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a b s t r a c t

In order to improve road safety, many advanced driver assist systems (ADAS) have been developed to
support human-decision making and reduce driver workload. Currently, the majority of ADAS employ a
single, often very simple, driver model to predict human-driver interaction in the immediate future (e.g.,
next few seconds). However, there is tremendous variability in how each individual drives, necessitating
personalized driver models, based on data collected from observed actual driver actions. Yet, because
we currently lack sufficient knowledge of the high-level cognitive brain functions, traditional control-
theoretic driver models have difficulty accurately predicting driver actions. Recently, machine-learning
algorithms have been utilized to predict future driver control actions. We compare several of these
algorithms used to predict the lateral control actions of human drivers. Specifically, we compare these
algorithms in terms of their suitability to develop haptic-shared ADAS, which share the control force
with the human driver. To this end, we need to know how the steering torque is provided by the driver.
However, low-cost driving simulators typically measure steering angle but not steering torque. Thus, this
work also proposes a methodology to estimate the steering-wheel torque. Using the estimated steering
torque, we train severalmachine learning driver controlmodels and compare the performance using both
simulated and real human-driving data sets.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

This paper addresses two problems. One deals with comparing
the performance of machine-learning-based human driver control
models. The second problem deals with estimating the unknown
torque input using steeringwheels found inmany low-cost driving
simulators. In this section, we first provide an overview of the
previous works on human driver control modeling, and then we
review the works on unknown steering-torque-estimation algo-
rithms.

Advanced driver assist systems (ADAS) that support human
drivers have been investigated for many years in an effort to
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increase road safety. In order to properly assist drivers, ADAS need
to accurately predict the immediate actions of the drivers, neces-
sitating a thorough investigation of human driver control models.
This raises a serious issue since one should consider the combined
vehicle–driver model when designing ADAS systems. However,
unlike the modeling of the vehicle, it is difficult to reliably model
human driver behavior.

The majority of modern control design methodologies are
model-based. That is, in order to design a vehicle control system,
a good vehicle model is required that, depending on the com-
plexity of the task, ranges from a simple point-mass model to a
complex rolling rigid vehicle model [1]. Parameter identification
of these models have been well established [2,3]. On the other
hand, similar identification techniques are lacking in the domain
of the human driver action models. While several control-theory-
based models that explicitly mimic high-level cognitive human
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brain functions have been proposed over the years (e.g., the two-
point visual control model [4–6]), it is still very challenging to
accurately predict human driver control actions using traditional
modeling methods. Recently, by taking advantage of the devel-
opment of computational resources and available data, machine-
learning algorithms have succeeded in many challenging pattern-
recognition and inference tasks. Themain objective of this paper is
to compare the accuracy of the predicted lateral control actions
of human drivers in the immediate future using such machine-
learning techniques.

Investigations related to the use of machine-learning algo-
rithms to identify the intentions and actions of human drivers
have been attempted in the past. In the late ‘90s, a hidden Markov
model (HMM) was employed by Pentland and Liu to predict driver
intention [7], and following that work HMMs have been one of the
most popular methods for identifying human driver intention [8–
10]. Recently, other algorithms have been employed. Aoude et al.
[11], for instance, developed two human-driver-intention-
identification algorithms, specifically designed to work at road
intersections. The first technique utilizes support vector machines
(SVM) and a Bayesian filter, and the other technique uses HMMs.
The authors of [11] used real-world traffic data and demonstrated
that both methods outperform traditional statistical models. Fur-
thermore, a dynamic Bayesian network employed in [12] was able
to identify the fatigue level of human drivers. In addition, based
on a k-nearest neighbors (kNN) algorithm and an SVM, driving
skills while negotiating curves were classified in [13]. In [14,15]
machine-learning techniques were used to decrease the computa-
tional cost for vehicle-motion prediction in traffic. Furthermore, a
random-forest classifier [16] used in [17] was able to classify each
human driver using the controller-area-network (CAN) data found
in all ADAS-enabled vehicles. The authors of [17] also warned
that this information-extraction capability is a potential threat to
privacy. Note that all these prior works are based on classification
algorithms.

The attempt to learn control inputs from human demonstra-
tions, called learning from demonstration (LfD), has been an ac-
tive research topic in the robotics community [18]. Several re-
searchers compared the LfD performance. For example, Nguyen-
Tuong et al. [19] compared several regressionmethods to learn the
inverse dynamics of a robot arm and concluded that GP regression
and support vector regression achieve higher learning accuracy
than locally weighted projection regression (LWPR). Several LfD
works have been proposed in the vehicle-control area, such as a
Gaussian Process (GP) regressionmethod [20] thatmodels human-
driver braking actions and Gaussian Mixture Models (GMMs) that
models the longitudinal control actions of humandrivers [21]. Also,
the performance of a GMM-based driver model was compared
against a stimulus–response and an optimal velocity models [22].
Furthermore, the authors of [23] utilized themaximumentropy in-
verse reinforcement learning algorithm [24] to learn driving styles.
Lefèvre et al. [25] compared the performance of driver longitudinal
controlmodels andobserved that simple parametricmodels exhib-
ited sound predictions for short-term horizons, while, with long-
term prediction horizons, non-parametric models, such as HMM
with Gaussian mixture regression [26], outperform parametric
models. Finally, but equally importantly, Wei et al. [27] compared
the performance between receding horizon controller (RHC)-based
and artificial neural network (ANN)-based models to predict a
professional driver’s driving actions and found that the ANN-based
model outperforms the RHC-based model. Recently, researchers
have utilized these human driver control models to improve the
performance of ADAS.

Based on identified driver control models, several newly devel-
opedADASpredict the future behavior of a humandriver, and com-
pute the necessary corrections to achieve higher performance than

solely-human-driven vehicles. For instance, Di Cairano et al. [28]
developed a Markov chain that predicts the future throttle-power
request by the human driver. The predicted power request is then
fed into a model predictive controller (MPC) as an input. The re-
sulting controller improved the fuel efficiency of a hybrid electrical
vehicle. The ADAS developed by Lefèvre et al. [29] controls the
longitudinal motion of a vehicle. The control signal is computed
so that the signal is similar to the predicted desired action of
the human driver and, at the same time, satisfies the safety con-
straints. In addition, Liu et al. [30] developed an ADAS that corrects
the steering angle of the front wheel of the vehicle to increase
safety when the human driver is distracted. This ADAS is activated
only when it predicts that the human driver will violate the pre-
specified safety constraints. A similar situation is dealt with by the
ADAS proposed Shia et al. [31], which corrects the steering wheel
angle onlywhen the safety constraints are predicted to be violated.

The ADAS introduced above share the input to the vehicle sys-
tem with the human driver. Thus, they are categorized as ‘‘input-
mixing shared control,’’ which directly changes the input to the
controlled system [32]. Driver control models that output steering
angles are, for instance, [4,27,33–36]. According to [32], there
exist another category, called the ‘‘haptic shared control,’’ which
shares the input forces with the human operator. Such ADAS are
introduced in [37,38], which employ driver control models that
output steering torque and compute correction torque based on
the predicted torque generated by the humandriver controlmodel.

Driver control models that output steering torque have been
proposed by several researchers [5,6,39]. According to [40], hap-
tic shared control is more beneficial than input-mixing control,
because human drivers can always remain in control and con-
tinuously receive feedback from the ADAS. We conjecture that in
emergency situations, input-mixing-shared-control-basedADAS is
more suitable because the top priority is to avoid accidents, while
in other situations, such as lane keeping on highways, the haptic-
shared-control approach is more suitable to tailor the system out-
put to the preference of the human driver. Thus, in this work we
perform a comparative study of machine-learning-based human
driver control models which output steering-wheel torque. How-
ever, while the training of such models require torque data, con-
ventional steering wheels for driving simulators are not equipped
with torque sensors. We conjecture that this limitation leads to
the limited number of available research works on haptic-shared
control ADAS compared to input-mixing control ADAS. Thus, in this
work we propose an approach to estimate the unknown steering-
torque input to the steering wheel of a driving simulator in Sec-
tion 3.

