policy iteration methods. These
algorithms require perfect knowledge of the environment, and
cannot be easily applied to problems having continuous state and
action spaces. Unlike dynamic programming, Monte Carlo does
not require complete knowledge of the environment, but only the
agent’s experience, namely, the sample sequences of the states,
actions and rewards from actual or simulated interactions of the
agent with the environment. Monte Carlo methods are based on
averaging sample returns in an episode-by-episodemanner, which
means that the learning of the values and the corresponding poli-
cies is performed only upon completion of each episode. Hence,
Monte Carlo methods cannot update the values and policies in an
on-line fashion. Temporal-difference learning is a combination of
the ideas from dynamic programming and Monte Carlo methods.
The most obvious advantage of temporal-difference learning over
Monte Carlo is that it can be naturally implemented in an on-
line fashion. Unlike Monte Carlo methods, one does not need to
wait till the completion of every episode to receive the return.
The most obvious advantage of temporal-difference learning over
dynamic programming is that it does not require full knowledge
of the environment and hence it can be implemented without a
model. The two main temporal-difference learning algorithms are
Sarsa and Q-learning [42,57]. The main difference between Sarsa
and Q-learning is the future (state–action) values they refer to

in order to update the current (state–action) values. Sarsa stands
for ‘‘state–action–reward–state–action’’ and uses the value of the
real action the agent takes in the next step following the current
control policy in order to update the value of the action at the
present state. Q-learning explores the maximum possible action
value the agent can have in the next step, and uses this value to
update the value of the action at the present state. Hence, Sarsa is
an on-policy algorithm,while Q-learning is an off-policy algorithm.
For many problems, both Sarsa and Q-learning are able to learn
a good policy with good performance. Q-learning can potentially
provide a better policy where death can be easily caused in each
episode using the ϵ-greedy policy in an on-policymethod [57]. The
term ‘‘death’’ indicates the termination of an episode caused by the
agent arriving at certain states (i.e., the goal state). However, Q-
learning is also known to diverge in certain cases where function
approximation is used [57,58]. More details on the tabular solution
methods can be found in Chapters 4–6 of [42].

Function approximation methods are used to address large or
continuous state space problems, where one may use a series of
(nonlinear) functions to represent the values, policies and rewards.
Theoretically, all methods used in the area of supervised learning
are possible to use in reinforcement learning as function approx-
imators, such as artificial neural network [59], naive Bayes [60],
Gaussian processes [61], or support vector machines [62].

Since the MDP model in Section 2 has a finite number of states
and actions and assumes that the agent cannot predict the behavior
of the EVs, we prefer to use a tabular, model-free method to solve
the corresponding optimal control problem in (2). In the following
section, we first define the reward function, and then use Q-
learning to learn the optimal policy thatmaximizes the cumulative
discounted future rewards.

3.2. Reward function

The design of the reward function is a difficult task, since the
driver behavior is hard to characterize and the real reward function
is unknown. The reward function also differs from driver to driver
and it may be even changing with time. A widely used approach to
design the reward function is to represent it as a function of some
manually chosen features. These features depend on the action
of the agent and the state of the environment. We use a linear
combination of the features to represent the reward function [44–
47,63]:

R(s, a) = wTΦ(s, a), (4)

wherew is theweight vector, andΦ(s, a) is the feature vector with
each component representing a single feature point in the state–
action space. Possible choices of feature points may be the binary
values indicating whether a certain argument is true or not. In this
work we define the features in Φ(s, a) as follows:



6 C. You, J. Lu, D. Filev et al. / Robotics and Autonomous Systems 114 (2019) 1–18

Fig. 6. State transition process.

(1) Action features. The driver may prefer taking certain actions
than others if he receives a higher reward from these actions.

(2) Position of the HV. It indicates if the HV is driving next to the
road boundaries. The driver may prefer to drive in different lanes,
depending on the road geometry.

(3) Overtaking strategy. This feature is used to achieve different
overtaking behaviors of drivers during cornering. The driver may
have a different preference in regards to overtaking the car in front
either from the left or from the right.

(4) Tailgating. The value of this feature is ‘‘true’’ if the HV is
behind an EV and ‘‘false’’ otherwise.

(5) Collision incident. Collision occurs if the HV and a EV appear
in the same cell.

One can design the weight vector w to encourage or penalize
certain features using the given reward function, and then use re-
inforcement learning to learn the corresponding optimal policy by
maximizing the total reward. Another idea is to design the reward
function using a parameterized function approximator such as a
Gaussian process [47,63] or a DNN [49]. The parameters of the
function approximator are hard to designmanually since theymay
not be directly related to features that have clear physicalmeaning,
and hence they can only be learned from data. This approach will
be discussed in Section 5.

3.3. Q-learning

Q-learning was first introduced in Watkins’s Ph.D. thesis in
1989 [64]. In 1992 Watkins and Dayan proved that Q-learning
converges to the optimum action values with probability 1 if all
actions are repeatedly sampled in all states [65]. Different vari-
ants of Q-learning were developed to solve various reinforcement
learning problems, such as double Q-learning that reduces overes-
timation [66], deep Q-learning that uses a deep neural-network to
represent the value function for large state space problems [67],
fuzzy Q-learning that uses fuzzy logic rules to interpret and refine
the imprecise environment knowledge [68], and minimax-Q [69],
Nash-Q [70], correlated-Q [71] and friend-or-foe-Q [72] that solve
multi-agent reinforcement learning problems.

Next, we briefly introduce the basic Q-learning algorithm. To
this end,we need to introduce two important concepts used exten-
sively in the reinforcement learning literature, namely, the state
value and the state–action value (also referred to as the action

value). The value of a state st under policy π is denoted as Vπ (st ),
which indicates the expected discounted cumulative reward start-
ing at state st and then following policy π , that is,

Vπ (st ) = E
[ ∞∑
k=0

γ kRt+k

⏐⏐⏐st , π], (5)

where γ is the discount rate, and

Rt ≜ R(st , at ) =
∑

st+1∈S

P(st+1|st , at )R(st , at , st+1), (6)

stands for the immediate reward the agent receives by taking
action at at present state st , and where the term R′(st , at , st+1)
represents the reward the agent receives by taking action at at
present state st to obtain the next state st+1 (see Section 5.1 for
more discussion).

The values of two sequential states of the MDP are related and
satisfy the following equation,

Vπ (st ) = E
[
Rt + γVπ (st+1)

⏐⏐⏐st , π]
=

∑
at∈A

π (st , at )
∑

st+1∈S

P(st+1|st , at )

×

(
R′(st , at , st+1)+ γVπ (st+1)

)
, (7)

Eq. (7) is called the Bellman evaluation equation. The optimal
policy π∗ maximizes the associated value function at each state,
which,mathematically, can bedeterminedby solving the following
problem,

π∗ = argmax
π

Vπ (s), ∀s ∈ S. (8)

The associated value function V ∗ corresponding to the optimal
policy π∗ satisfies the Bellman optimality equation [42],

V ∗(st ) = max
at∈A

E
[
Rt + γV ∗(st+1)

⏐⏐⏐st , π]
= max

at∈A

∑
st+1∈S

P(st+1|st , at )
(
R′(st , at , st+1)+ γV ∗(st+1)

)
.

(9)

The state–action value is denoted asQ π (st , at ). In contrast to the
state value Vπ , the state–action value Q π emphasizes the value of



C. You, J. Lu, D. Filev et al. / Robotics and Autonomous Systems 114 (2019) 1–18 7

the choice of the first action starting at the current state. Q π (st , at )
indicates the expected discounted cumulative reward starting at
state st , taking action at and then following policy π , afterwards

Q π (st , at ) = E
[ ∞∑
k=0

γ kRt+k

⏐⏐⏐st , at , π]. (10)

Similarly with (7), the evaluation equation for the state–action
value Q π is derived as follows,

Q π (st , at ) = E
[
Rt + γQ π (st+1, at+1)

⏐⏐⏐st , at , π]
=

∑
st+1∈S

P(st+1|st , at )
(
R′(st , at , st+1)

+ γ
∑

at+1∈A

π (st+1, at+1)Q π (st+1, at+1)
)
. (11)

The state value Vπ in (5) and the state–action value Q π in (10)
are related and they satisfy the Bellman equation as follows,

Vπ (st ) =
∑
at∈A

π (st , at )Q π (st , at ). (12)

The optimal policy π∗ satisfying (8) also satisfies the following
equation,whichmeans that one candetermineπ∗ by either solving
(8) or, equivalently, by solving (13),

π∗ = argmax
π

Q π (s, a), ∀(s, a) ∈ S × A. (13)

The optimal state–action valueQ ∗ corresponding to the optimal
policy π∗ satisfies the following Bellman optimality equation,

Q ∗(st , at ) = E
[
Rt + γ max

at+1∈A
Q ∗(st+1, at+1)

⏐⏐⏐st , at , π]
=

∑
st+1∈S

P(st+1|st , at )

×

(
R′(st , at , st+1)+ γ max

at+1∈A
Q ∗(st+1, at+1)

)
. (14)

The above definitions and equations in (5)–(14) are the basis
for understanding most reinforcement learning algorithms such
as value iteration, policy iteration, Sarsa and Q-learning. The Q-
learning algorithmworks directly on the Q values. The update law
of the Q values can be expressed as follows [42,64],

Q (st , at )← Q (st , at )+ α

(
Rt + γ max

at+1∈A
Q (st+1, at+1)− Q (st , at )

)
,

(15)

where α ∈ [0, 1] is the learning rate (step size), which determines
how much the newly acquired information overrides the current
Q values. If α = 0 one learns nothing since Q (st , at ) remains the
same. If α = 1 one abandons the old Q value and keeps only the
newly learned value Rt + γ maxat+1∈A Q (st+1, at+1). In particular,
if α = α(t) is time-varying and equals to 1/(t + 2), where t + 2
represents the total number of visits to the state–actionpair (st , at ),
one obtains the sample-average result for all observed Q values.
The well-known conditions on α to guarantee convergence of the
Q values with probability 1 are given as follows [42],
∞∑
t=0

α(t) = ∞,

∞∑
t=0

α2(t) <∞, (16)

where the first condition in (16) is used to overcome the random
fluctuations, and the second condition in (16) guarantees conver-
gence as t →∞. However, the conditions in (16) are seldom used
in practice. For instance, a constant step size α ̸= 0 does not satisfy
(16), but it has been shown to perform well in many problems. In

this paper we also use a constant step size (i.e., α = 0.75) in all the
examples.

