
STABILIZATION AND TRACKING OF UNDERACTUATED
AXISYMMETRIC SPACECRAFT WITH BOUNDED

CONTROL 1

Panagiotis Tsiotras and Jihao Luo �

�Department of Mechanical, Aerospace and Nuclear Engineering,
University of Virginia, Charlottesville, VA 22903-2442, USA.

Abstract: We provide stabilizing and tracking feedback control laws for the kinematic system
of an underactuated axisymmetric spacecraft subject to input constraints. As a special case we
also provide a feedback control to track a specified direction in inertial space. All proposed
control laws achieve asymptotic stability with exponential convergence. One of the novelties
of the proposed control design is the use of a new, non-standard description of the attitude
motion, which allows the decomposition of the general motion into two rotations. This
attitude description is especially useful for analyzing axisymmetric bodies, where the motion
of the symmetry axis maybe of prime importance.
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1. INTRODUCTION

The problem of attitude stabilization has been the sub-
ject of numerous research articles in the last decade
(Crouch, 1984; Byrnes and Isidori, 1991; Wen and
Kreutz-Delgado, 1991; Krishnan et al., 1992; Tsiotras
et al., 1995; Bach and Paielli, 1993). Most of these re-
sults deal with the case of complete control actuation.
A complete mathematical description of the attitude
stabilization problem was presented as early as 1984
by Crouch (1984), where he provided the necessary
and sufficient conditions for the controllability of a
rigid body in the case of one, two and three indepen-
dent control torques. This sparked a renewed interest
in the area of control of rigid spacecraft with less
than three control torques. Stabilization of the angu-
lar velocity equations was addressed, for example, in
(Aeyels and Szafranski, 1988; Sontag and Sussmann,
1988) and (Outbib and Sallet, 1992). The complete set
of attitude equations (including the kinematics) was
addressed in (Byrnes and Isidori, 1991) where they es-
tablished that a rigid spacecraft controlled by two pairs
of gas jet actuators cannot be asymptotically stabilized
to an equilibrium using a smooth feedback control
law. Subsequently, in (Krishnan et al., 1992) and later
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in (Tsiotras et al., 1995), nonsmooth controllers were
established to stabilize an axisymmetric spacecraft.
This is an interesting control problem because, as for
the nonsymmetric case (Coron and Kerai, 1996; Morin
and Samson, 1997), any stabilizing control law has to
be necessarily nonsmooth. In addition, as was shown
in (Sørdalen et al., 1992), this problem is equivalent
to a well-studied benchmark problem in the area of
nonholonomic systems, namely, that of the nonholo-
nomic integrator or, equivalently, of a three-wheel mo-
bile robot. Khennouf and Canudas de Wit (1995) have
shown how to construct discontinuous controllers for
this problem by extending the results of (Tsiotras et
al., 1995). The controller in (Tsiotras et al., 1995), in
particular, is not Lipschitz continuous at the equilib-
rium, and may require significant amounts of control
effort, especially if the initial conditions are close to
an equilibrium manifold. In (Tsiotras and Luo, 1996)
this controller was modified, to remedy the problem
of large control inputs. The procedure in (Tsiotras and
Luo, 1996) consists of dividing the state space into two
regions. The control law drives the trajectories of the
close-loop system away from the singular equilibrium
manifold (which gives rise to high control inputs) and
into the region in the state space where the high au-
thority part of the control input remains small.



In this paper, we continue the approach initiated in
(Tsiotras and Luo, 1996) and derive a controller for
the kinematics of an axisymmetric spacecraft with two
inputs (and zero spin rate) which remains bounded
by an a priori specified bound. We make use of the
formulation for the attitude kinematics developed in
(Tsiotras and Longuski, 1995). This attitude descrip-
tion allows one to isolate and describe the motion of
the symmetry axis of the body using a single com-
plex variable. We also solve the problem of tracking
an attitude trajectory for an axisymmetric spacecraft
with two control inputs. Finally, as a special case,
we present a feedback control law to track a spec-
ified direction in inertial space. Numerical examples
demonstrate the theoretical developments.