Many researchers employ driving simulators to verify their
algorithms because use of real vehicles involves high operational
cost and risk of accidents. Indeed, many realistic, low-cost driving
simulators have been developed either with a fixed [39,41,42]
or moving base [13,33]. Thanks to the recent development of
computer graphics, these simulators offer a realistic experience
to the driver. However, these simulators may not be suitable for
testing haptic-shared-control-based ADAS since – most often than
not – they use steering wheels that measure steering-wheel angle
but not steering wheel torque. This which implies neglecting the
interactions between the human-driver and the steering-wheel
dynamics. In order to capture this interaction between a human
driver and the vehicle, it is imperative to infer the actual driver
control command, namely, steering torque, not steering angle [43].

In order to estimate the unknown steering-torque input, we
also need to estimate the unknown steering-wheel system param-
eters. In this work we assume the availability of a steering wheel
that: (a) measures steering wheel angle only and not steering
wheel torque; and (b) has force-feedback functionality. Note that
many real vehicles measure the steering-wheel torque to provide
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power steering. Thus, the methods discussed in this paper may
not be necessary for cases that employ real vehicles with steering-
torque sensors.

A preliminary version of this work was presented in [44]. The
current, and more elaborated version of the work in [44] contains
a more extensive discussions on the results, and includes a discus-
sion for estimating the delivered driver torque using only steering
angle feedback.

The remainder of this paper is organized as follows. Section 2
introduces the methods we employ to model the lateral control
actions of human drivers. The output of these methods are pre-
dicted values of the human steering torque. Thus, to evaluate the
performance of these algorithms, we need the ground-truth of the
steering input torque, which is unknown if a steering wheel is
not equipped with a torque sensor is used, thus necessitating a
suitable estimation algorithm. To this end, Section 3 formulates
the unknown steering torque input estimation problem, intro-
duces previous methods, and proposes such an algorithm. Next,
in Section 4, we verify the steering-torque-estimation algorithm
using numerical simulations and real human driving data. After
establishing the soundness of the proposed steering torque input
estimation algorithm, in Section 5, we evaluate the performance
of the machine-learning methods to model human driver lateral
control actions introduced in Section 2 using synthetic data gen-
erated from a human control model, as well as real data obtained
from a driving simulator driven by a human subject. We discuss
the results of these experiments in Section 6.

2. Driver steering torque prediction

We wish to predict the driver’s torque at the current time step
given some feature values at the current and several previous time
steps. This section introduces the feature vector and the machine-
learning approacheswe use to identify the driver’s steering torque.

Note that, while many deep-learning-based approaches such
as [45] and [46] have been proposed in the literature, we do not use
such approaches in this work, because in order to train a deep neu-
ral network, one needs a significant amount of data. For instance,
the work in [45] collected 12 hours of simulated driving data, and
the work in [46] collected 72 hours of real-world driving data.
Obtaining such large amounts of data may be time-consuming
and expensive. By properly designing the feature vector, this work
shows that we can achieve good prediction performance without
the need to collect a massive amount of data.

2.1. Feature vector

This work follows themodeling framework of the sensorimotor
two-point visual control model [5], which is depicted in Fig. 1.
The system consists of five subsystems: the road geometry, the
perception subsystem, the driver, the steering column, and the
vehicle dynamics subsystem. The road geometry outputs road
curvature ρ. The inputs of the perception subsystem are ρ, side-
slip angle β , yaw rate r , and the outputs are two view-ahead
angles called θnear and θfar. The driver subsystem processes these
two angles to compute the steering torque Tdr. As it is difficult to
measure θnear and θfar, the perception and the driver subsystems
are combined in this work, and we call the combined subsystem
the ‘‘human driver’’ subsystem, as shown inside the dashed box
in Fig. 1. By introducing this human driver subsystem, we do not
have to consider the angles θnear and θfar. Instead, we employ the
more easily measurable inputs and outputs to design regression
methods that identify the steering torque Tdr. The inputs to the
human driver subsystem are ρ,β , r and the steering-wheel angle δs
and the output is Tdr. Thus, our objective is to find the relationship
between these inputs and the output.

Fig. 1. The sensorimotor two-point visual control model framework.

In order to incorporate sequential changes of the inputs for the
last ℓ∆t s, where ℓ = 1, 2, . . . and∆t > 0 is the sampling interval,
we introduce the following feature vector z(tk) ∈ Rd:

z(tk) = [ρ(tk), β(tk), r(tk), δs(tk), Tdr(tk−1),
ρ(tk−1), β(tk−1), . . . , δs(tk−ℓ)]⊤, (1)

where k = 1, 2, . . . is the time-step index. Note that this work
assumes that the input variables at the current time step are avail-
able, eliminating the modeling error of other subsystems (i.e., ve-
hicle and steering column dynamics). This assumption enables
direct comparison of the estimation performance of Tdr. We set
the time discretization as ∆t = 1/ℓ s so that z(tk) includes the
input variables over the previous time step and the steering torque
output at the previous∆t, 2∆t, . . . , ℓ∆t(= 1) s. The objective is to
estimate the following nonlinear function f : Rd

→ R

Tdr(tk) = f (z(tk)). (2)

2.2. Piecewise linear models

To benchmark the performance of the machine-learning meth-
ods we consider in this work, we quickly review two simple mod-
els, namely, Piecewise ConstantModel (PCM) and Piecewise Linear
Model (PLM). Both models disregard much of the information in
z(tk). We thus expect that the other machine-learning methods
outperform these two naïve approaches. Nonetheless, it is imper-
ative to consider these two models in order to find the minimum
performance requirements for the machine-learning-based meth-
ods.

The PCM assumes that the current driver torque is the same as
the driver’s torque at the previous time step, namely,

T PCM
dr (tk) = Tdr(tk−1). (3)

This model does not incorporate the other entries in z(tk) so we
expect a good prediction performance only for smooth steering
commands and sufficiently small ∆t .

The PLM considers the time derivative of Tdr as follows

T PLM
dr (tk) = Tdr(tk−1)+

dTdr
dt

⏐⏐⏐⏐
tk−1

∆t, (4)

where we approximate the time derivative of Tdr at t = tk−1 as

dTdr
dt

⏐⏐⏐⏐
tk−1

≈
Tdr(tk−1)− Tdr(tk−2)

∆t
. (5)

With the estimated value of the time derivative of Tdr we expect
that this model exhibits a more accurate prediction than PCM, as
long as the steering command is smooth and ∆t is sufficiently
small.Models based on higher-order derivatives of Tdr, e.g., the sec-
ond derivative of Tdr are also possible. However, since our research
interest lies in the evaluation of more sophisticated machine-
learning-based algorithms, the previous two PCM and PLMmodels
are sufficient for our purposes.
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2.3. Gaussian process regression

In this section we briefly summarize Gaussian Process (GP)
regression and how it is used for our problem. For a more detailed
discussion, we refer the reader to [20]. A GP is a non-parametric
kernel-based method represented as a collection of random vari-
ables, any finite number of which have a joint Gaussian distribu-
tion.