The discount rate γ ∈ [0, 1) in (15) describes the importance
of future rewards for the agent. Specifically, γ = 0 indicates that
the agent only considers the immediate reward after taking action
at , and hence the agent is ‘‘myopic’’. The agent becomesmore ‘‘far-
sighted" as γ approaches 1, since more cumulative future rewards
are taken into account to update the Q values. A value of γ ≥ 1
may lead to divergence.

We summarize the Q-learning algorithm in Algorithm 1. In
Section 6 we design the weight vector w in the reward function
(4), and the values of the parameters α, γ and ϵ, in Algorithm 1 to
learn the optimal policy π∗.
Algorithm 1: Q-Learning Algorithm.

Input: S, A, α, γ , ϵ, R
Output: Q ∗, π∗
1: Q ← Q0
2: Q (sfinal, ·)← 0
3: Converge← False
4: while not Converge do
5: s← s0
6: EpisodeOver← False
7: while not EpisodeOver do
8: a← max

a∈A
Q (s, a) (i.e., ϵ-greedy)

9: s′ ← state after taking action a
10: if s′ ∈ sfinal then
11: EpisodeOver← True
12: else
13: Q (s, a) ← Q (s, a) + α

(
R(s, a) + γ max

a∈A
Q (s′, a) −

Q (s, a)
)

14: s← s′
15: if Q converges then
16: Converge← True
17: Q ∗ ← Q
18: π∗(s) = max

a∈A
Q ∗(s, a)

4. Maximum entropy principle

In Section 3 the driver’s reward was designed and we learned
the desired driving policy using reinforcement learning. Nonethe-
less, in some cases onemayhave little knowledge about the reward
function, and it is hard to design the required reward function to
achieve the desired driving behavior. The approach in Section 3
is not convenient to use if the prior knowledge of the reward
function is not sufficient. However, one can avoid designing the
reward function and directly learn the optimal driving policy from
demonstrations performed by an expert driver. This type of prob-
lem is called inverse reinforcement learning or inverse optimal
control [47,73].

Before proceeding with the discussion on inverse reinforce-
ment learning, we introduce the maximum-entropy principle, and
explain how this principle can be used to recover the unknown
reward function, which can then be used to learn the driving policy
using the given demonstrations.

4.1. Maximum entropy principle

The maximum entropy principle was first introduced by
Jaynes [74], and since then it has been used in many areas of
computer science and statistical learning. In the basic maximum
entropy formulation, one is given a set of samples from a target
distribution and a set of constraints on this distribution, and then



8 C. You, J. Lu, D. Filev et al. / Robotics and Autonomous Systems 114 (2019) 1–18

one estimates this distribution using the maximum entropy dis-
tribution that satisfies these constraints [75]. Mathematically, the
idea can be demonstrated as the following theorem.

Theorem 4.1. Suppose xi ∈ X , i = 1, . . . , n are independent
and identically distributed (i.i.d) samples from a certain distribution
xi ∼ p∗. Let

µ̂j =
1
n

n∑
i=1

fj(xi), j = 1, . . . ,m, (17)

where fj : X → R are real-valued functions and µ̂j are the empirical
expectations of fj. Themaximum entropy estimate p̂ of the distribution
p∗ satisfies

p̂ = argmax
p

∫
X

−p(x) log p(x)ν(dx), (18a)

subject to E[fj(x)] =
∫

X

p(x)fj(x)ν(dx) = µ̂j, (18b)∫
X

p(x)ν(dx) = 1, j = 1, . . . ,m, (18c)

where ν is a base measure. The solution p̂ of (18) is given by

p̂(x) =
1

Z(θ )
e
∑m

j=1 θjfj(x), (19)

where Z(θ ) is the partition function having the following form

Z(θ ) =
∫

X

e
∑m

j=1 θjfj(x)ν(dx), (20)

and where θj ∈ R are parameters satisfying the following equations,∫
X

fj(x)
Z(θ )

e
∑m

k=1 θkfk(x)ν(dx) = µ̂j. (21)

The maximum entropy principle finds a distribution satisfying
the constraints with the largest remaining uncertainty, so that one
does not introduce any additional assumptions or biases into the
computation of p̂.

In inverse reinforcement learning problems, one is given a num-
ber of time histories of the agent’s behaviors consisting the past
states and actions. These past states and actions are usually called
demonstrations. Ziebart [45] first applied the maximum entropy
principle to solve inverse reinforcement learning problems, for
cases where the reward function depends only on the current
state, and it was represented via a linear combination of feature
functions, namely,

R(s) =
∑

i

wiφi(s) = w⊺Φ(s), (22)

wherew andΦ(s) are the weight and feature vectors, respectively.
Note that in [45] the feature vector Φ(s) is a function of state s
only, and the actions were not considered. The probability of a
demonstration ζ ≜ {s0, a0, . . . , sT , aT } over all paths of duration
T is calculated following Theorem 4.1 [45],

P(ζ |w) =
1

Z(w)
e
∑

s∈ζ w⊺Φ(s), (23a)

P(ζ |w) =
1

Z(w)
e
∑

s∈ζ w⊺Φ(s)
∏

(s,a,s′)∈ζ

P(s′|s, a), (23b)

where the partition function Z(w) is a normalization constant, and
(23a) and (23b) provide the solutions corresponding to a deter-
ministic MDP, where the future state can be uniquely determined
with the given action at the present state, and a stochastic MDP,
where the future state is unpredictable with the given action at
the present state, respectively.

Note that in order to simplify the expressions, in the following
we use the notations s ∈ ζ , (s, a) ∈ ζ and (s, a, s′) ∈ ζ to
denote the cases when the state s, the state–action pair (s, a)
and the state–action–state triple (s, a, s′) are demonstrated in ζ ,
respectively. Either equation in (23) presents a distribution over
paths (demonstrations) and indicates that the probability of a path
is proportional to the exponential of its total reward,which implies
that the paths having higher rewards are more preferable by the
agent.

The goal of an inverse reinforcement learning problem is to find
the optimal weight w∗, such that the likelihood of the observed
demonstrations is maximal under the distribution in (23). In the
following, we formulate the inverse reinforcement learning prob-
lem using different reward structures. The necessary derivations
are provided for IRL problems satisfying the following require-
ments: (1) Instead of using the state reward R(s) and the state
feature Φ(s) as in [45,49], we use R(s, a) and Φ(s, a), and (2) We
focus only on the stochasticMDP. The demonstrations are required
to start from the same state s0 and are observed over the same
time horizon ranging from t = 0 to t = T . We use the following
notation: D denotes the set of demonstrations, N denotes the
number of demonstrations inD ,Ω ⊇ D denotes the complete path
space, and Φζ denotes the feature counts along the path ζ ∈ D

which is given by Φζ =
∑

(s,a)∈ζ Φ(s, a).

4.2. Nonparameterized features

The (nonparameterized) features Φ(s, a) are functions of only
the states and actions. One may then consider reward functions as
a linear combination of features in the following form

R(w; s, a) = w⊺Φ(s, a). (24)

In order to explicitly show the dependency of the reward
function on the unknown weight vector w, we use the notation
R(w; s, a) instead of R(s, a) in (24). It follows from [74] that maxi-
mizing the entropy of the distribution overΩ subject to the feature
constraints from observations D implies the maximization of the
likelihood of D under the maximum entropy distribution in (23b),
that is,

w∗ = argmax
w

LD(w) = argmax
w

1
N

∑
ζ∈D

logP(ζ |w)

= argmax
w

1
N

(∑
ζ∈D

(
w⊺Φζ +

∑
(s,a,s′)∈ζ

P(s′|s, a)
))
− log Z(w).

(25)

In order to use gradient-based optimization methods to solve the
problem in (25), we take the partial derivative of LD with respect
to the partial derivative of w, to obtain

∂LD

∂w
=

1
N

∑
ζ∈D

Φζ −
1

Z(w)

∑
ζ∈Ω

Φζ ew⊺Φζ

∏
(s,a,s′)∈ζ

P(s′|s, a)

= Φ̃ −
∑
ζ∈Ω

P(ζ |w)Φζ = Φ̃ − E[Φζ ], (26)

where Φ̃ ≜ 1
N

∑
ζ∈D Φζ is the expected empirical feature count,

and the expectation of the feature count Φζ can be calculated by

E[Φζ ] =

∑
s∈S

∑
a∈A

E[µ(s, a)]Φ(s, a), (27)

and where the term E[µ(s, a)] denotes the expected state–action
pair visitation counts. Onemay refer to Algorithm3 in Section 5.2.2
for the calculation of E[µ(s, a)].



C. You, J. Lu, D. Filev et al. / Robotics and Autonomous Systems 114 (2019) 1–18 9

4.3. Parameterized features

The use of nonparameterized features in Section 4.2 requires
one to design the features manually, which may be a difficult task,
in general, since it may not always be possible to approximate
a certain unknown reward function having a complicated form.
Hence, we consider the use of parameterized features instead
of nonparameterized features, so that one can refine the feature
design by optimizing the parameters of the features.