2. THE (w�z) ATTITUDE PARAMETERIZATION

The orientation of a rigid spacecraft can be specified
using various parameterizations, for example, Eule-
rian Angles, Euler Parameters, Cayley-Rodrigues Pa-
rameters, etc; see, for instance, the recent survey ar-
ticle by Shuster (1993). Recently, a new parameter-
ization using a pair of a complex and a real coor-
dinate was introduced based on an extension of an
old result by Darboux (Darboux, 1887; Tsiotras and
Longuski, 1995). According to the results of (Tsiotras
et al., 1995) the relative orientation between two ref-
erence frames can be represented by two successive
rotations. The first rotation is about the inertial î3-axis
at an angle z. The second rotation is about the unit
vector
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�
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�
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In Eq. (1) î� � �î�1� î
�

2� î
�

3� is the intermediate reference
frame resulting from the rotation z about the inertial î3-
axis. The situation is depicted in Fig. 1, where �a�b�c�
denote the coordinates of the unit vector î�3 in the body
frame, î�3 � ab̂1�bb̂2�c b̂3. It can be shown (Tsiotras
and Longuski, 1995) that the location of the body b̂3-
axis in the î� frame is also determined by a�b�c from
b̂3 ��a î�1�b î�2�c î�3 (Fig. 1). With this notation, the
w coordinate is defined by

w �
b� ia
1� c

(3)

We note here that in Eqs. (1) and (2) i �
p�1,

bar denotes the complex conjugate, and jwj2 � w w̄
denotes the absolute value of the complex number w.
Conversely, from w one can compute �a�b�c� from
a � i�w� w̄���1� jwj2��b � �w� w̄���1� jwj2� and
c � �1�jwj2���1� jwj2�.
The rotation matrix corresponding to the �w�z� kine-
matic description has been calculated in (Tsiotras and
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î�1
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Fig. 1. Attitude description in terms of �w�z� coordi-
nates.

Longuski, 1995). Conversely, given a proper rotation
matrix R, one can compute w and z as follows.

Lemma 2.1. For any rotation matrix R � SO�3�, let

w �
R23� iR13

1�R33
(4)

and

cosz � 1
2

�
�1� jwj2� trace�R�� jwj2�1

�
(5a)

sinz �
1

1� jwj2
�
�1�Re�w2��R12� Im�w2�R22

� 2 Im�w�R32� (5b)

Then �w�z� are the corresponding attitude coordinates
for the matrix R.

The kinematic equations in terms of w and z can be
written as follows (Tsiotras et al., 1995; Tsiotras and
Longuski, 1995)

ẇ � �iω3w�
ω
2
�
ω̄
2

w2 (6a)

ż � ω3� Im�ω w̄� (6b)

where ω� ω1� iω2 and w � w1� iw2.

In this paper we assume that only the angular velocity
ω (equivalently, ω1 and ω2) can be manipulated. The
angular velocity component about the body b̂3-axisω3
cannot be changed due to, say, a thruster failure. In this
case, three-axis stabilization and pointing is possible
only if, in addition, ω3 � 0.

Letting ω3 � 0 the rigid spacecraft kinematic equa-
tions become

ẇ �
ω
2
�
ω̄
2

w2 (7a)

ż � Im�ω w̄� (7b)

In (Tsiotras et al., 1995) the following feedback con-
trol law was proposed in order to stabilize (7)

ω��kw� iµ
z
w̄
� µ � k�2 (8)



3. STABILIZATION WITH BOUNDED CONTROL

Without any further modification, the domain of va-
lidity of the system in Eqs. (7)-(8) is the set of pairs
�w�z� � �Cnf0g�� S1. Equation (8) suggests that the
control inputs may become very large for initial con-
ditions close to the manifold w � 0 (and z �� 0). In
addition, Eq. (8) suggests that the control input ω will
remain “small” if the trajectories belong to the set

Dg � f�w�z� � C�S1 : jzj�jwj � 1g (9)

We seek to construct a control law that will keep all
trajectories in Dg and force the trajectories outsideDg
to enter this set in finite time.