The training of a GP regression assumes an independent, iden-
tically distributed (i.i.d.) Gaussian observation noise ϵ

Tdr = f (z)+ ϵ, ϵ ∼ N (0, σ 2
n ). (6)

We let D = {z(tk), Tdr(tk)}
ND
k=1 denote the training data set. For

simplicity, this section omits the argument tk, and we let z be z(tk)
and z ′ be z(tk′ ), where k, k′ ∈ {1, . . . ,ND} is the index for the
training data set.

The mean m(z) and covariance functions k̄(z, z ′) specifies a GP
as follows

m(z) = E[f (z)], (7)

k̄(z, z ′) = E[(f (z)−m(z))(f (z ′)−m(z ′))], (8)

and hence a GP is often written as f (z) ∼ GP
(
m(z), k̄(z, z ′)

)
.

Here, for simplicity, we describe the training and prediction of
zero-mean GP that is, GP(0, k̄(z, z ′)). The kernel we employ is the
exponential kernel covariance function

k̄(z, z ′|σℓ, σf ) = σ 2
f exp

(
−

r(z, z ′)
σℓ

)
, (9)

where σℓ is the characteristic length scale, σf is the signal standard
deviation, and r(z, z ′) is the Euclidean distance between z and z ′.
The prior covariance matrix of the observations with noise is

KTdr (Z, Z) = K (Z, Z)+ σ 2
n I, (10)

where Z = [z(t1), . . . , z(tND )], and [K (Z, Z)]k,k′ = k̄(z, z ′). The
hyper-parameters σℓ, σf , and σn are tuned during training.

The GP regression estimates the response Tdr∗, given a new in-
put data set Z∗, where we assume a normal distribution Pr(Tdr∗|Z∗,
D). Because the joint distribution of the observed target and func-
tion values at test locations under the above prior is[
Tdr
Tdr∗

]
∼ N

(
0,
[
KTdr (Z, Z) K (Z, Z∗)
K (Z∗, Z) K (Z∗, Z∗)

])
, (11)

the following conditional probability distribution of the function
values at the test locations hold

Pr(Tdr∗|Z∗,D) ∼ N (mean(Tdr∗), cov(Tdr∗)), (12)

where

mean(Tdr∗) = E[Tdr∗|Z, Tdr, Z∗] (13)

= K (Z∗, Z)K−1Tdr
(Z, Z)Y , (14)

cov(Tdr∗) = K (Z∗, Z∗)− K (Z∗, Z)K−1Tdr
(Z, Z)K (Z, Z∗), (15)

and Y = [Tdr(t1), . . . , Tdr(tND )]
⊤. Thus, given a new feature vector

z(tk), the GP regression predicts the driver torque as

TGP
dr (tk) = K (z(tk), Z)K−1Tdr

(Z, Z)Y . (16)

Letting θ = (σℓ, σf , σn) ∈ Θ , the parameter vector θ is tuned
during the training process of the GP regression model, such that

θ∗ = argmax
θ∈Θ

Pr(Y |Z, θ ), (17)

where

Pr(Y |Z, θ ) = N (0, KTdr (Z, Z)). (18)

In order to compute θ∗, we take the log of the conditional distribu-
tion in Eq. (18). Thus,

log Pr(Y |Z, θ ) = −
1
2
Y⊤K−1Tdr

(Z, Z)Y−
1
2
log|KTdr (Z, Z)|−

ND

2
log 2π,

(19)

and we maximize this function with respect to θ .

2.4. Gaussian mixture regression

GaussianMixture Regression (GMR) is amultivariate nonlinear-
function-regression method. To simplify the notation, we again
omit tk in the following discussion. GMR assumes that the joint
distribution Pr(z, Tdr) is represented as a GMM with NG Gaussian
functions:

Pr(z, Tdr) =
NG∑
i=1

πiN (z, Tdr;µi, Σi), (20)

where πi is the initial probability for (z, Tdr) to lie in the ith Gaus-
sian, and µi and Σi are the mean and the covariance matrix of the
ith Gaussian, defined as

µi =

[
µz

i

µ
Tdr
i

]
, Σi =

[
Σ zz

i Σ
zTdr
i

Σ
Tdrz
i Σ

TdrTdr
i

]
. (21)

The number of Gaussians, NG, is tuned based on the Akaike and
Bayesian information criteria (AIC [47] and BIC [48], respectively).
We then compute the conditional probability Pr(Tdr|z, i) as

Pr(Tdr|z, i) = µ
Tdr
i +Σ

Tdrz
i (Σ zz

i )−1(z − µzz
i ). (22)

Thus, a GMR estimates the driver’s torque Tdr =
∑NG

i=1 hi(z) Pr
(Tdr|z, i) from

TGMR
dr =

NG∑
i=1

hi(z)
[
µ

Tdr
i +Σ

Tdrz
i (Σ zz

i )−1(z − µzz
i )
]
, (23)

where hi(z) ∈ [0, 1] is the probability of z to belong to the
ith Gaussian hi(z) = N (z;µz

i , Σ zz
i ) and normalized such that∑NG

i=1 hi(z) = 1.

2.5. Hidden Markov model Gaussian mixture regression

The HMM-GMR [26] combines a GMR with a hidden Markov
model (HMM) and considers both the spatial and sequential in-
formation of z(tk) by incorporating transitions between Gaussians
from the recursive computation of the weights in Eq. (23) as

hi(z(tk)) =

(∑NG
j=1 hj(z(tk−1))aji

)
ĥi(z(tk))∑NG

l=1

[(∑NG
j=1 hj(z(tk−1))ajl

)
ĥl(z(tk))

] , (24)

where ĥi(z(tk)) = N (z(tk);µz
i , Σ z

i ), and aji is the transition proba-
bility from the jth Gaussian to the ith Gaussian. In order to train the
transition probability aji, we use the Baum–Welch algorithm [49],
an expectation maximization algorithm. The prediction of HMM-
GMR is

T HMM-GMR
dr (tk) =

NG∑
i=1

hi(z)
[
µ

Tdr
i +Σ

Tdrz
i (Σ zz

i )−1(z − µzz
i )
]
, (25)

where z, as before, denotes z(tk).
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2.6. Artificial neural network

While currently many complicated and deep artificial neural
networks (ANN) are being proposed such as [46], because of the
size of our data set, and to prevent overfitting, this work employs
a simple ANN that has one hidden layer with Nh nodes. At each
hidden unit i ∈ {1, . . . ,Nh}, the input vector z(tk) is multiplied by
a weight vector W i

h ∈ Rd such that hi
= W i⊤

h z(tk) + bih, where
bih ∈ R is a bias-term vector. Then, the signal hi becomes an input
of a nonlinear transfer function φ : R→ [−1, 1]. This work uses a
hyperbolic tangent function: φ(hi) = 2/(1+ exp(−2hi))− 1. Then,
the output of the hiddennodesφ(h) = [φ(h1), . . . , φ(hNh )]⊤ ∈ RNh ,
becomes the input of the last layer, the output of which is the
predicted Tdr by this ANN

TANN
dr (tk) = W⊤o φ(h)+ bo, (26)

where Wo ∈ RNh and bo ∈ R. The training of the ANN deals
with finding the best parameters Wh,Wo, bh, and bo, such that the
output in Eq. (26) best fits the training and validation data sets.

3. Steering torque input and parameter estimation

In Section 2, we briefly introduced the driver lateral control
prediction methods to be experimentally compared in this work.
However, in order to evaluate the performance of eachmethod, we
need to have the values of the steering torque, namely, {Tdr(tk)}

ND
k=1.

Often this is not directly measurable, unless the steering wheel
is equipped with a torque sensor, which conventional steering
wheels for driving simulators are not equipped with. To this end,
this section formulates the unknown steering torque input estima-
tion problem and introduces a method to estimate the steering-
wheel system parameters and the unknown steering-torque input.