In order to formulate the maximum entropy IRL problem, we
still consider a reward function given as a linear combination of
the features, but the features nowdepend explicitly on a parameter
vector θ ,

R(w, θ; s, a) = w⊺Φ(θ; s, a). (28)

Instead of tuning only the weight vector w in (25), we also tune
the vector θ associated with w to maximize the likelihood LD as
follows,

w∗, θ∗ = argmax
w,θ

LD(w, θ ) = argmax
w,θ

1
N

∑
ζ∈D

logP(ζ |w, θ )

= argmax
w,θ

1
N

(∑
ζ∈D

(
w⊺Φζ (θ )+

∑
(s,a,s′)∈ζ

P(s′|s, a)
))

− log Z(w, θ ). (29)

The derivations of ∂LD/∂w are similar with (26)–(27) and
hence are omitted. Thus, we only show the derivation of ∂LD/∂θ ,
which following the chain rule yields
∂LD(w, θ )

∂θ
=

∑
s∈S

∑
a∈A

∂LD(w, θ )
∂R(w, θ; s, a)

∂R(w, θ; s, a)
∂θ

, (30)

where

∂LD(w, θ )
∂R(w, θ; s, a)

=

1
N

∑
ζ∈D

∑
(ŝ,â)∈ζ R(w, θ; ŝ, â)

∂R(w, θ; s, a)

−
1

Z(w, θ )

∑
ζ∈Ω

ew⊺Φζ

∏
(ŝ,â,ŝ′)∈ζ

P(ŝ′|ŝ, â)

×
∂
∑

(ŝ,â)∈ζ R(w, θ; ŝ, â)

∂R(w, θ; s, a)

= µD(s, a)−
∑
ζ∈Ω

P(ζ |w, θ )
∂
∑

(ŝ,â)∈ζ R(w, θ; ŝ, â)

∂R(w, θ; s, a)

= µD(s, a)− E[µ(s, a)], (31)

and where µD(s, a) is the expected empirical state–action pair vis-
itation counts over the demonstrationsD . The expression ∂R(w, θ;
s, a)/∂θ in (30) is given by
∂R(w, θ; s, a)

∂θ
=

∂w⊺Φ(θ; s, a)
∂θ

= w⊺ ∂Φ(θ; s, a)
∂θ

, (32)

where the (i, j) entry of the matrix ∂Φ(θ; s, a)/∂θ is defined as
follows[

∂Φ(θ; s, a)
∂θ

]
i,j
=

∂φi(θ; s, a)
∂θj

, (33)

and where φi(θ; s, a) is the ith element of Φ(θ; s, a).
Eqs.(30)–(33) provide the necessary ingredients to improve the

design of the feature functions by tuning their parameters. One
interesting application of these results is to use a DNN having
multiple outputs to represent the features (see Fig. 7). In Fig. 7 the
reward R(st, at) is given by a linear combination of features repre-
sented by a DNN, where the inputs sit and ajt of the DNN represent
the ith and jth elements of the n-dimension state vector and the
m-dimension action vector, respectively. One can then calculate

Fig. 7. Deep neural-network feature function and reward.

∂R(w, θ; s, a)/∂θ by back propagating the network following the
delta rule [76].

It is worth mentioning that one can let w = 1 and directly
use a single DNN feature to represent the reward function. In this
case the maximum entropy distribution over the path space Ω is
obtained by tuning only the parameters θ in the DNN. For instance,
Wulfmeier [49] used a DNN to express the state reward R(s) and
determined the maximum entropy distribution of the path ζ by
training a DNN.

5. Inverse reinforcement learning

Based on the theoretical derivation in Section 4, we next sum-
marize the inverse reinforcement learning algorithm, which was
used in this work to learn the optimal policy from driving demon-
strations.

One can use a DNN as a parameterized reward function in
order to apply themaximum entropy principle to solve the inverse
reinforcement learning problem. In the following, we first discuss
the structure of the DNN reward function, and next, we introduce
two new IRL algorithms to learn the unknown parameters of the
DNN.

5.1. Reward approximator

In order to recover the unknown reward function from demon-
strations, we use a universal approximator that has the ability to
represent any function, such as a DNNwithmultiple layers [77,78].

We consider three definitions of the reward functions from the
literature, namely, the state reward R : S → R [44,45,48,49], the
state–action–reward R : S × A → R [19,42,47] and the state–
action–state reward R : S × A × S → R [42]. We denote the cor-
responding reward functions as R(s), R(s, a) and R(s, a, s′), respec-
tively. R(s) is used when the agent wants to reach a goal state or
avoid certain dangerous states by taking any action. This definition
indicates that the agent has no specific preference over the existing
actions. In contrast, R(s, a) takes the action into consideration, so
that it can be used to show the agent’s preference on a specific
action. The last definition R(s, a, s′) takes into consideration also
the resulting state s′ after the agent takes action a at the present
state s. Nevertheless, since the resulting state s′ depends on the
response of the environment after the agent takes action a, the
agent can onlymake a decision according to the expected reward of



10 C. You, J. Lu, D. Filev et al. / Robotics and Autonomous Systems 114 (2019) 1–18

Fig. 8. Structures of the deep neural-network reward functions.

taking action a without knowing the future state s′. Thus R(s, a, s′)
and R(s, a) are expected to be equivalent in terms of learning the
same policy. See also Eq. (6).

According to the above discussion,wewill use the state–action–
reward R(s, a) in order to reproduce driving behaviors having dif-
ferent preference on the available actions.

The two structures of the DNNs we have in mind are shown in
Fig. 8. In the first structure we use both the state st and the action
at as the input, where sit and ajt represent the ith and jth elements
of the n-dimensional state vector and the m-dimensional action
vector at time step t , respectively. In the second structure we use
only the state st as the input to the network, and use different
channels of the output to represent the reward corresponding
to different actions in the action set A. The output R(st, Aj), j =
1, . . . , 5 represents the reward received by the agent by taking
action Aj at present state st, where Aj represents the jth action in
the action set A. The present action at is not an explicit input for the
second structure. Both of these two DNN structures in Fig. 8 can be
used as an approximator for the state–action–reward function, and
one can take either form that is most convenient for the learning
task at hand.

5.2. MaxEnt deep IRL algorithm

We summarize the IRL algorithm used to learn the unknown
parameters of the DNN in Fig. 8, using the maximum entropy
principle based on the results in Section 4. Since the calculation of
the expected state–action visitation number requires knowledge
of the model, we first discuss the model learning.

5.2.1. Model learning
We consider a totally model-free case, where no knowledge

about the state transition model P(s′|s, a) is available. The idea
of model learning is that one can analyze the visitation count of
each state–action–state triple and calculate the probability for each
possible result of the state transitions, which is given by

P(s′|s, a) =
ν(s, a, s′)∑
s′∈S ν(s, a, s′)

, (34)

where ν(s, a, s′) is the total number of the state transition from s to
s′ by taking action a. The probability P(s′|s, a) approaches its actual
value as the state visitation count ν(s, a, s′) approaches infinity.
Model learning can be implemented alongwith theQ-learning (see
Algorithm 1). The algorithm for Q-learning with model learning is
summarized in Algorithm 2.

Algorithm 2: Q-Learning with Model Learning.

Input: S, A, α, γ , ϵ, R, ν0
Output: Q ∗, π∗, ν, P
1: ν ← ν0
2: Q (s0, a0)← Q0
3: Q (sfinal, ·)← 0
4: Converge← False
5: while not Converge do
6: s← s0
7: EpisodeOver← False
8: while not EpisodeOver do
9: a← max

a∈A
Q (s, a) (i.e., ϵ-greedy)

10: s′ ← state after taking action a
11: ν(s, a, s′)← ν(s, a, s′)+ 1
12: if s′ ∈ sfinal then
13: EpisodeOver← True
14: else
15: Q (s, a) ← Q (s, a) + α

(
R(s, a) + γ max

a∈A
Q (s′, a) −

Q (s, a)
)

16: s← s′
17: if Q converges then
18: Converge← True
19: Q ∗ ← Q
20: π∗(s) = max

a∈A
Q ∗(s, a)

21: P(s′|s, a)← ν(s,a,s′)∑
s′∈S

ν(s,a,s′)

5.2.2. IRL algorithm
In this section we summarize the MaxEnt Deep IRL algorithm

according to (29)–(33). To this end,we first introduce the following
algorithm to calculate the expected state–action visitation counts
E[µ(s, a)] in (31), using the model learning result P(s′|s, a) from
Algorithm 2.

In Algorithm 3 the state sfinal denotes the terminal state or the
goal state, after which the state of the system will not change,
meaning that no future state transitions can occur at sfinal. Next,
one calculates the gradient ∂LD/∂θ using (38), and updates the
parameters θ of the DNN using gradient ascent. The expression of
∆θ can be calculated as follows,



C. You, J. Lu, D. Filev et al. / Robotics and Autonomous Systems 114 (2019) 1–18 11

Algorithm 3: Expected State-Action Visitation Counts.

Input: T , S, A, π (s, a), P(s|s′, a)
Output: E[µ(s, a)]
1: Calculate expected state/state–action visitation counts:
2: E[µ(s0)] ← 1
3: E[µ(s0, a)] ← π (s0, a)
4: for i = 1 : T do
5: Ei[µ(sfinal)] ← 0
6: Ei[µ(sfinal, a)] ← 0
7: Ei+1[µ(s)] ←

∑
s′∈S

∑
a∈A

P(s|s′, a)π (s′, a)Ei[µ(s′)]

8: Ei+1[µ(s, a)] ← π (s, a)Ei+1[µ(s)]

9: E[µ(s, a)] ←
T∑

i=1
Ei[µ(s, a)]

∆θ = λ
∂LD

∂θ
, (35)

where λ is the learning rate (time step). One can also introduce
a weight decay term as a model regularizer into ∆θ , such as
an L1 regularizer [45], an L2 regularizer [49], and other forms of
regularizers [50,79]. The regularizers are used to convexify the
problem, mitigate overfitting, or introduce other properties to
the optimization problem such as monotonicity by adding a self-
defined cost term.