Before we state the main result in this section we need
the following definition.

Definition 1. Given two scalars z � IR and w � C, we
define the complex saturating function satc��� by

satc�z�w� �

�����
����

0 if z � 0, w � 0

sat

�
z
jwj
�

eiφ if w �� 0

sgn�z� if z �� 0, w � 0

(10)

and φ� arg�w� is the argument of w, i.e, w � jwjeiφ.

The function satc is defined for all �w�z� � D :� C�
S1. The following proposition provides a stabilizing
control law which is bounded by a specified constant.

Proposition 3.1. Consider the system in Eq. (7) and
the following control law

ω��k
wp

1� jwj2 � iµsatc�z�w� (11)

where satc�z�w� as in Definition 1, and where k and µ
are constants satisfying

µ � k�2 � 0 if �w�z� �Dg (12a)
µ ��k � 0 if �w�z� �Db :�DnDg (12b)

Then, for all initial conditions �w�0��z�0�� � D, the
control law (11) is well-defined and the corresponding
closed-loop trajectories satisfy limt�∞�w�t��z�t�� � 0.
In addition, the control law is bounded as jω�t�j �
maxfjkjg� µ for all t � 0, where maxfjkjg denotes
the maximum of the absolute values of k in Db and
Dg.

Proof. Consider the positive definite, radially un-
bounded function V : C � IR � IR� defined by
V �w�z� � 2�

p
1� jwj2� 1� � 1

2 z2. The derivative of
V along the closed-loop trajectories yields

V̇ �
1p

1� jwj2 �1� jwj
2�Re�ω w̄�� zIm�ω w̄�

��k jwj2�µzsat

�
z
jwj
�
jwj (13)

If �w�z� � Db then jzj�jwj � 1 and zsat �z�jwj� �
zsgn�z� � jzj. Since µ � �k � 0 one obtains from
Eq. (13)

V̇ ��jwj2�k�µjzj�jwj���jwj2�k�µ�� 0 (14)

for all �w�z� � Db. Notice also that in Db, V �
2�
p

1� jwj2 � 1� � 1
2 jwj2. The last equation, along

with Eq. (14) imply that if the trajectories remain in
Db, then limt�∞ jw�t�j � 0. This leads to a contradic-
tion, since djwj2�dt � �k jwj2

p
1� jwj2 with k � 0,

and jwj is monotonically increasing in Db. Therefore,
the trajectories leave Db and enter the region Dg in
finite time. Moreover, for �w�z� � Dg we have that
jzj�jwj � 1 and hence from Eq. (13)

V̇ ��k jwj2�µz2 � 0 	�w�z� �Dg (15)

since k � 0 for �w�z� �Dg.

We have shown that V̇ � 0 for all �w�z� �D and hence
limt�∞V �t� � 0. In particular, limt��w�t��z�t�� � 0.
The asymptotic convergence to the origin is exponen-
tial, as can be easily seen by checking the the closed-
loop system for �w�z� �Dg,

djwj2
dt

� �k jwj2
q

1� jwj2 ��k jwj2 (16a)

ż � �µz (16b)

Moreover, a straightforward calculation shows that
jω�t�j � jkjjw�t�j�

p
1� jw�t�j2 � µ � maxfjkjg� µ

for all t � 0 and the control law is bounded.

The motivation behind the proposed control law is
simple. It forces all trajectories to the “good” region
Dg where the potentially bothersome term z� w̄ in
Eq. (8) is bounded by a known constant. Moreover,
Eqs. (16) show that if µ � k�2 the vector fields on
jzj � jwj point in the interior of Dg and thus, Dg is a
positively invariant set of the closed-loop trajectories.
Once inDg, Eqs. (16) ensure that trajectories go to the
origin with exponential rate of decay. As a result, there
is at most one switching as the control law crosses
the boundary jzj � jwj and there is no possibility of
chattering. Although the control law in Eq. (11) is
discontinuous, the solutions of the closed-loop system
are well-defined and unique.