3.1. Steering torque input estimation

The steering column dynamics can be modeled as follows:

Js
d2

dt2
δs(t)+ bs

d
dt

δs(t) = Tdr(t)+ Taln(t), (27)

where Js is the steering columnmoment of inertia, bs is the friction
coefficient of the steering column, δs is the steering wheel angle,
Tdr is the unknown steering torque from a human driver, and
Taln is the alignment torque from the front tires. Note that in a
simulation environment, Taln is available. Therefore, our problem
setup assumes that the value of Taln(t) is known. Consequently, we
estimate the system state x(t), the systemparameters Js and bs, and
the unknown input Tdr(t).

We rewrite the steering column system (27) as

d
dt

x(t) =
[
0 1
0 −bs/Js

]
x(t)+

[
0

1/Js

]
Taln(t)

+

[
0

1/Js

]
Tdr(t), (28)

y(t) =
[
180/π 0

]
x(t), (29)

where x(t) = [δs(t), ωs(t)]⊤, with ωs being the angular velocity of
the steering wheel.

Our approach consists of the following two steps. The first step
employs the force-feedback functionality of the steering wheel
to collect data to estimate the system parameters. Note that, at
this step, we steer the steering wheel only by the force-feedback
functionality and do not employ any human torque. Thus, we do
not have any unknown inputs in this data set, i.e., Tdr = 0. In the
second step, the estimated Js and bs are employed to estimate the
unknown input Tdr. To this end, we employ a PI observer.

Our approach is based on the full-order observer design [50].
Suppose we have a linear time-invariant (LTI) system:
d
dt

x(t) = Ax(t)+ Buu(t)+ Bvv(t), (30a)

y(t) = Cx(t), (30b)

where x ∈ Rnx is the system state, y ∈ Rny is the output u ∈ Rnu

is the known input, and v ∈ Rnv is the unknown input. Here, based
on the discussion in [51], we assume that
d
dt

v(t) = 0, (31)

and rewrite the system as follows

d
dt

[
x(t)
v(t)

]
=

[
A Bv

0 0

][
x(t)
v(t)

]
+

[
Bu
0

]
u(t). (32)

Then, we design a PI observer as follows:
d
dt

z(t) = Fz(t)+ (L1 + L2)y(t)+ Ju(t)+ T1Bv v̂(t), (33a)

d
dt

v̂(t) = L3(y(t)− ŷ(t)), (33b)

x̂(t) = z(t)+ T2y(t), (33c)
ŷ(t) = C x̂(t), (33d)

where z ∈ Rnx , x̂ ∈ Rnx is the estimated state, and v̂ ∈ Rnv

is the estimated unknown input. Our objective here is to design
the matrices F , L1, L2, L3, J, T1, T2 such that both e(t) ≜ x(t)− x̂(t)
and ev(t) ≜ v(t) − v̂(t) are exponentially stable at the origin. The
following theorem summarizes our approach.

Theorem 1. Given an LTI system (30) and the assumption that the
pair([

A Bv

0 0

]
,
[
C 0

])
(34)

is detectable, one can design a PI observer that estimates the unknown
input and achieves the exponential stability of e(t) and ev(t) at the
origin using the following process:

1. Design T1 and T2 such that[
T1 T2

]
=

[
Inx
C

]+
, (35)

where, since rank[Inx C
⊤
]
⊤
= nx,[

T1 T2
] [Inx

C

]
= Inx . (36)

2. Determine F , L1, and J from

F = T1A− L2C, (37a)

L1 = FT2, (37b)

J = T1Bu. (37c)

3. Design matrices V1 ⪰ 0 and V2 ≻ 0. Then L2 and L3 are
determined from[
L2
L3

]
= Q C̃⊤V−12 , (38)

where Q is the solution of the following observer Riccati equa-
tion:

0 = ÃQ + Q Ã⊤ + V1 − Q C̃⊤V−12 C̃Q , (39)

where

Ã =
[
T1A T1Bv

0 0

]
, C̃ =

[
C 0

]
(40)
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Proof. It follows from (36) that

e(t) = T1x(t)− z(t). (41)

Accordingly, it follows from (33) that

d
dt

[
e(t)
ev(t)

]
=

[
F T1Bv

−L3C 0

][
e(t)
ev(t)

]
+

[
T1A− FT1 − (L1 + L2)C

0

]
x(t)

+

[
T1Bu − J

0

]
u(t). (42)

Thus, using (37)

d
dt

[
e(t)
ev(t)

]
=

[
T1A− L2C T1Bv

−L3C 0

][
e(t)
ev(t)

]
. (43)

Thus, if the matrix

Aobs ≜

[
T1A− L2C T1Bv

−L3C 0

]
(44)

is Hurwitz, then e(t) and ev(t) are exponentially stable at the origin.
Since

Aobs = Ã−
[
L2
L3

]
C̃, (45)

the L2 and L3 determined from (38) makes Aobs Hurwitz. Note
that (39) has a solution because the pair (Ã, C̃) is detectable from
the following PBH test. Since the pair in (34) is detectable, it follows
that

rank

([sInx − A −Bv

0 sInv

C 0

])
= nx + nv ∀s ∈ C+. (46)

We check the detectability condition of the pair (Ã, C̃) as follows

rank

([
sInx+nv − Ã

C̃

])
= rank

⎛⎜⎝
⎡⎢⎣sInx − T1A −T1Bv

0 sInv
C 0

⎤⎥⎦
⎞⎟⎠ (47)

= rank

⎛⎜⎝
⎡⎢⎣s(T1 + T2C)− T1A −T1Bv

0 sInv
C 0

⎤⎥⎦
⎞⎟⎠ (Eq.(36))

(48)

= rank

⎛⎜⎝
⎡⎢⎣T1 0 sT2

0 Inv 0
0 0 Iny

⎤⎥⎦
⎡⎢⎣sInx − A −Bv

0 sInv
C 0

⎤⎥⎦
⎞⎟⎠ . (49)

The first matrix of the right hand side of (49) is invertible. Thus,

rank
([

sInx+nv − Ã
C̃

])
= rank

([sInx − A −Bv

0 sInv

C 0

])
= nx + nv ∀s ∈ C+. (50)

Thus, the pair (Ã, C̃) is also detectable. ■

Remark 1. In [50], the authors employ a pole placement method
assuming the pair (Ã, C̃) is observable, which is more strict than
our detectability assumption.

Remark 2. Note that, in our case with (28) and (29), the pair
in (34) is detectable. Thus, it follows from Theorem 1 that one can
estimate the unknown input v = Tdr.

Remark 3. Besides the PI observer [50,52,53], which we employ in
this paper, there are two othermainmethods to estimate unknown

inputs. One method is the unknown input observer (UIO) [54,55].
UIO assumes the UI decoupled condition

rank(CBv) = rank(Bv), (51)

where C is the observation matrix, and Bv is the input matrix
corresponding to the unknown input. Note that this UI decou-
pled condition does not hold for our setting because, in our case,
C =

[
180/π 0

]
and Bv =

[
0 1/Js

]⊤. The second approach
for unknown input estimation is to employ EKF or UKF [56,57].
However, as discussed in [56], to estimate unknown inputs, the
number of measurements needs to be larger than the total number
of unknown inputs. Since our problem setup assumes single output
(δs) and single unknown input (Tdr), we cannot use this approach,
either.