The proposed MaxEnt Deep IRL algorithm is summarized in
Algorithm 4.
Algorithm 4: MaxEnt Deep IRL Algorithm.

Input: µD(s, a), T , S, A, α, β , γ , λ, ϵ, ν0
Output: π∗, θ∗, R∗, P
1: θ ← θ0
2: ν ← ν0
3: Converge← False
4: while not Converge do
5: Update reward function:
6: R← NN(θ )
7: Update policy:
8: π , ν, P← Q-learning with model learning(S, A, α, γ , ϵ, R, ν)

from Algorithm 2
9: Calculate expected state/state–action visitation counts:

10: E[µ(s0)] ← 1
11: E[µ(s0, a)] ← π (s0, a)
12: for i = 1 : T do
13: Ei[µ(sfinal)] ← 0
14: Ei[µ(sfinal, a)] ← 0
15: Ei+1[µ(s)] ←

∑
s′∈S

∑
a∈A

P(s|s′, a)π (s′, a)Ei[µ(s′)]

16: Ei+1[µ(s, a)] ← π (s, a)Ei+1[µ(s)]

17: E[µ(s, a)] ←
T∑

i=1
Ei[µ(s, a)]

18: Determine Maximum-Entropy gradients:
19: ∂LD

∂R(θ;s,a) ← µD(s, a)− E[µ(s, a)]
20: Update neural-network weights:
21: ∂R(θ;s,a)

∂θ
← backward propagating neural-network

22: ∂LD
∂θ
←

∂LD
∂R(θ;s,a) ·

∂R(θ;s,a)
∂θ

23: θ ← θ + λ
∂LD
∂θ
+ βθ (in case of using an L2 regularizer)

24: if θ converges then
25: Converge← True
26: θ∗ ← θ

27: R∗ ← NN(θ∗)
28: π∗ ← Q-learning(S, A, α, γ , ϵ, R∗, ν) from Algorithm 2

5.3. IRL algorithm refinement

Learning of the model may not yield good results before one
has a large number of visitations for each state–action pair. The
error of the state transition probability P(s′|s, a) may lead to errors
in calculating ∂L D/∂R(s, a) in Algorithm 4, which leads to further
errors in calculating the gradients ∂L D/∂θ that are used to update
the parameters θ in the neural-network. To address this issue, one
can pre-learn the model until it converges before using it in Algo-
rithm 4. Nevertheless, the demonstrations in D may not be enough
to represent the environment’s random behavior, especially in the
case where the system is complicated and the demonstrations
are required to represent the long-term behavior of the stochastic
system. One can then either split the demonstrations into small
pieces to avoid a large error in predicting the long-termbehavior of
the system, or, alternatively, try to avoid using the state transition
terms in the calculation of the gradients in (26) and (31).

In this work we regenerate a number of new sets of the demon-
strations Dτ = {ζ

i
τ , i = 1, . . . ,Nτ } using the original demonstra-

tions D . The element ζ i
τ satisfies the following conditions: (1) ζ i

τ

starts at the state τ ∈ S, (2) The length of ζ i
τ is constant ∆T for

all τ ∈ S, and (3) There exists a path ζ ∈ D such that ζ i
τ ⊆ ζ .

The corresponding path space for ζ i
τ is denoted as Ωτ . We then

maximize the entropy of the joint distribution over all Ωτ subject
to the constraints from the demonstrations Dτ ,

θ∗ = argmax
θ

LD(θ ) = argmax
θ

∑
τ∈S

1
Nτ

∑
ζ∈Dτ

logP(ζ |θ )

= argmax
θ

∑
τ∈S

( 1
Nτ

( ∑
ζ∈Dτ

( ∑
(s,a)∈ζ

R(θ; s, a)

+

∑
(s,a,s′)∈ζ

P(s′|s, a)
))
− log Zτ (θ )

)
, (36)

where the partition function Zτ is given by

Zτ (θ ) =
∑
ζ∈Ωτ

e
∑

(s,a)∈ζ R(θ;s,a). (37)

The partial derivative of LD with respect to the partial derivative
of θ is given by

∂LD(θ )
∂θ

=

∑
s∈S

∑
a∈A

∂LD(θ )
∂R(θ; s, a)

∂R(θ; s, a)
∂θ

, (38)

where

∂LD(θ )
∂R(θ; s, a)

=

∑
τ∈S

(
1
Nτ

∑
ζ∈Dτ

∑
(ŝ,â)∈ζ R(θ; ŝ, â)

∂R(θ; s, a)

−
1

Zτ (θ )

∑
ζ∈Ωτ

e
∑

(ŝ,â)∈ζ R(θ;ŝ,â)

×

∏
(ŝ,â,ŝ′)∈ζ

P(ŝ′|â, ŝ)
∂
∑

(ŝ,â)∈ζ R(θ; ŝ, â)

∂R(θ; s, a)

)

=

∑
τ∈S

(
µDτ (s, a)−

∑
ζ∈Ωτ

P(ζ |θ )
∂
∑

(ŝ,â)∈ζ R(θ; ŝ, â)

∂R(θ; s, a)

)
=

∑
τ∈S

(
µDτ (s, a)− E[µτ (s, a)]

)
, (39)



12 C. You, J. Lu, D. Filev et al. / Robotics and Autonomous Systems 114 (2019) 1–18

and where µDτ is the expected empirical state–action pair visita-
tion counts over the demonstrations Dτ . The term ∂R/∂θ in (38)
can be obtained by backward propagating the DNN.

Algorithm 5: Single-Step Joint Maximum-Entropy Deep IRL Algo-
rithm.
Input: πD(s, a), S, A, α, β , γ , λ, ϵ, ν0
Output: π∗, θ∗, R∗, P
1: θ ← θ0
2: ν ← ν0
3: Converge← False
4: while not Converge do
5: Update reward function:
6: R← NN(θ )
7: Update policy:
8: π , ν, P← Q-learning with model learning(S, A, α, γ , ϵ, R, ν)

from Algorithm 2
9: Determine Maximum-Entropy gradients:

10: ∂LD
∂R(θ;s,a) ← πD(s, a)− π (s, a)

11: Update neural-network weights:
12: ∂R(θ;s,a)

∂θ
← backward propagating neural-network

13: ∂LD
∂θ
←

∂LD
∂R(θ;s,a) ·

∂R(θ;s,a)
∂θ

14: θ ← θ + λ
∂LD
∂θ
+ βθ

15: if θ converges then
16: Converge← True
17: θ∗ ← θ

18: R∗ ← NN(θ∗)
19: π∗, P← Q-learning(S, A, α, γ , ϵ, R∗, ν) from Algorithm 2

The expected state–action pair visitation counts E[µτ (s, a)] is
calculated over ∆T steps. Specifically, we let ∆T = 1 and con-
sider only the one-step action case, such that we avoid using
the unknown model transition probabilities to calculate ∂LD(θ )/
∂R(θ; s, a) in (39), which is given by

∂LD(θ )
∂R(θ; s, a)

=

∑
τ∈S

(
1
Nτ

∑
(ŝ,â)∈Dτ

R(θ; ŝ, â)

∂R(θ; s, a)

−
1

Zτ (θ )

∑
(ŝ,â)∈Ωτ

eR(θ;ŝ,â)
∂R(θ; ŝ, â)
∂R(θ; s, a)

)
= µDs (s, a)− P(s, a|θ ) ≜ πD(s, a)− π (s, a), (40)

where µDs is the expected empirical state–action pair visitation
counts over the demonstrations Ds, which, can be defined as the
expected empirical policy πD(s, a). The result of (40) indicates that,
by using the demonstrations with ∆T = 1, the maximum entropy
IRL formulation in (36) learns a reward function R(θ; s, a) such that
the learned policy equals the expected empirical policy, namely,
π (s, a) = πD(s, a).

We summarize the refined algorithms using (39) and (40),
respectively, which are given by Algorithms 5 and 6. As a special
case when the data length is ∆T = 1, the single-step IRL algo-
rithm in Algorithm 5 totally avoids calculating the expected state–
action visitation counts, and hence the policy is learned without
any knowledge of the model. The selection among the three IRL
algorithms proposed in this paper depends on the data and the
MDPmodel one has for the problem. For instance, if the behavior of
the MDP model is not difficult to predict (i.e., deterministic MDP)
and one has collected a long set of data starting from the same
initial state, one canuseAlgorithm4 to recover the reward function
and learn the policy. If the data have different lengths and were
collected with different initial states, one may have to reorganize
the data and consider using Algorithms 5 and 6, especially for
problems having complicated stochastic behavior.

Algorithm 6: Multiple-Step Joint Maximum-Entropy Deep IRL
Algorithm.
Input: µDfi (s, a), ∆T , S, A, α, β , γ , λ, ϵ, ν0
Output: π∗, θ∗, R∗, P
1: θ ← θ0
2: ν ← ν0
3: Converge← False
4: while not Converge do
5: Update reward function:
6: R← NN(θ )
7: Update policy:
8: π , ν, P← Q-learning with model learning(S, A, α, γ , ϵ, R, ν)

from Algorithm 2
9: Calculate expected state/state–action visitation counts:

10: for τ in S do
11: E[µτ (s0 = τ )] ← 1
12: E[µτ (s0 = τ , a)] ← π (s0, a)
13: for i = 1 : ∆T do
14: Ei[µτ (sfinal)] ← 0
15: Ei[µτ (sfinal, a)] ← 0
16: Ei+1[µτ (s)] ←

∑
s′∈S

∑
a∈A

P(s|a, s′)π (s′, a)Ei[µτ (s′)]

17: Ei+1[µτ (s, a)] ← π (s, a)Ei+1[µτ (s)]

18: E[µτ (s, a)] ←
∆T∑
i=1

Ei[µτ (s, a)]

19: Determine Maximum-Entropy gradients:
20: ∂LD

∂R(θ;s,a) ←
∑
τ∈S

(
µDτ (s, a)− E[µτ (s, a)]

)
21: Update neural-network weights:
22: ∂R(θ;s,a)

∂θ
← backward propagating neural-network

23: ∂LD
∂θ
←

∂LD
∂R(θ;s,a) ·

∂R(θ;s,a)
∂θ

24: θ ← θ + λ
∂LD
∂θ
+ βθ

25: if θ converges then
26: Converge← True
27: θ∗ ← θ

28: R∗ ← NN(θ∗)
29: π∗ ← Q-learning(S, A, α, γ , ϵ, R∗, ν) from Algorithm 2

6. Results and analysis

In this sectionwe implement the previous RL and IRL algorithms
for the traffic model of Section 2 and analyze the results. We first
build a traffic simulator that is used to simulate the behaviors of
the EVs.