Remark 3.1. We can use Eq. (16) to introduce a slid-
ing mode defined by the equation jzj� jwj by making
the vector field on the boundary of Dg point to the
interior of Db. This can be achieved by choosing, for
example, k � 2µ in Eq. (12b).

Figure 2(a) shows the sets Db and Dg in the �jwj� jzj�
space, along with typical trajectories for the closed-
loop system in Eq. (7) with the control law in Eq. (11).
Figure 2(b) shows the corresponding trajectories when
choosing k� 2µ inDg. The trajectories tend to the ori-
gin along the sliding mode described by the boundary
of the sets Dg and Db, i.e., along jzj � jwj (see also
Remark 3.1 above).
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(a) Closed-loop trajectories
with control in Eq. (11).
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(b) Sliding mode for the
case k � 2µ in Dg.

Fig. 2. Typical closed-loop trajectories for the system
of Eqs. (7)-(11) and the sets Db and Dg.

4. TRACKING OF AN UNDERACTUATED
SPACECRAFT

In this section we derive a controller for an underactu-
ated spacecraft to track a desired attitude. The desired
attitude history is given in terms of the complex/real
parameters of Section 2 as wd�t� and zd�t�. These pa-
rameters represent the orientation of a “virtual” space-
craft in inertial space. The governing kinematic equa-
tions for this “virtual” spacecraft are of the same form
as Eqs. (7)

ẇd �
ωd

2
�
ω̄d

2
w2

d (17a)

żd � Im�ωd w̄d� (17b)

where ωd � ωd1 � iωd2 is the complex variable of the
known angular velocities expressed in the “virtual”
frame. They are assumed to be bounded by jωdi�t�j �
βi for i � 1�2.

We wish to design a control lawω�ω�w�z�ωd �wd �zd�
such that it satisfies the following two requirements:

(R1) If w�0� � wd�0� and z�0� � zd�0� then w�t� �
wd�t� and z�t� � zd�t� for all t � 0.

(R2) For all initial conditions �w�0��z�0�� � C� S1

we have that limt�∞�w�t��z�t�� � �wd�t��zd�t��.

Let the inertial frame be î� �î1� î2� î3�, the body frame
of the spacecraft be b̂� �b̂1� b̂2� b̂3�, and the reference
frame on the “virtual” spacecraft be v̂ � �v̂1� v̂2� v̂3�.
We can then express the body frame of the spacecraft
in the reference frame of the “virtual” spacecraft as
follows b̂ � R�w�z�RT �wd � zd� v̂ :� Rr�wr�zr� v̂ where
Rr�wr�zr� is the rotation matrix from v̂ to b̂ and where
wr and zr are the corresponding attitude coordinates.
Lemma 2.1 shows how to compute �wr�zr� from �w�z�
and �wd �zd�, which can then serve as a coordinate
description of the relative orientation between the b̂
and v̂ frames.

The angular velocity between these two frames (ex-
pressed in the b̂ frame) is given by

	

ωr1
ωr2
ωr3

�
��

	

ω1
ω2
0

�
� � Rr�wr�zr�

	

ωd1

ωd2
0

�
� (18)

The kinematic equations of the target frame (as seen
from b̂) are therefore given by

ẇr � �iωr3wr �
ωr

2
�
ω̄r

2
w2

r (19a)

żr � ωr3 � Im�ωr w̄r� (19b)

Proposition 4.1. Let the kinematics of the spacecraft
described by Eqs. (7), and the kinematics of the target
attitude trajectory generated by Eqs. (17) for some
known ωd�t�. Consider the controller