3.2. Steering wheel parameter estimation

In order to estimate the state and the unknown parameters of
the system we use a joint EKF estimator. We assume that we have
a nonlinear discrete system with unknown parameters:

xs(k+ 1) = f̄ (xs(k), u(k), xp(k))+ ws(k), (52)

xp(k+ 1) = xp(k)+ wp(k), (53)

y(k) = h̄(xs(k), xp(k))+ v(k), (54)

where xs, xp, y are the system state, system parameter, and obser-
vation, respectively. Furthermore, ws, wp, and v are state process,
parameter process, and observation noise, respectively, which we
assume to be zero-mean Gaussian. The joint EKF concatenates
the system state and system parameters into a single, joint state
vector: z(k) = [xs(k)⊤, xp(k)⊤]⊤. Thus, by estimating the value of
z(k), we simultaneously estimate the system state and parameters.
The system can be written as

z(k+ 1) = f (z(k), u(k))+ w(k), (55)

y(k) = h(z(k))+ v(k), (56)

where w ∼ N (0,Qz) and v ∼ N (0, R). The first step is the
prediction step. With ẑ and Φ being the estimations of z and
the joint state covariance matrix, respectively, the joint state and
covariance matrix are predicted as

ẑ−(k) = f (ẑ(k− 1), u(k− 1)), (57)

Φ−(k) = Jz(k)Φ(k− 1)J⊤z (k)+ Qz, (58)

where ẑ− and Φ− are the predictions of z and Φ , respectively. The
measurement update is conducted as

K (k) = Φ−(k)H⊤(k)
[
R+ H(k)Φ−(k)H⊤(k)

]−1
, (59)

ẑ(k) = ẑ−(k)+ K (k)
[
y(k)− h(ẑ−(k))

]
, (60)

Φ(k) = [I − K (k)H] Φ̂−(k), (61)

where

Jz(k) =
∂ f
∂z
|ẑ(k−1), H(k) =

∂h
∂z
|ẑ−(k−1). (62)

In addition, and similarly to the joint EKF, a joint UKF can also be
used to estimate the unknown system parameters by concatenat-
ing the system state and parameters into a single, joint state vector
z(k) = [xs(k)⊤, xp(k)⊤]⊤. The first step of the joint UKF is to create
a matrix that consists of sigma points X ∈ Rn×(2n+1) and weight
vectors Wp

c ,W
p
m ∈ R1×(2n+1), where n is the dimensionality of the

concatenated state z.

X (k− 1) =
[
ẑ(k− 1), ẑ(k− 1)+

√
λ+ n

√
Φ(k− 1), ẑ(k− 1)

−
√

λ+ n
√

Φ(k− 1)
]
, (63)
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Jz(k) =

⎡⎢⎣1 ∆t 0 0
0 1− b−s (k)∆t/J−s (k)

(
b−s (k)ω

−
s (k)− u(k)

)
∆t/J−s (k)2 −ω−s (k)∆t/J−s (k)

0 0 1 0
0 0 0 1

⎤⎥⎦ , (79)

H(k) = [180/π 0 0 0], (80)

Box I.

Wc =

[
λ

λ+ n
,

1
2(λ+ n)

, . . . ,
1

2(λ+ n)

]
, (64)

Wm =

[
λ

λ+ n
+ 1− α2

+ β,
1

2(λ+ n)
, . . . ,

1
2(λ+ n)

]
.

(65)

Also, λ = α2(nx+κ)−nx is a scaling parameter. The parameters α,
β , and κ are the tuning parameters for UKF. Then, we perform the
noise-free state propagation of the sigma points

X ∗(k)[i] = f (X (k− 1)[i], u(k− 1)) i = 1, . . . , 2n+ 1, (66)

where X (k− 1)[i] represents the ith column of X (k− 1). Using the
updated sigma points and the corresponding weights, we predict
the joint state and covariance matrix as follows:

ẑ−(k) =
2n+1∑
i=1

Wm[i]X ∗(k)[i], (67)

Φ−(k) = Q +
2n+1∑
i=1

Wc[i]
(
X ∗(k)[i] − ẑ−(k)

) (
X ∗(k)[i] − ẑ−(k)

)⊤
,

(68)

whereWm[i] andWc[i] represent the ith component ofWm andWc .
We perform the measurement update first by updating the sigma
points around ẑ−(k)

X̄ (k) =
[
ẑ−(k), ẑ−(k)+

√
λ+ n

√
Φ−(k), ẑ−(k)

−
√

λ+ n
√

Φ−(k)
]
, (69)

and second by obtaining the predicted observation of sigma points,
Y ∈ Rny×(2n+1)

Y(k)[i] = h(X̄ (k)[i]) i = 1, . . . , 2n+ 1, (70)

where ny is the dimensionality of the observation vector y in
Eq. (56). The measurement update is given as follows:

ŷ(k) =
2n+1∑
i=1

Wm[i]Y(k)[i], (71)

S(k) = R+
2n+1∑
i=1

Wc[i]
(
Y(k)[i] − ŷ(k)

) (
Y(k)[i] − ŷ(k)

)⊤
, (72)

Φzy(k) =
2n+1∑
i=1

Wc[i]
(
X̄ (k)[i] − ẑ−(k)

) (
Y(k)[i] − ŷ(k)

)⊤
, (73)

K (k) = Φzy(k)S(k)−1, (74)

ẑ(k) = ẑ−(k)+ K (k)(y(k)− ŷ(k)), (75)

Φ(k) = Φ−(k)− K (k)S(k)K (k)⊤. (76)

3.3. Details of overall proposed approach

So far, we have introduced the methods we utilize in the pro-
posed approach. Next, we explain how we used these methods for

estimating the steering input torque. We first conducted a system
identification experiment, which is summarized in Algorithm 1.
After the system parameters were estimated, we conducted the
unknown input estimation using a PI observer as described in
Algorithm 2.

First, we identified the system parameters Js and bs using a joint
E/UKF. In our joint E/UKF setting, we define the joint state vector
z(k) = [δs(k), ωs(k), Js(k), bs(k)]⊤. The system dynamics of z(k) is

z(k+ 1) =

⎡⎢⎣1 ∆t 0 0
0 1− bs∆t/Js 0 0
0 0 1 0
0 0 0 1

⎤⎥⎦ z(k)

+

⎡⎢⎣ 0
∆t/Js
0
0

⎤⎥⎦ u(k)+ w(k), (77)

y(k) =
[
180/π 0 0 0

]
z(k)+ v(k), (78)

where ∆t is the sampling time interval. Note that u(k) = Taln(k)
for Algorithm 1 and u(k) = Taln(k) + Tdr(k) for Algorithm 2. The
Jacobians needed for the joint EKF are given in Box I where ẑ−(k) =
[δ−s (k), ω−s (k), J

−
s (k), b−s (k)]

⊤.

Algorithm 1 Steering Wheel System Identification.
Input: DSynthetic = {δs(1), . . . , δs(T ), Taln(1), . . . , Taln(T )}
Output: Js, bs
1: Specify initial guess: x0, Φ0, Js0, bs0
2: Specify process and observation covariance matrices: Q , R
3: Make joint state z0 = [x0, Js0, bs0]⊤.
4: for k=1:T do
5: Joint state prediction via Eqs. (57)–(58) or Eqs. (67)–(68).
6: Joint state measurement update via Eqs. (60)–(61) or Eqs.