6.1. Traffic simulator

The traffic simulator is developed using Pygame, a free and
open source python programming language library that is used to
develop multimedia applications (i.e., games). The highway road
is constructed using a series of connected straight road and curve
road segments, where each segment has five lanes. Since each EV
is treated as a point of mass, we do not distinguish the types of the
vehicles on the simulator (i.e., truck, sedan). The HV is represented
using a green car, and the EVs are represented using the cars in
other colors. The simulator only provides the top view from a
camera over the HV.

Each EV in the simulator implements a random policy. For each
EV, we define a nominal state sEV using all the vehicles (HV and
EVs) around it and find the safe actions for this EV not leading
to a collision. We then generate a random policy for this EV by
assigning a randomprobability to each action in the safe action set.
Algorithm7 shows the procedures to generate a randompolicyπEV

for an EV in the simulation.



C. You, J. Lu, D. Filev et al. / Robotics and Autonomous Systems 114 (2019) 1–18 13

Table 1
The selected features and the weights for reinforcement learning.
Φ(s, a) w1 Interpretation w2 Interpretation

Maintain 0 NA 0 NA
Accelerate 0.075 Prefer accelerating 0.05 Prefer accelerating
Brake −0.625 Avoid braking −0.5 Avoid braking
Left-turn −0.05 Reduce lane-shifting −0.025 Reduce lane-shifting
Right-turn −0.05 Reduce lane-shifting −0.025 Reduce lane-shifting
HV position 0 NA 0 NA
Overtake 0.05 Prefer inner overtaking 0.025 Prefer inner tailgating
Tailgate 0 NA 0.225 Prefer tailgating
Collision −0.15 Avoid collision −0.15 Avoid collision

Algorithm 7: Generate EV policy.

Input: sEV
Output: πEV

1: Generate five random number between [0,1]:
2: πEV

0 ← random(5)
3: πEV

← sort(ıEV0 )
4: Check availability of each action:
5: for a ∈ A do
6: if a is not available for sEVt then
7: πEV(a|sEV)← 0
8: πEV

← normalize(πEV) over available actions

For each EV, we only implement Lines 1–3 once to initialize its
policy πEV

0 . Since the safe action set for each EV is changing along
with the simulation process, πEV

0 needs to change according to the
new driving environment in order to avoid collision. To this end,
we update the policy using Lines 4–8 when the safe action set and
the state change. By taking the lane-switching actions, both the HV
and the EVs are able to visit the 9-cell internal-lane states and the
6-cell boundary states during the simulation.

6.2. Driving behavior from reinforcement learning

We show two different driving behaviors using RL, namely,
overtaking and tailgating. To this end, we use the features defined
in Section 3.2 and design theweightsw1 andw2 to achieve the two
desired driving behaviors, respectively. The weights are provided
in Table 1.

The desired driving behavior by designing w1 is to show over-
taking, which can be described as follows: (1) The HV accelerates
to occupy the front cell if it is available; (2) The HV maintains
its velocity if there is an EV in front of it and no overtaking is
possible; (3) The HV overtakes the front EV if only one side is
available for overtaking, by lane-shifting first and then accelerating
andmaintaining constant speed; (4) The HV overtakes the front EV
from the inner side of the corner if both the left and right sides are
available for overtaking; (5) The HV does not change lane unless
for overtaking; (6) The HV does not brake to occupy the rear cell.
(7) No collision is allowed.

The desired driving behavior by designing w2 is to demonstrate
tailgating, which can be described as follows: (1) The HVmaintains
its velocity if there is an EV in front of it; (2) The HV accelerates to
occupy the front cell if it is available and no tailgating will occur by
changing lanes; (3) The HV changes lane to tailgate an EV if there is
no EV in front of it; (4) The HV prefers to tailgate the vehicle in the
lane closer to the inner curb of the road in a corner; (5) TheHV does
not change lanes unless for tailgating; (6) The HV does not brake
to occupy the rear cell; (7) No collision is allowed.

We implemented theQ-learning algorithm (Algorithm1or 2) to
learn the optimal policies using bothw1 andw2, with learning rate
α = 0.75, discount rate γ = 0.5, and ϵ = 8e−2 for the ϵ-greedy
principle. The EVs’ behaviors were generated using Algorithm 7.
In order to show the speed of the learning process, we compare
the policy during the learning process with the convergent result

Fig. 9. The convergence performance of the policy π in the learning process.

and define the policy error using the number of states that have
different optimal actions. Fig. 9 shows the convergence behaviors
of the policiesπ∗1 andπ∗2 corresponding tow1 andw2, respectively.
One sees that, after 5000 to 6000 episodes the policies π1 and π2
get stabilized with the current setup of α, γ and ϵ. In both cases, it
takes less than fiveminutes to obtain the results shown in Fig. 9 on
a dual-core 2.27GHz Intel Xeon processor running 64-bitWindows
10 Enterprise operating system and programmed using Python 3.6.

Next, we implemented the policies π∗1 and π∗2 in simulation.
We show only the simulated result from the implementation of π∗1
(overtaking). The tailgating results by implementing the IRL algo-
rithms are given in the next section. Fig. 10 shows four different
driving scenarios (each single row of pictures).

The first row of Fig. 10 shows a scenario where there is a
vacant space in front of the HV (green). The HV accelerates to
occupy the front space and then maintains its distance behind the
yellow vehicle. The second row shows a scenario where there is
one vehicle in front of the HV and both the left and right lanes
are available for the HV to overtake the front vehicle. Since the
road is straight, the HV is free to use either the left or the right
lane to complete the overtaking task. One sees from this figure
that the HV first switches to the left lane, and then accelerates
to overtake the front yellow vehicle, which switches to the right
lane, until meeting the blue vehicle in the front. The third scenario
shows one vehicle (red) in front of the HV but the right lane of
the HV is occupied by another vehicle (pink). The HV can only use
the left lane to overtake the front vehicle. The last scenario shows
another driving scenario during cornering, which has one vehicle
(cyan) in front of the HV and both the left and right lanes of the
HV are available to use for overtaking. The HV first switches to the
right lane, which is closer to the inner curb of the corner, and then
tries to overtake the cyan vehicle by accelerating. Overtaking is
not completed since the cyan vehicle alsomoves forward. All these
driving behaviors in the simulation usingπ∗1 agreewith the desired
behaviors, which validates the design of the reward function and
the approach to find the optimal policy.



14 C. You, J. Lu, D. Filev et al. / Robotics and Autonomous Systems 114 (2019) 1–18

Fig. 10. Overtaking scenarios in simulation by implementing π∗1 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

6.3. Driving behavior from inverse reinforcement learning

In this section we use the simulated data by implementing π∗1
and π∗2 to learn the reward functions represented using DNNs, and
obtain the estimated policies π̂∗1 and π̂∗2 forπ∗1 andπ∗2 , respectively,
using the maximum entropy principle.

We first select a structure of the DNN as shown in Fig. 8 to
represent the reward function. We use the second structure due
to its convenience, since it uses only the state st as the input
of the DNN and provides the rewards for taking every available
action in the action set A. One then just needs to select the right
output channel according to the current action at. The state vector
st contains the information of the positions of nine vehicles (oneHV
and eight EVs) and the type of the road, hence, the DNN requires
ten input channels to receive the ten-dimensional state st. The
DNN requires five output channels since there are five actions in
A. We define a DNN with the numbers of the neurons in each
layer given by [10, 20, 20, 20, 5], which has three hidden layers
and each hidden layer has twenty neurons. We use the hyperbolic
tangent activation function (tanh) instead of the sigmoid activation
function, since the tanh function is unbiased at the origin, and it has
a larger range [-1,1] than the sigmoid function which has a range
[0,1].

Next, we collect simulated data by implementing theπ∗1 andπ∗2
learned in Section 6.2 on the traffic simulator. The initial state s0 is
shownwith the rectangle zone in Fig. 11,where theHV is located in
the middle lane of a five-lane road surrounding by three EVs. For
either π∗1 and π∗2 , we collected 500 demonstrations with a fixed
simulation period T = 1500.

We then implemented the three MaxEnt IRL algorithms in
Algorithms 4–6, respectively, to learn the policy using the simu-
lated data. The parameters to setup the algorithms are as follows:

Fig. 11. The initial setup for simulation.

learning rate for Q-learning α = 0.75, discount rate γ = 0.5, DNN
learning rate λ = 5e−3, regularizer coefficient β = −1e−4, and
ϵ = 8e−2 in the ϵ-greedy principle. A summary of the results is
shown in Table 2.

One notices from Table 2 that Algorithm 4 does not converge,
due to the large data length and the stochastic system behavior.
The proposed refined algorithms (Algorithms 5 and 6) provide



C. You, J. Lu, D. Filev et al. / Robotics and Autonomous Systems 114 (2019) 1–18 15

Fig. 12. The tailgating in simulation by implementing π̂2 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Table 2
IRL results summary.