ω��kwr� i

�
µzr �ωr3

w̄r

�
�η�Rr�ωd� (20)

where wr and zr as in Eqs. (4)-(5), Rr is the rotation
matrix from the target to the body frame of the space-
craft, k � 0 and µ � k�2 are constants, and

ωr3 � �Rr31 ωd1 �Rr32 ωd2 (21a)
η�Rr�ωd� � Rr11 ωd1 �Rr12 ωd2

�i�Rr21 ωd1 �Rr22 ωd2� (21b)

Then this kinematic controller is well-defined for
all t � 0. Moreover, for all initial conditions such
that w�0� �� wd�0� we have that limt�∞�w�t��z�t�� �
�wd�t��zd�t��. In addition, this controller is bounded
along the closed-loop trajectories.

Proof. First notice that the relative angular velocity
between b̂ and v̂ is given by

ωr :� ωr1 � iωr2 ��kwr� i

�
µzr �ωr3

w̄r

�
(22)

Substituting the previous equation in Eqs. (19) one
obtains

d
dt
jwrj2 � �k jwrj2 �1� jwrj2� (23a)

żr � �µzr (23b)

and thus, limt�∞�wr�t��zr�t�� � 0 with exponential
rate of decay for all �wr�zr� �D.

The control law in Eq. (22) is well defined for all
initial conditions �wr�zr� � �Cnf0g� � S1 since if
wr�0� �� 0 Eq. (23a) implies that wr�t� �� 0 for all t � 0.

It remains to show that the control law in Eq. (22)
is bounded. From Eq. (23a) one readily obtains that
wr is bounded. Moreover, using Eqs. (23) a direct
calculation shows that zr� w̄r is bounded if µ � k�2.
In addition, from Eq. (21a) one obtains that

jωr3 j
jwrj �

jRr31 j
jwrj jωd1 j�

jRr32 j
jwrj jωd2 j

� 2
1� jwrj2 �jωd1 j� jωd2j�� 2�β1�β2� (24)

where we have used the fact that jRe�weiz�j � jwj
and jIm�weiz�j � jwj for any w � C. Also, since
Rr is a rotation matrix, a direct calculation shows
that jη�Rr�ωd�j � jωd j � jωd1 j� jωd2j � β1 �β2 and
η�Rr�ωd� is bounded. Thus, ω is bounded. This com-
pletes the proof of the proposition.



A tracking controller bounded by a given upper bound
can be obtained simply by combining the results of
Propositions 3.1 and 4.1.

Theorem 4.1. Let the kinematics of a spacecraft de-
scribed by Eqs. (7), and the kinematics of a tar-
get attitude trajectory generated by Eqs. (17) where
jωdi�t�j � βi, for i � 1�2. Consider a constant β3 �
3�β1�β2�. Let the feedback control law

ω��k
wrp

1� jwrj2
� iµsatc�zr�wr�

�i
ωr3

w̄r
�η�Rr�ωd� (25)

where wr�zr�Rr�ωr3 , and η�Rr�ωd� as in Proposi-
tion 4.1. Assume that the gains k and µ are as in
Eq. (12) and that satisfy maxfjkjg� µ � β3� 3�β1�
β2�. Then the control law in Eq. (25) is well-defined
for all �w�z� � D, satisfies the requirements (R1) and
(R2) and it is bounded by jω�t�j � β3 for all t � 0.

Proof. The proof is straightforward and it is left to
the interested reader.

5. SPECIAL CASE: TRACKING OF THE
SYMMETRY AXIS

The results of the previous section can also be used
in the special case of tracking a specific direction
in inertial space with the body b̂3-axis (which we
assume to be symmetry axis of the axisymmetric
spacecraft). This would be the case when, for example,
the symmetry axis is the axis of a communications
antenna, the line-of-sight of an onboard telescope or
camera, etc. In all these case, the relative rotation
about the symmetry axis is irrelevant. In particular, the
body is now allowed to rotate about its b̂3-axis at a
constant angular rate ω30.