(75)–(76).
7: end for
8: if Covnergence then
9: Return Js(T ), bs(T )

10: else
11: Change initial guess or covariancematrices and restart from

line 3.
12: end if

Algorithm 2 Unknown Steering Torque Tdr Estimation.
Input: D = {δs(1), . . . , δs(T ), Taln(1), . . . , Taln(T ), Js, bs}
Output: Tdr(1), . . . , Tdr(T )
1: Specify V1 and V2 and compute the design matrices using

Theorem 1
2: for k=1:T do
3: Run the PI observer (33).
4: end for
5: Tdr ← v̂.
6: Return Tdr.
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Remark 4. While a dual EKF can be applied to estimate unknown
parameters [58,59], the dual EKF cannot estimate the parameters
of the steering wheel because, in the case of the dual EKF, the
Jacobian of hwith respect to the parameters for our case is

Hp = C
∂

∂xp
f (xs, xp, u) =

[
180/π 0

]
×

[
0 0

bsωs/Js − u/J2s −ωs/Js

]
= 0. (81)

Thus, themeasurement of the output cannot update the estimation
of the system parameters. Similarly, the dual UKF cannot update
the system parameters using the measurements. On the contrary,
as we have shown, the joint E/UKF can update the parameter
estimate.

4. Validation of torque input estimation algorithm

In this sectionwe test the proposed algorithms using numerical
simulations followed by experiments.

4.1. Numerical simulation

First, we verify the algorithm using synthetic data. We use
a steering wheel model and simulated unknown input. As the
steering wheel parameters in Eqs. (28)–(29), we use

Js = 0.0672 kg m2, bs = 0.3562 N m/rad/s. (82)

The known input signal is sinusoidal:

u(t) = 2 sin(4t) N m. (83)

The initial condition is chosen as [δs(0), ωs(0)]⊤ = [1, 0]⊤. The
length of the data is 15 s with sampling time interval ∆t = 0.01 s.
As the process and measurement noise, we use

ws ∼ N
(
0,
[
0.01 0
0 0.01

])
, v ∼ N (0, 0.01). (84)

System parameter identification. In order to estimate the values of
Js and bs weemploy and compare the joint E/UKFhaving the follow-
ing initial state, process noise, and observation noise covariance
matrices

Φ(0) = diag(1, 1, 8× 10−3, 0.1),
Qz = diag(0.01, 0.01, 5× 10−8, 5× 10−8), R = 0.01.

(85)

As the tuning parameters for UKF, we employ the most general
values, i.e.,

α = 1× 10−3, β = 2, κ = 0. (86)

Figs. 2 and 3 depict the system parameter identification results
using the joint EKF and joint UKF, respectively. As an initial guess,
we used [δ̂s(0), ω̂s(0)]⊤ = [0, 0]⊤, Ĵs(0) = 0.5Js, and b̂s(0) = 0.5bs.
Subfigures (a) and (b) in Figs. 2 and 3 depict each state. Subfigures
(c) and (d) in Figs. 2 and 3 depict the estimation history of Js, and
subfigures (e) and (f) in Figs. 2 and 3 depict the estimation history
of bs. While subfigures (c) and (e) in Figs. 2 and 3 depict the 1σ
error bar to better see the convergence of the covariance matrix,
subfigures (d) and (f) in Figs. 2 and 3 illustrate only the estimated
and true values of Js and bs to better see that the estimation
converges to its true value. The final estimated values of Js and bs
for each method are listed in Table 1.

Thanks to its second order accuracy, the joint UKF exhibited
faster convergence than the joint EKF, which has first order accu-
racy. However, we observed that the joint UKF was more sensitive
to the parameter settings. We conjecture that this is due to the
nonlinearity caused by the Js in the denominator of the Eqs. (28)–
(29). In contrast, the joint EKF was more robust to the parameter
settings.

Table 1
Estimated values and error from the true values of Js and bs .

True value Joint EKF Joint UKF

Js (kg m2) 0.0672 0.0654 (−1.8× 10−3) 0.0681 (+0.9× 10−3)
bs (N m/rad/s) 0.3562 0.3498 (−6.4× 10−3) 0.3572 (+1.0× 10−3)

Steering torque estimation. After the system parameters are iden-
tified, we proceed to the second step, namely to estimate the
unknown steering torque input. As synthetic inputs to the system,
we employ

Tdr(t) = 3 sin(3t) N m, (87)

and

Taln(t) = sin(4t −
π

5
) N m. (88)

The task here is to estimate Tdr at each time step given the values of
Js and bs and given the observations of the steering angle and Taln.
The process and observation noise are the same as (84).

Fig. 4 depicts the estimation results with V1 = diag(1, 1, 1.0×
1011) and V2 = 1. Note that we use the true values of Js and
bs in order to isolate the unknown-input estimation error from
the joint E/UKF error. In order to compute the integral in the
computation of the PI observer, the fourth-order Runge–Kutta
method was employed. The root mean squared error, defined as

RMSE(T̂dr , Tdr) =
√
1/N

∑N
k=1(T̂dr(k)− Tdr(k))2, where N is the

number of observations, of this estimation was 0.39 N m.

4.2. Experimental results

Section 4.1 employed synthetic data to verify the proposed al-
gorithm. Here, we use real data collected using a driving simulator
we built in house.

First, we preset the experimental results from the steering-
wheel force-feedback unit identification. Since the unit of the
force-feedback torque commandof our steeringwheel is unknown,
before conducting the experiments, we start with identifying the
relationship between the input signal values in the system and the
torque values in the real world. To this end, we hung weights on
the steering wheel, and computed the torque to make the steering
wheel angle zero by searching over the steering command torque
Tcom such that Tcom = mgr , wherem is theweight, g = 9.81m/s2 is
the gravitational acceleration, and r = 0.14m is the outer radius of
the steeringwheel.We then designed a PI controller andmeasured
the steering torque command Tcom. We performed the experiment
multiple times with different values of m. From this experiment,
we found that the conversion from Tcom to Taln is

Taln(t) = 1.8615 Tcom(t)+ 0.2197 N m. (89)

In addition to this unit identification, we resampled the data so
that the sampling interval became 0.02 s using nearest neighbor
interpolation before applying the methods in Sections 2 and 3.

Similarly to the case with the synthetic data in Section 4.1, the
first step is to identify the steeringwheel parameters Js and bs using
joint E/UKF. First, we generated a chirp signal and activated the
force-feedback functionality of our steering wheel. Note that, in
this scenario, Tdr = 0. As the initial guess we set [δ̂s(0), ω̂s(0)]⊤ =
[0, 0]⊤, Ĵs(0) = 0.0672 kg m2 and b̂s(0) = 0.3562 N m/rad/s.
Figs. 5 and 6 illustrate the results from the joint E/UKF estimations,
respectively. The final estimated values of Js and bs using joint EKF
are

JEKFs = 0.0298 kg m2, bEKFs = 0.3515 N m/rad/s, (90)

and the values by joint UKF are

JUKFs = 0.0296 kg m2, bUKFs = 0.3514 N m/rad/s. (91)
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Fig. 2. System identification using joint EKF.

Fig. 3. System identification using joint UKF.

We employ these values to estimate the steering torque input
from human drivers. In order to collect data, we used the Georgia
Tech Driving Simulator (GTDS) shown in Fig. 7a. The human driver
subject has eight-year driving experience, and the geometry of the
road is depicted in Fig. 7b.

Fig. 7c illustrates the interaction between a human driver and
the components of the simulator. Each component is connected
via the Robot Operating System (ROS) [60], while CarSim R⃝ [61]
computes the vehicle dynamics. The high-fidelity vehicle model
of CarSim R⃝ reproduces realistic vehicle behaviors in a simulation

environment. In this experiment, the vehicle speed is fixed, and the
control output from the human driver is only the steering torque
Tdr, which then becomes the input to the steering wheel. The
output of the steeringwheel is the steeringwheel angle δs. The sim-
ulator uses a high-end gaming steering wheel with force-feedback
functionality, and the driver can feel the alignment torque from the
steering wheel, calculated as

Taln(t) =
Kaln

gs

(
β(t)+

ℓF r(t)
Vx(t)

− δ(t)
)

, (92)
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Fig. 4. Results of unknown input estimation.