Data length Convergence Time Policy recovery

Algorithm 4 T = 1500 No NA NA
Algorithm 5 ∆T = 1 Yes 1 h ≥99%
Algorithm 6 ∆T = 5 Yes 1–3 h ≥99%

better convergence performance and learn the policy effectively.

In contrast to Algorithm 6, Algorithm 5 saves some running time

since one skips the learning of the model and avoids calculating

the expected state–action visitation counts.

We also implemented the learned policies π̂∗1 and π̂∗2 in simu-
lation.3 We show only the tailgating behavior by implementing π̂∗2
(see Fig. 12), since the result by implementing π̂∗1 is similar with
π∗1 , which has already been shown in Fig. 10.

Fig. 12 shows four driving scenarios. The first row shows a
driving scenario having a vacant space in front of the HV and the
HV cannot tailgate any EV by changing lanes. The HV accelerates to
occupy the space behind the gray vehicle in front of it. The second
driving scenario shows that the HV changes the lane to the left to

3 Movies for both overtaking and tailgating by implementing π̂∗1 and π̂∗2 are
available at: https://www.youtube.com/watch?v=I3ecd9DXmBQ and https://www.
youtube.com/watch?v=lVZcRR-Q2PE.

https://www.youtube.com/watch?v=I3ecd9DXmBQ
https://www.youtube.com/watch?v=lVZcRR-Q2PE
https://www.youtube.com/watch?v=lVZcRR-Q2PE


16 C. You, J. Lu, D. Filev et al. / Robotics and Autonomous Systems 114 (2019) 1–18

tailgate the red vehicle. The third driving scenario is similar with
the second, but it shows a driving behavior during cornering. The
last driving scenario shows that there are two EVs in front of the
HV in the neighboring lanes, and the HV can change to either the
left or the right lane to tailgate an EV. By designing w2 we have
constructed a policy π∗2 to tailgate the EV closer to the inner curb
of the road in a corner. One sees from this simulation that the HV
changes to the left lane to tailgate the gray vehicle in a left-turn
corner. All these driving behaviors using π̂2 agree with the desired
tailgating behaviors we want to achieve using π∗2 , which validates
the effectiveness of the IRL algorithms proposed in this paper.

7. Conclusion

We use a stochastic Markov decision process to model the
traffic, and achieve desired driving behaviors using both reinforce-
ment learning and inverse reinforcement learning. The definition
of the state and the MDP traffic model are flexible and can be
used to model traffic with any number of lanes and any number of
EVs. We also take the road geometry into consideration such that
the driving policy may change depending on the road curvature.
Although the definition of the state is easily scalable and the MDP
problem can be solved efficiently, this model does not distinguish
different vehicle velocities and it treats each vehicle as a point of
mass. Additional work will be required in order to apply the result
of this paper in a real-world driving scenario. For instance, one
may dynamically change the size of theMDP state according to the
(relative) velocities of the vehicles in traffic.

By designing the driver’s reward function, we are able to show
typical driving behaviors such as overtaking and tailgating, using
the Q-learning algorithm to learn the corresponding optimal poli-
cies. We have demonstrated these policies using a road with five
lanes and with each EV implementing a random policy. In order to
be able to recover the policy and the reward function from data,
we propose three new model-free inverse reinforcement learning
algorithms based on the maximum entropy principle. Instead of
using a state reward as inmost of the existing literature [44,45,49],
we use a state–action–reward, which is capable for the design of
more diverse driving behaviors. This is the first work to generalize
the formulation of the maximum entropy inverse reinforcement
learning problem with any parameterized, continuously differ-
entiable function approximators (i.e., a DNN). In order to refine
the inverse reinforcement learning algorithm, we show that long
demonstrations are hard to use for this problem if one has limited
knowledge of the (stochastic) system behavior. The error stems
from two factors: First, the capacity of the demonstrated data may
not be enough to represent the stochastic behavior of the system.
Second, the prediction error for a stochastic system is accumu-
lated and becomes large for long term prediction horizons in a
model-free problem.We refine our inverse reinforcement learning
algorithm by maximizing the entropy of the joint distribution
over short data pieces. The proposed algorithms are validated in
simulation.

Future work will focus on designing the necessary controls to
achieve the driving behavior in a high-fidelity simulation or a real
driving task. Since the environment state may not be perfectly ob-
served by the agent, onemay consider to use a partially observable
MDP for decision making under uncertainty of the true environ-
ment state. Other possible extensions introduce multiple agents
incorporated into the MDP traffic model to coordinate multiple
vehicles simultaneously to better control the traffic flow (i.e., traffic
congestion mitigation).

Acknowledgments

This work is supported by the Ford Motor Company, USA and
National Science Foundation, USA award CPS-1544814.

References

[1] NHTSA, Traffic Safety Facts 2015: A Compilation of Motor Vehicle Crash
Data from the Fatality Analysis Reporting System and the General Estimates
System, Tech. Rep. DOT HS 812 384, Department of Transportation, National
Highway Traffic Safety Administration, Washington, DC, USA, 2015.

[2] NHTSA, et al., 2015 motor vehicle crashes: overview, in: Traffic Safety Facts
Research Note, vol. 2016, 2016, pp. 1–9.

[3] D. Hendricks, J. Fell, M. Freedman, The Relative Frequency of Unsafe Driving
Acts in Serious Traffic Crashes, Report no: DOT-HS-809-206, 2001.

[4] C. You, J. Lu, P. Tsiotras, Nonlinear driver parameter estimation and driver
steering behavior analysis for ADAS using field test data, IEEE Trans. Hum.-
Mach. Syst. 47 (5) (2017) 686–699.

[5] S.D. Pendleton, H. Andersen, X. Du, X. Shen,M.Meghjani, Y.H. Eng, D. Rus,M.H.
Ang, Perception, planning, control, and coordination for autonomous vehicles,
Machines 5 (1) (2017) 6.

[6] C. Thorpe, M.H. Hebert, T. Kanade, S.A. Shafer, Vision and navigation for the
Carnegie-Mellon NAVLAB, IEEE Trans. Pattern Anal. Mach. Intell. 10 (3) (1988)
362–373.

[7] T. Jochem, D. Pomerleau, B. Kumar, J. Armstrong, PANS: A portable navigation
platform, in: Proceedings of the Intelligent Vehicles’ 95 Symposium, Detroit,
MI, September 25–26 1995, pp. 107–112.

[8] B. Paden,M. Čáp, S.Z. Yong, D. Yershov, E. Frazzoli, A survey ofmotionplanning
and control techniques for self-driving urban vehicles, IEEE Trans. Intel. Veh.
1 (1) (2016) 33–55.

[9] A.J. Hawkins, Google’s new self-driving minivans will be hitting the
road at the end of January 2017, 2017, [Online]. Available: https:
//www.theverge.com/2017/1/8/14206084/google-waymo-self-driving-
chrysler-pacifica-minivan-detroit-2017.

[10] J. Berr, Uber’s audacious plan to replace human drivers, 2016, [On-
line]. Available: https://www.cbsnews.com/news/ubers-audacious-plan-to-
replace-human-drivers.

[11] C. Thompson, Tesla just revealed new cars and model 3 will have fully self-
driving hardware, 2016, [Online]. Available: http://www.businessinsider.
com/tesla-announces-new-autopilot-self-driving-2016-10.

[12] D. Lee, Ford’s self-driving car ‘coming in 2021’, 2016, [Online]. Available:
http://www.bbc.com/news/technology-37103159.

[13] V. Carlström, Volvo just launched the world’s most ambitious
autonomous driving trial in Gothenburg, 2017, [Online]. Available:
http://nordic.businessinsider.com/volvo-just-launched-the-worlds-most-
ambitious-autonomous-driving-trial-in-gothenburg-2017-1.

[14] Auto Tech, 44 corporations working on autonomous vehicles, 2017, [Online].
Available: https://www.cbinsights.com/research/autonomous-driverless-
vehicles-corporations-list.

[15] E.A. Wan, R. Van Der Merwe, The unscented Kalman filter for nonlinear
estimation, in: Adaptive Systems for Signal Processing, Communications, and
Control Symposium, Alberta, Canada, October 1–4, 2000, pp. 153–158.

[16] A. Farina, B. Ristic, D. Benvenuti, Tracking a ballistic target: comparison of
several nonlinear filters, IEEE Trans. Aerosp. Electron. Syst. 38 (3) (2002) 854–
867.

[17] G. Chowdhary, R. Jategaonkar, Aerodynamic parameter estimation from flight
data applying extended and unscented Kalman filter, Aerosp. Sci. Technol. 14
(2) (2010) 106–117.

[18] S. Shalev-Shwartz, N. Ben-Zrihem, A. Cohen, A. Shashua, Long-term planning
by short-term prediction, 2016, arXiv preprint arXiv:1602.01580.

[19] S. Brechtel, T. Gindele, R. Dillmann, Probabilistic MDP-behavior planning for
cars, in: 14th International IEEE Conference on Intelligent Transportation
Systems, ITSC, Washington, DC, October 5–7 2011, pp. 1537–1542.

[20] Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, J.P. How, Real-time motion
planning with applications to autonomous urban driving, IEEE Trans. Control
Syst. Technol. 17 (5) (2009) 1105–1118.

[21] S. Karaman, E. Frazzoli, Sampling-based algorithms for optimal motion plan-
ning, Int. J. Robot. Res. 30 (7) (2011) 846–894.

[22] K. Yi, T. Chung, J. Kim, S. Yi, An investigation into differential braking strategies
for vehicle stability control, Proc. Inst. Mech. Eng. D 217 (12) (2003) 1081–
1093.