It is assumed that the desired pointing direction with
respect to the inertial frame is given as wd�t�. Con-
sulting Fig. 1 this implies that the desired direction in
inertial frame is given by the unit vector v̂3 ��ad î1�
bd î2� cd î3 where wd � �bd � iad���1� cd�. A track-
ing controller’s objective is then to make b̂3 track v̂3
as t � ∞.

Proposition 5.1. Consider the system of Eqs. (6) de-
scribing the orientation of a rigid spacecraft in inertial
frame. Let the direction along the unit vector in inertial
frame given by v̂3 where jωdi�t�j � βi for i � 1�2. Let
the control law

ω��k
wrp

1� jwrj2
�η�R�ωd� (26)

where k� 0, and whereη�R�ωd��R11ωd1�R12ωd2 �
i�R21ωd1 �R22ωd2� with R � R�w�z�. Then with this
control law the body b̂3-axis will track exponentially
the direction along the unit vector v̂3 from all initial
conditions. Moreover, the control law is bounded by
jωj � k�β1�β2 for all t � 0.

Remark 5.1. The complex variable wr serves the pur-
pose of an “error” between the v̂3 and b̂3 unit axes.
However, notice that wr � 0 does not necessarily im-
ply that w � wd . This is due to our specific definitions
for w and wd .

6. NUMERICAL EXAMPLE

In this section we provide a numerical example to
demonstrate the control laws of Sections 4 and 5.
For the attitude tracking problem, we consider the
kinematic equations of a rigid body, described by
Eqs. (7). We let the trajectory to be tracked gen-
erated by the system in Eqs. (17) where ωd�t� �
0�5sin�0�5t�� i cos�0�25t�. The initial conditions are
given by �w�0��z�0�� � �5� i �3� and �wd�0��zd�0�� �
�i �2�5�.

Figure 3 shows a series of “snapshots” of the actual
orientation of the body and the target reference frames.
The solid parallelepiped in the figure represents the
rigid spacecraft while the wire frame represents the
“virtual” spacecraft along the desired attitude history.
Figure 3 shows clearly that tracking of the target frame
has been achieved after approximately 5 sec.

The next example demonstrates tracking of a de-
sired direction in inertial space. The body is assumed
axisymmetric having a constant velocity component
about the b̂3 axis equal to ω30 ��0�5 r/s. The control
law in Eq. (26) is used with k � 2. The reference tra-
jectory for the unit vector v̂3 is generated by the system
in Eqs. (17a) with ωd�t� � t sin�0�5t�� i1�5 cos�t�.

The actual orientation of the spacecraft during the
tracking maneuver is shown in Fig. 4. The solid line
in Fig. 4 represents the desired reference direction v̂3.
Figure 4 shows that tracking of v̂3 has been achieved
after approximately 4 sec.

7. CONCLUSIONS

In this paper we solve the problems of stabilization
and tracking of an underactuated rigid spacecraft. An
example of this situation is the case of an axisym-
metric rigid spacecraft with a thruster failure along
the symmetry axis. For the restricted case of zero
spin rate, stabilization is possible but any stabilizing
control laws has to be nonsmooth. We present such a
control law which, in addition, remains bounded by
an a priori specified bound. We then extend these
stabilization results to develop controllers which are
able to track a given attitude trajectory. As a special
case, we also present a control law to track an arbitrary
direction in the inertial space using two bounded con-
trol inputs. The proposed control laws achieve asymp-
totically stability and tracking with (asymptotic) ex-
ponential convergence rates for all initial conditions.
One of the novelties of the proposed approach is the
use of a recently developed, non-standard coordinate
attitude parameterization.
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Fig. 3. Snapshots of the attitude orientation history. The wire frame represents the “virtual” spacecraft which
furnishes the reference attitude to be tracked.
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Fig. 4. Snapshots of the attitude orientation history for the reference direction tracking problem. The solid line
represents the desired direction in inertial frame.
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