Fig. 5. System identification of the GTDS steering wheel using joint EKF.

where Kaln = −KpCf nt , and where Kp > 0 is the manual steering
column coefficient, Cf > 0 is the front tire cornering stiffness,
which we assume to be constant, nt is the tire length contact, gs
is the gear ratio, ℓF is the distance of the vehicle mass center from
the front axle, Vx is longitudinal speed of the vehicle, and δ is the
front-wheel-steering angle. This force-feedback makes the simu-
lation environment more realistic. Note that all the variables to
compute Taln are available in our simulation environment. In order
to visualize the information computed by CarSim R⃝, we employed
Unity3D [62], and projected the simulated driver view on a 8 × 6

ft2 screen. Based on the view of the screen, the human driver steers
the vehicle (see Fig. 7a).

Using the GTDS driving simulator, we collected data from a
human driver. The course employed was one of the pre-installed
CarSim R⃝ road circuits. The vehicle speed was fixed at 50 km/h,
whichwas high for the radii of the corners of the given road circuit,
so that we could investigate both the comfort and non-comfort
zones of the driver. Fig. 8 depicts the collected data. We set the
matrices for the PI observer as V1 = diag(1.0, 1.0, 3.1× 109) and
V2 = 1.0.
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Fig. 6. System identification of the GTDS steering wheel using joint UKF.

Fig. 7. Georgia Tech Driving Simulator (GTDS).

Figs. 9a and 9b show the results when we employed the esti-
mation results by joint EKF (90) and joint UKF (91), respectively.
In order to evaluate the estimated Tdr, we compared the measured
steering wheel angle and the output of the identified system ((28)
and (29) with (90)) given the estimated Tdr. The results are illus-
trated in Figs. 10a and 10b for joint EKF and joint UKF, respectively.
The performance difference between the parameters estimated
using the joint EKF and joint UKF is difficult to discern from Figs.
10a and 10b, but the root mean squared error of the steering

wheel angle of each method is RMSE(δ̂s, δs|JEKFs , bEKFs ) = 24.93 deg
and RMSE(δ̂s, δs|JUKFs , bUKFs ) = 24.90 deg, respectively. Thus, we

observed a slightly better performance if we employ the joint UKF.

However, the estimation from the joint UKF was more sensitive to

the parameter settings than the joint EKF. Thus, considering minor

performance difference, the joint EKF seems to be a better solution

in practice.
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Fig. 8. Data collected using the Georgia Tech Driving Simulator (GTDS).

5. Comparative study of data-drivendriver lateral controlmod-
els

In Section 2 we introduced the data-driven human driver con-
trol models we wish to compare in this work. In order to evaluate
the performance of these algorithms, we need the measurement
of the steering torque, which is not measurable for a conventional
steering wheel of a driving simulator. Thus, in Section 3, we devel-
oped an algorithm to estimate the steering input torque using joint
E/UKF and a PI observer, so that we can evaluate the prediction
performance of the data-driven driver lateral control models. We
conducted two experiments to apply the proposed approach. First,
we used a driver control model to generate a synthetic data set,
applied the algorithms in Section 2, and evaluated their perfor-
mance. The purpose of the first experiment was to evaluate the
performancewithout the effect of inconsistency inherent in human
driving skills, which always exist with real data, especially from
non-professional human drivers. By employing a mathematical
human driver control model, we can eliminate this inconsistency
of driving behaviors and isolate and evaluate the regression perfor-
mance of each algorithm. In the second experiment, we employed
a real human-driving data set that is collected using the GTDS
driving simulator in Fig. 7a. From this experiment, we compared
and evaluated the robustness to driving-behavior variations. The
results of the experiments are discussed in Section 6.

5.1. Performance measure

We compared the performance only over short-term predic-
tion, i.e., prediction of the driver’s torque at the current time step.
Long-term predictions involve modeled dynamics of other subsys-
tems in Fig. 1 and perform an iterative computation of the future
state and the driver’s steering torque as depicted in Fig. 11. The
function f in (2), which the algorithms try to identify, corresponds
to the perpendicular arrows from z to Tdr. The horizontal arrows
between z correspond to the vehicle dynamics, steering column,
and road geometry models. Also, the slant arrows from Tdr to z
shows that Tdr at the previous time step is incorporated into an

entry of z at the next time step (see (1)). To predict the future
driving torque at t = tk+1, we need to first estimate Tdr(tk) from
z(tk) using the methods outlined in Section 2. We then propagate
the information in z(tk) based on a vehicle dynamics model and
road geometry, and obtain the estimated value of z(tk+1). Having
obtained the estimation of z(tk+1), we estimate Tdr(tk+1) using the
samemethod as the onewe employed to estimate Tdr(tk) from z(tk).
Apparently, the accuracy of the horizontal arrows (e.g., vehicle-
dynamics models) affects the performance for long-term driver
torque prediction. The interest of this work is, however, the com-
parison of human-driver control models. Comparing the models
of other subsystems is beyond the scope of this paper. Therefore,
we do not compare the long-term prediction performance in this
work. Note that, as our steering wheel is not equipped with a
torque sensor, we estimate Tdr via the algorithm introduced in
Section 3.3.

5.2. Synthetic data generated with a human-driver control model

The first experiment employs data generated using CarSim R⃝

[61]with a hybrid sensorimotor two-point visual controlmodel [6]
(a two-point visual control model [4] and the expansion of the
two-point visual sensorimotor model proposed in [5]). The model
we employ accounts for the anticipatory control of human drivers
with a model predictive controller. By employing the methods
introduced in Section 2, we aim to reproduce the actions of this
‘‘human control’’.

Before applying the algorithms from Section 2, all inputs were
normalized to achieve mean zero and standard deviation one.
Then, and in order to reduce noise, we applied a first-order lowpass
filter with a cutting frequency at ωs = 2.5 rad/s and a local
weighted linear least squares to a second degree polynomial.

To evaluate the performance of the methods, we divided the
data set into four subsets A,B,C, and D, and performed a four-fold
cross validation. For instance, in sub-data set A, we employ the first
3/4 of data as the training data set and the last quarter as the test
data set. In addition, we resampled the data set with ∆t = 0.2 s,
setting ℓ = 5 and d = 29 in (1).
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Fig. 9. Unknown input estimation using a PI observer with estimated Js and bs .

Fig. 12 illustrates the RMSE of each method. We used the GMR
and HMM-GMR with NG = 21 and the ANN with Nh = 2. The
largest RMSE in all the sub-data sets is exhibited by the PWC,
while PWL demonstrates slightly smaller values. The GP regression
exhibited almost one third of the RMSE value of the PWC and
PWL. Also, GMR is competitivewith GP regression for this scenario.
Since the HMM-GMR considers both the spatial and sequential
information of z, not surprisingly, it outperforms the GMR. Finally,
the ANN is comparable with the HMM-GMR.

5.3. Human driving data

In order to verify the performance of each method against
real human-driving data, we employed actual human-driver data
collected using the GTDS driving simulator and compared the
performance of all the methods. We pre-process the data in the
same way as the synthetic data set.

Using the GTDS driving simulator, we duplicated exactly the
same road circuit, the geometry of which is in Fig. 7b, employed for

Fig. 10. Steering wheel angles of measurement and reproduction.

Fig. 11. The graphical model of driver behavior prediction.

the previous synthetic data set in Section 5.2. Thus, we can directly
compare the numerical simulations and the actual human driving
experiments by eliminating the difference between simulation and
experiment road geometry.

In this experiment, and similarly to the first experiment, we fix
the vehicle speed at 50 km/h. Thus, the control output from the
human driver is only the steering torque Tdr, which is then fed into
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Fig. 12. The RMSE of each method for each simulated human driver data set.