[23] S. Di Cairano, H.E. Tseng, D. Bernardini, A. Bemporad, Vehicle yaw stability
control by coordinated active front steering and differential braking in the
tire sideslip angles domain, IEEE Trans. Control Syst. Technol. 21 (4) (2013)
1236–1248.

[24] L. De Novellis, A. Sorniotti, P. Gruber, A. Pennycott, Comparison of feedback
control techniques for torque-vectoring control of fully electric vehicles, IEEE
Trans. Veh. Technol. 63 (8) (2014) 3612–3623.

[25] L. De Novellis, A. Sorniotti, P. Gruber, L. Shead, V. Ivanov, K. Hoepping, Torque
vectoring for electric vehicles with individually controlled motors: state-of-
the-art and future developments, in: 26th Electric Vehicle Symposium, Los
Angeles, CA, May 6–9 2012.

[26] J. Ackermann, T. Bünte, D. Odenthal, Advantages of active steering for vehicle
dynamics control, in: Proceedings of the 32nd International Symposium on
Automotive Technology and Automation, Vienna, Austria, June 14–18 1999,
pp. 263–270.

http://refhub.elsevier.com/S0921-8890(18)30202-1/sb1
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb1
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb1
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb1
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb1
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb1
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb1
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb2
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb2
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb2
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb3
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb3
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb3
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb4
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb4
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb4
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb4
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb4
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb5
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb5
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb5
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb5
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb5
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb6
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb6
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb6
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb6
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb6
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb8
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb8
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb8
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb8
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb8
https://www.theverge.com/2017/1/8/14206084/google-waymo-self-driving-chrysler-pacifica-minivan-detroit-2017
https://www.theverge.com/2017/1/8/14206084/google-waymo-self-driving-chrysler-pacifica-minivan-detroit-2017
https://www.theverge.com/2017/1/8/14206084/google-waymo-self-driving-chrysler-pacifica-minivan-detroit-2017
https://www.theverge.com/2017/1/8/14206084/google-waymo-self-driving-chrysler-pacifica-minivan-detroit-2017
https://www.theverge.com/2017/1/8/14206084/google-waymo-self-driving-chrysler-pacifica-minivan-detroit-2017
https://www.cbsnews.com/news/ubers-audacious-plan-to-replace-human-drivers
https://www.cbsnews.com/news/ubers-audacious-plan-to-replace-human-drivers
https://www.cbsnews.com/news/ubers-audacious-plan-to-replace-human-drivers
http://www.businessinsider.com/tesla-announces-new-autopilot-self-driving-2016-10
http://www.businessinsider.com/tesla-announces-new-autopilot-self-driving-2016-10
http://www.businessinsider.com/tesla-announces-new-autopilot-self-driving-2016-10
http://www.bbc.com/news/technology-37103159
http://nordic.businessinsider.com/volvo-just-launched-the-worlds-most-ambitious-autonomous-driving-trial-in-gothenburg-2017-1
http://nordic.businessinsider.com/volvo-just-launched-the-worlds-most-ambitious-autonomous-driving-trial-in-gothenburg-2017-1
http://nordic.businessinsider.com/volvo-just-launched-the-worlds-most-ambitious-autonomous-driving-trial-in-gothenburg-2017-1
https://www.cbinsights.com/research/autonomous-driverless-vehicles-corporations-list
https://www.cbinsights.com/research/autonomous-driverless-vehicles-corporations-list
https://www.cbinsights.com/research/autonomous-driverless-vehicles-corporations-list
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb16
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb16
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb16
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb16
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb16
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb17
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb17
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb17
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb17
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb17
http://arxiv.org/abs/1602.01580
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb20
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb20
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb20
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb20
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb20
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb21
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb21
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb21
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb22
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb22
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb22
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb22
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb22
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb23
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb23
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb23
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb23
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb23
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb23
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb23
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb24
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb24
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb24
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb24
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb24


C. You, J. Lu, D. Filev et al. / Robotics and Autonomous Systems 114 (2019) 1–18 17

[27] P. Falcone, F. Borrelli, J. Asgari, H.E. Tseng, D. Hrovat, Predictive active steering
control for autonomous vehicle systems, IEEE Trans. Control Syst. Technol. 15
(3) (2007) 566–580.

[28] Y.A. Ghoneim,W.C. Lin, D.M. Sidlosky, H.H. Chen, Y.-K. Chin, Integrated chassis
control system to enhance vehicle stability, Int. J. Veh. Des. 23 (1–2) (2000)
124–144.

[29] Y. Kou, Development and Evaluation of Integrated Chassis Control Sys-
tems (Ph.D. dissertation), The University of Michigan, 2010.

[30] J.C. McCall, M.M. Trivedi, Video-based lane estimation and tracking for driver
assistance: survey, system, and evaluation, IEEE Trans. Intell. Transp. Syst. 7
(1) (2006) 20–37.

[31] S.D. Keen, D.J. Cole, Application of time-variant predictive control to mod-
elling driver steering skill, Veh. Syst. Dynam. 49 (4) (2011) 527–559.

[32] S. Zafeiropoulos, P. Tsiotras, Design of a lane-tracking driver steering assist
system and its interaction with a two-point visual driver model, in: American
Control Conference, Portland, OR, June 4–6, 2014, pp. 3911–3917.

[33] C. You, P. Tsiotras, Optimal two-point visual driver model and controller
development for driver-assist systems for semi-autonomous vehicles, in:
American Control Conference, Boston, MA, July 6–8 2016, pp. 5976–5981.

[34] J.-w. Choi, R. Curry, G. Elkaim, Path planning based on Bézier curve for au-
tonomous ground vehicles, in:World Congress on Engineering and Computer
Science, San Francisco, CA, October 22–24 2008, pp. 158–166.

[35] J.-w. Choi, R.E. Curry, G.H. Elkaim, Continuous curvature path generation
based on Bézier curves for autonomous vehicles, Int. J. Appl. Math. 40 (2)
(2010).

[36] T. Shim, G. Adireddy, H. Yuan, Autonomous vehicle collision avoidance system
using path planning andmodel-predictive-control-based active front steering
and wheel torque control, Proc. Inst. Mech. Eng. D J. Automob. Eng. 226 (6)
(2012) 767–778.

[37] M.A. Mousavi, Z. Heshmati, B. Moshiri, LTV-MPC based path planning of an
autonomous vehicle via convex optimization, in: 21st Iranian Conference on
Electrical Engineering, ICEE, Mashhad, Iran, May 14–16 2013, pp. 1–7.

[38] S. Ulbrich, M. Maurer, Probabilistic online pomdp decision making for lane
changes in fully automated driving, in: 16th International IEEE Conference on
Intelligent Transportation Systems, Hague, Netherlands, October 6–9 2013,
pp. 2063–2067.

[39] C. Katrakazas, M. Quddus, W.-H. Chen, L. Deka, Real-time motion planning
methods for autonomous on-road driving: state-of-the-art and future re-
search directions, Transp. Res. C Emerg. Technol. 60 (2015) 416–442.

[40] T. Hastie, R. Tibshirani, J. Friedman, Overview of supervised learning, in: The
Elements of Statistical Learning, Springer, 2009, pp. 9–41.

[41] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436–
444.

[42] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, vol. 1, no. 1,
MIT Press, Cambridge, 1998.

[43] S. Lange, M. Riedmiller, A. Voigtlander, Autonomous reinforcement learning
on raw visual input data in a real world application, in: International Joint
Conference on Neural Networks, IJCNN, Brisbane, QLD, Australia, June 10–15
2012, pp. 1–8.

[44] P. Abbeel, A.Y. Ng, Apprenticeship learning via inverse reinforcement learn-
ing, in: Proceedings of the 21st International Conference on Machine Learn-
ing, Banff, Canada, July 4–8 2004, p. 1.

[45] B.D. Ziebart, A.L. Maas, J.A. Bagnell, A.K. Dey, Maximum entropy inverse
reinforcement learning, in: AAAI, vol. 8, Chicago, IL, 2008, pp. 1433–1438.

[46] B.D. Ziebart, A.L. Maas, J.A. Bagnell, A.K. Dey, Human behavior modeling
withmaximum entropy inverse optimal control, in: AAAI Spring Symposium:
Human Behavior Modeling, 2009, p. 92.

[47] S. Levine, V. Koltun, Continuous inverse optimal control with locally optimal
examples, 2012, arXiv preprint arXiv:1206.4617.

[48] K.M. Kitani, B.D. Ziebart, J.A. Bagnell, M. Hebert, Activity forecasting, in:
European Conference on Computer Vision, Florence, Italy, October 7–13 2012,
pp. 201–214.

[49] M. Wulfmeier, P. Ondruska, I. Posner, Maximum entropy deep inverse rein-
forcement learning, 2015, arXiv preprint arXiv:1507.04888.

[50] C. Finn, S. Levine, P. Abbeel, Guided cost learning: Deep inverse optimal
control via policy optimization, in: International Conference on Machine
Learning, New York, NY, June 19–24 2016, pp. 49–58.

[51] M. Ardelt, P. Waldmann, F. Homm, N. Kaempchen, Strategic decision-making
process in advanced driver assistance systems, IFAC Proc. Volumes 43 (7)
(2010) 566–571.

[52] R. Zheng, C. Liu, Q. Guo, A decision-making method for autonomous vehicles
based on simulation and reinforcement learning, in: International Conference
onMachine Learning and Cybernetics, vol. 1, Tianjian, China, July 14–17 2013,
pp. 362–369.

[53] N. Li, D. Oyler, M. Zhang, Y. Yildiz, A. Girard, I. Kolmanovsky, Hierarchical rea-
soning game theory based approach for evaluation and testing of autonomous
vehicle control systems, in: IEEE 55th Conference onDecision and Control, Las
Vegas, NV, December 12–14 2016, pp. 727–733.

[54] D.W. Oyler, Y. Yildiz, A.R. Girard, N.I. Li, I.V. Kolmanovsky, A game theoretical
model of traffic with multiple interacting drivers for use in autonomous
vehicle development, in: American Control Conference, ACC, 2016, Boston,
MA, July 6–8 2016, pp. 1705–1710.

[55] R. Bellman, A Markovian decision process, J. Math. Mech. (1957) 679–684.
[56] P. Brémaud, Markov Chains: Gibbs Fields, Monte Carlo Simulation, and

Queues, vol. 31, Springer Science & Business Media, 2013.
[57] A. Defazio, T. Graepel, A comparison of learning algorithms on the arcade

learning environment, 2014, arXiv preprint arXiv:1410.8620.
[58] L. Baird, et al., Residual algorithms: Reinforcement learning with function

approximation, in: Proceedings of the 12th International Conference on Ma-
chine Learning, Miami, Florida, December 4–7 1995, pp. 30–37.

[59] S.-C. Wang, Artificial neural network, in: Interdisciplinary Computing in Java
Programming, Springer, 2003, pp. 81–100.

[60] J.M. Bernardo, A.F. Smith, Bayesian Theory, John Wiley & Sons, Canada, 2001.
[61] J.Q. Shi, T. Choi, Gaussian Process Regression Analysis for Functional Data, CRC

Press, 2011.
[62] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines

andOther Kernel-Based LearningMethods, CambridgeUniversity Press, 2000.
[63] S. Levine, Z. Popovic, V. Koltun, Nonlinear inverse reinforcement learningwith

Gaussian processes, in: Advances in Neural Information Processing Systems,
2011, pp. 19–27.

[64] C.J.C.H. Watkins, Learning from Delayed Rewards (Ph.D. dissertation), King’s
College, Cambridge, 1989.

[65] C.J. Watkins, P. Dayan, Q-learning, Mach. Learn. 8 (3–4) (1992) 279–292.
[66] H. Van Hasselt, A. Guez, D. Silver, Deep reinforcement learning with double

Q-learning. in: AAAI, 2016, pp. 2094–2100.
[67] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,

M. Riedmiller, Playing Atari with deep reinforcement learning, 2013, arXiv
preprint arXiv:1312.5602.

[68] H.R. Berenji, Fuzzy Q-learning: a new approach for fuzzy dynamic program-
ming, in: Proceedings of the 3rd IEEE Conference on Fuzzy Systems, Orlando,
FL, June 26–29 1994, pp. 486–491.

[69] M.L. Littman, Markov games as a framework for multi-agent reinforcement
learning, in: Proceedings of the 11th International Conference on Machine
Learning, vol. 157, New Brunswick, NJ, July 10–13 1994, pp. 157–163.

[70] J. Hu, M.P. Wellman, Nash Q-learning for general-sum stochastic games, J.
Mach. Learn. Res. 4 (Nov) (2003) 1039–1069.

[71] A. Greenwald, K. Hall, R. Serrano, Correlated Q-learning, in: Proceedings of the
12th International Conference on Machine Learning, vol. 3, Washington, DC,
August 21–24 2003, pp. 242–249.

[72] M.L. Littman, Friend-or-foe Q-learning in general-sum games, in: Proceed-
ings of the 18th International Conference on Machine Learning, vol. 1,
Williamstown, MA, June 28 – July 1 2001, pp. 322–328.

[73] A.Y. Ng, S.J. Russell, Algorithms for inverse reinforcement learning, in: Pro-
ceedings of the 17th International Conference onMachine Learning, Stanford,
CA, June 29–2000, pp. 663–670.

[74] E.T. Jaynes, Information theory and statistical mechanics, Phys. Rev. 106 (4)
(1957) 620–630.

[75] M. Dudık, R.E. Schapire, Maximum entropy distribution estimation with
generalized regularization, in: International Conference on Computational
Learning Theory, San Diego, CA, June 13–15 2006, pp. 123–138.

[76] R. Hecht-Nielsen et al, Theory of the backpropagation neural network, Neural
Netw. 1 (Suppl. 1) (1988) 445–448.

[77] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are
universal approximators, Neural Netw. 2 (5) (1989) 359–366.

[78] K. Hornik, Approximation capabilities of multilayer feedforward networks,
Neural Netw. 4 (2) (1991) 251–257.

[79] J. Audiffren, M. Valko, A. Lazaric, M. Ghavamzadeh, Maximum entropy semi-
supervised inverse reinforcement learning, in: International Joint Confer-
ences on Artificial Intelligence, Buenos Aires, Argentina, July 25–31 2015, pp.
3315–3321.

Changxi You received his B.S. and M.S. from the De-
partment of Automotive Engineering, Tsinghua Univer-
sity of China, and a second M.S. from the Department
of Automotive Engineering, RWTH-Aachen University of
Germany. He is currently a Ph.D. student at the School of
Aerospace Engineering, Georgia Institute of Technology.
His current research interests focus on system identifica-
tion, aggressive driving and control of (semi)autonomous
vehicle.

http://refhub.elsevier.com/S0921-8890(18)30202-1/sb27
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb27
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb27
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb27
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb27
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb28
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb28
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb28
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb28
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb28
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb29
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb29
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb29
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb30
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb30
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb30
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb30
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb30
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb31
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb31
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb31
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb35
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb35
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb35
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb35
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb35
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb36
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb36
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb36
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb36
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb36
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb36
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb36
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb39
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb39
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb39
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb39
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb39
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb40
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb40
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb40
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb41
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb41
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb41
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb42
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb42
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb42
http://arxiv.org/abs/1206.4617
http://arxiv.org/abs/1507.04888
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb51
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb51
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb51
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb51
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb51
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb55
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb56
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb56
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb56
http://arxiv.org/abs/1410.8620
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb59
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb59
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb59
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb60
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb61
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb61
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb61
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb62
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb62
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb62
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb63
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb63
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb63
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb63
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb63
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb64
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb64
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb64
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb65
http://arxiv.org/abs/1312.5602
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb70
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb70
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb70
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb74
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb74
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb74
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb76
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb76
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb76
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb77
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb77
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb77
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb78
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb78
http://refhub.elsevier.com/S0921-8890(18)30202-1/sb78


18 C. You, J. Lu, D. Filev et al. / Robotics and Autonomous Systems 114 (2019) 1–18

Jianbo Lu received his B.S. degree in mechanical en-
gineering from the Central South University, Changsha,
China, and the M.S. degree in mechanical engineering
from Arizona State University, and his Ph.D. degree in
aeronautics and astronautics from Purdue University. He
is currently a Technical Expert in advanced vehicle con-
trols at FordMotor Company, Dearborn,MI, USA.Heholds
more than 100U.S. patents and numerous pending patent
applications, and has publishedmore than 70 journal and
conference articles. His research interests include auto-
motive controls and sensing, adaptive vehicle systems,

driver assistance systems, smart mobility, and semiautonomous and autonomous
systems. Dr. Lu received the Henry Ford Technology Reward twice.

Dr. Dimitar P. Filev is a Senior Technical Leader — In-
telligent Control & Information Systems, Ford Research
& Advanced Engineering. He is conducting research in
modeling and control of complex systems, intelligent
control, fuzzy and neural systems, and their applications
to automotive engineering. He is recipient of the 2008
Norbert Wiener Award of the IEEE SMC Society, the 2007
IFSA Outstanding Industrial Applications Award, and the
highest FordMotor Company corporate awards — he was
awarded 5 times with the Henry Ford Technology Award
for development and implementation of advanced auto-

motive technologies and he received the 2010 Inaugural Haren Gandhi Research &
Innovation Award for his long term research contributions. He is past president of
NAFIPS and serves presently as VP for Cybernetics of the IEEE SMC Society. Dr. Filev
is a Fellow of IEEE and IFSA. He received his Ph.D. degree in Electrical Engineering
from the Czech Technical University in Prague in 1979.

Panagiotis Tsiotras is a Dean’s Professor in the School of
Aerospace Engineering at the Georgia Institute of Tech-
nology (Georgia Tech), and the Director of the Dynam-
ics and Controls Systems Laboratory (DCSL) in the same
school as well as an Associate Director of the Institute
for Robotics and Intelligent Machines at Georgia Tech. He
received his Ph.D. degree in Aeronautics and Astronautics
from Purdue University in 1993 and also holds degrees
inMathematics andMechanical Engineering. He has held
visiting research appointments at MIT, JPL, INRIA Roc-
quencourt, and Mines ParisTech. His research interests

include optimal control of nonlinear systems and ground, aerial and space vehicle
autonomy.

He has served in the Editorial Boards of the Transactions on Automatic Control,
the IEEE Control Systems Magazine, the AIAA Journal of Guidance, Control and
Dynamics and the journal Dynamics and Control. He is the recipient of the NSF
CAREER award and the Outstanding Aerospace Engineer award from Purdue. He
is a Fellow of AIAA, and a Senior Member of IEEE, and a member of the Phi Kappa
Phi, Tau Beta Pi, and Sigma Gamma Tau Honor Societies.


	Advanced planning for autonomous vehicles using reinforcement learning and deep inverse reinforcement learning
	Introduction
	Traffic Modeling
	Markov Decision Process
	System Modeling
	State Definition
	State Transitions


	Reinforcement Learning
	Reinforcement Learning Algorithms
	Reward Function
	Q-Learning

	Maximum Entropy Principle
	Maximum Entropy Principle
	Nonparameterized Features
	Parameterized Features

	Inverse Reinforcement Learning
	Reward Approximator
	MaxEnt Deep IRL Algorithm
	Model Learning
	IRL Algorithm

	IRL Algorithm Refinement

	Results and Analysis
	Traffic Simulator
	Driving Behavior from Reinforcement Learning
	Driving Behavior from Inverse Reinforcement Learning

	Conclusion
	Acknowledgments
	References