Fig. 13. Estimated driving torque to drive around the circuit clockwise (first half)
and counter-clockwise (second half).

the steering wheel. The steering wheel outputs the steering-wheel
angle δs. Fig. 13 depicts the estimated driving torque by the algo-
rithm introduced in Section 3.3while driving around clockwise and
counter-clockwise.

Fig. 14 depicts the results. The GMR and HMM-GMR in this
experiment had NG = 23 and ANN had Nh = 2. The RMSE of
PWC and PWL show almost the same performance as in the first
experiment. In contrast, GP regression, which outperformed PWC
and PWL in the first experiment, exhibits similar performance to
them in this experiment. Furthermore, GMR is worse than PWC
and PWL aswell. The HMM-GMR error is even larger than the GMR
error in sub-data set B. These results are somewhat contrary to our
expectation. As thesemethods (i.e, GP regression, GMR, and HMM-
GMR), involve the state variables (i.e., β, r, δs, and ρ), we expected
that they will outperform PWC and PWL. By contrast, and similarly
to the first experiment, the ANN outperforms the other methods.
In order to investigate this counter-intuitive result, we conducted
another experiment, which is described in below.

To investigate the inconsistency between the results in syn-
thetic and real-driving data of GMR and HMM-GMR, we evaluated
the performance of each method based on the output of a senso-
rimotor two-point visual control model, the parameters of which
were identified using the real human driving data in the second
experiment.We smoothed the data to eliminate nonlinearities and
applied the method proposed in [59] to identify the parameters of

Fig. 14. The RMSE of each method for each real human driver data set.

Fig. 15. The output of trained driver control model identified with dual EKF.

the driver control model. Fig. 15 depicts the control input to drive
around the track for the identified driver control model.

By using the identified sensorimotor two-point visual driver
control model, we can evaluate the performance of the meth-
ods against the actual driving data without driving skill inconsis-
tency. Fig. 16 depicts the regression performance of the algorithms.
We observe a significant performance improvement of GMR and
HMM-GMR. In addition, both GMR and HMM-GMR exhibited su-
perior performance to the ANN model. We discuss the results in
the following section.

6. Discussion

In the previous section, we observed that the HMM-GMR and
ANN exhibited the least RMSE among the methods with synthetic
data. With human-driver data, however, the HMM-GMR was out-
performed by the ANN and even the PWC and PWL in some of the
sub data set. Furthermore, with the human-driving data set, GP
regression and GMR exhibited greater RMSE than PWC and PWL.
Below we provide some explanation of these results.

The PWC and PWL are the simplest models. They do not use
the input variables, i.e., β, r, δs, and ρ, and still exhibited sound
performance with both synthetic and human-driving data sets.
We would like to emphasize, however, that, since they ignore the
information in z other than Tdr, their performance is expected to
degrade in long-term prediction tasks.
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Fig. 16. The RMSE of each method for a sensorimotor two-point visual driver
control model trained with a dual EKF from real human driver data set.

Among the machine-learning algorithms we evaluated, GP re-
gression exhibited the worst performance in terms of RMSE. Fur-
thermore, the heavy computational cost of the inverse operation
in Eq. (16), the need of choosing the kernel function to use, and the
number of hyper-parameters to tune, make GP a less than ideal
choice to predict the driver’s torque. By contrast, the HMM-GMR
was competitive with the ANN in the experiment with synthetic
data. The same result has also been observed in the case of human-
driver longitudinal control actions [25]. Also, the HMM-GMR and
ANN are competitive in terms of the implementation-complexity.
In order to train GMR andHMM-GMR, we need to choose the num-
ber of Gaussians NG. On the other hand, in order to train an ANN,
we need to specify the number of hidden layers and nodes. Thus,
both from the performance and implementation complexity, we
regard the HMM-GMR and ANN as competitive with the synthetic
data set.

In the case of the human-driving data set, we observed that
ANN outperformed HMM-GMR. While the performance of HMM-
GMR was worse than PWC and PWL, especially in the sub-data
set B, the ANN always exhibited superior performance than those
(see Fig. 14). We conjecture that this difference in the perfor-
mance is because of the algorithmic robustness to the control
variations of human drivers. Since human-driver control models
are mathematical abstractions, when the input is the same, their
response is always the same. However, human driver behavior
is not consistent, especially when the situation gets outside of
the comfort zone of the driver; the driver may use larger or less
steering torque than needed. Our hypothesis is supported by the
additional experiment, in which a sensorimotor two-point visual
driver control model was first identified based on the given data,
and it was used to regenerate ‘‘real’’ human-driving data, which
does not have control variations. In this additional experiment, we
observed a significant performance improvement with the GMR
and HMM-GMR (see Fig. 16), which implies that GMR and HMM-
GMR can exhibit accurate prediction if the human subject is a
skilled driver with little control variations. The result also implies
that, since ANN showed consistent performance among all the
experiments, in addition to skilled human-driver subjects [27],
ANN can accurately predict novice human driver behavior. We
conjecture that this stable performance of our ANN is due to its
simple structure, which may prevent overfitting to the training
data set. From the experiments in Section 5, we may conclude
that an ANN with one hidden layer and two nodes is a good
model for predicting the lateral control action of non-professional
normal human drivers. It should be noted that we do not claim
that human driver control actions can be modeled with a simple
artificial neural network. Driving consists ofmultiple difficult tasks

such as scene understanding and decisionmaking. In this work, we
focused our attention only on the specific task of path following.
Similarly to the work by Cook in [63], we conclude that for path
following tasks a simple neural network exhibits an acceptable
performance.

7. Summary

This paper addressed the problem of predicting lateral control
actions of human drivers using six non-parameterized driver con-
trol models, namely, PWC, PWL, GP, GMR, HMM-GMR, and ANN.
We briefly proposed a method to perform long-term predictions
with a graphical model, and we compared the performance of
the methods in terms of short-term predictions in detail. The first
experiment utilized a simulated human-driving data set, and the
second experiment employed a real human-driving data set col-
lected using our GTDS driving simulator. By employing exactly the
same road circuit in these two experiments, we directly compared
the performance of the driver control models with both synthetic
and real human driving data sets. From these experiments, we
found that the ANN exhibited the most accurate predictions with
both data sets, as well as the highest robustness to driving con-
trol variations. Note that, in order to perform these experiments,
we needed the driver torque input, which was not measurable,
because, similarly to other inexpensive driving simulators, the
used GTDS driving simulator is not equipped with a steering-
wheel torque sensor. Thus, this work also addressed the problem
of unknown steering torque input estimation fromsteering-wheel-
anglemeasurements, which is a result of independent interest.We
proposed to employ joint E/UKF as steering wheel system param-
eter estimation algorithms and a PI observer as an unknown input
estimation algorithm since the use of a dual E/UKFwas not feasible.
We verified the proposed algorithm both via numerical simulation
and real data obtained from human driving. From both computer
simulations and experiments we observed that, although the joint
UKF was sensitive to parameter settings, both the joint E/UKF
exhibited sound estimation performance. We also found that the
PI observer accurately estimated the unknown steering torque of
a human driver. The results of this paper will contribute to the
development of haptic-shared-control-based ADAS using driving
simulators that are not equipped with steering-torque sensors.

Future work will investigate the algorithms in more complex
scenarios, such as lane change and obstacle avoidance. As the
results of this work enable the use of steering torque as the output
from human driver models even when using low-cost driving
simulators,we also plan to investigate personalized haptic-shared-
control-based ADAS for vehicle lateral control by taking advantage
of the predictive power of driver control models.
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