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Abstract— In this paper we use the antiderivatives of wavelets
to efficiently represent functions which are defined over a
bounded interval and which satisfy a boundary condition
in the interior of this interval. The functions we want to
approximate are typically non smooth at the origin. Such
functions appear as solutions to Hamilton-Jacobi-Bellman
(HJB) equations for time-optimal control problems. We first
give the degree of approximation of the antiderivatives and
then propose a Wavelet Reflection Algorithm (WRA) to solve
numerically the time-optimal HJB equation on the interval.
Several numerical examples demonstrate the advantages of the
technique developed in this paper over polynomial expansions.

I. INTRODUCTION

Wavelets are basis functions (actually, frames) which allow
efficient representations of (otherwise regular) functions
with isolated singularities, owing to their nice localization
properties both in space and frequency domains. Moreover,
the wavelet representation of such functions is sparse, in
the sense that most of the wavelet coefficients are very
small or zero. This property of wavelets allows for compact
functional approximations by ignoring the coefficients that
are smaller than a prescribed threshold [1].

Wavelets have been used in the recent past for solving
hyperbolic, elliptic and parabolic partial differential equa-
tions [2], [3]. As a matter of fact, the advantages of
wavelets for solving pdes have been noticed early on [2],
[4], [5]. Some of the most recent results in this context have
appeared in [6]. Glowinski et al, for example, formulated
a Galerkin-wavelet method for various boundary value
problems [2]. They applied their method to the heat equation
and to Burger’s equation. However, their methodology may
encounter some difficulties. First, Daubechies’ wavelets of
low order cannot be used due to their lack of sufficient
regularity. Second, Dirichlet boundary conditions cannot be
applied directly without further modifications. Related re-
sults have appeared in [7]. In order to overcome the previous
difficulties, Xu and Shann [4] constructed a set of basis
functions using the antiderivatives of wavelets. They applied
this set of bases to two-point boundary value problems and
obtained numerical results of high consistency. The work
reported in this paper is a continuation of our recent work
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on the use of wavelets for the solution of optimal control
problems [8], [9], [10].

Standard numerical methods for solving pde’s may not be
used directly for solving the Hamilton-Jacobi-Bellman pde
which arises in the solution of optimal feedback control
problems. For instance, the solution (value function) to
the time-optimal HJB equation may have discontinuous
derivatives. In addition, the value function needs to satisfy a
boundary condition in the interior of the domain. To address
these two problems, in [10] we constructed a frame for
the Sobolev Space W 1,2(Ω), (where Ω denotes an open
interval) using the antiderivatives of wavelets. Working with
the antiderivatives we automatically ensure that the interior
boundary condition is satisfied, while at the same time
we keep some of the nice properties of wavelets (e.g., a
multiresolution decomposition of the solution space). In this
paper, we provide the degree of approximation of the frame
proposed in [10] and propose yet another method for solving
the time-optimal HJB equation.

The paper is organized as follows. First, we offer a brief
summary of the wavelets and their properties. We then
introduce the antiderivatives of wavelets and investigate
their multi-resolution and approximation properties in the
Sobolev space W 1,2(Ω). In the second part of the paper
we apply this frame in order to find solutions to the time-
optimal HJB equation. The method of reflection is intro-
duced to efficiently solve problems for which it is known
that the solution is even. Finally, we offer several numerical
examples to demonstrate the proposed method. It is shown
that the proposed approach offers major advantages in terms
of the approximation error and compactness of the repre-
sentation when compared to polynomial approximations.

II. PRELIMINARIES

A. Nomenclature

The following notation is used in this paper.

1) If G ⊂ R, then by cl(G) we denote the closure of G
in R.

2) Let Ω ⊂ R be an open set. For any nonnegative
integer s, Cs(Ω) is the vector space consisting of all
functions f which, together with all their derivatives
of order less than or equal to s, are continuous on Ω.

3) By R+ we denote the set R+ := {x ∈ R : x > 0}.
4) By x � y we mean x ≤ Cy, where, C is some

positive constant.



5) The inner product in L2(Ω) will be denoted by
〈f, g〉L2(Ω) :=

∫
Ω
f(x)g(x) dx.

Definition 1 (Sobolev Spaces): Let Ω ⊂ R be an open set.
Then the Sobolev space W s,2(Ω) is defined by

W s,2(Ω) :=
{
f ∈ L2(Ω) :

dαf

dxα
∈ L2(Ω), 0 ≤ α ≤ s

}

with norm ‖f‖W s,2(Ω) :=
∑s

α=0

∥∥∥dαf
dxα

∥∥∥
L2(Ω)

.

The semi-norm of f ∈ W s,2(Ω) is given by |f |W s,2(Ω) :=∥∥∥dsf
dxs

∥∥∥
L2(Ω)

. For simplicity, we denote the norm ‖·‖W s,2(Ω)

by ‖ ·‖s,2,Ω and the semi-norm | · |W s,2(Ω) by | · |s,2,Ω. Note
that ‖ · ‖0,2,Ω = | · |0,2,Ω.

In the following we assume that Ω is an open interval of
R with the origin in its interior. The space of interest in
this paper is the Sobolev space W 1,2(Ω) that is, the space
of functions which are square integrable, having square
integrable first derivative over Ω. In addition, we will deal
with functions in W 1,2(Ω) which are zero at the origin, that
is,

W 1,2
0 (Ω) := {f ∈W 1,2(Ω) : f(0) = 0}.

It can be readily shown that W 1,2
0 (Ω) is a subspace of

W 1,2(Ω).

B. Wavelet Fundamentals

In this section, we give a brief overview of the wavelets
and their properties. For the details we refer the reader, for
example, to [11], [12].

Wavelets are basis functions which induce a multi-
resolution decomposition of L2(R). This is the main prop-
erty making wavelets attractive in applications. Specifically,
wavelets induce the following nested sequence of subspaces

V0 ⊂ V1 ⊂ V2 · · · ⊂ Vj ⊂ Vj+1 ⊂ · · · ⊂ L2(R)

such that
⋃∞

j=0 Vj is dense in L2(R), that is,
cl

( ⋃∞
j=0 Vj

)
= L2(R). The “base” (or coarse-resolution)

subspace V0 is spanned by integer translates of the scaling
function φ: V0 = cl(span{φ(x − k)}k∈Z). The higher-
resolution subspaces Vj are spanned by dilated versions of
the scaling function: Vj = cl(span{φ(2jx− k)}k∈Z), j ≥
0. The orthogonal complement of Vj in the larger subspace
Vj+1 is denoted by Wj and it is spanned by the wavelets:
Wj = cl(span{ψ(2jx− k)}k∈Z), j ≥ 0, where ψ is the
mother wavelet, which spans the space W0 = V1 � V0.

Let us define the two-parameter family of functions

ψj,k(x) :=

{
φ(x− k), for j = −1,√
2jψ(2jx− k), for j ≥ 0,

where k ∈ Z.

The following fact is crucial for the approximating proper-
ties of wavelet decompositions.

Theorem 1 (Vanishing Moments [12]): The following are
equivalent:

1) The wavelet has m vanishing moments, i.e.,∫
R

x�ψ(x) dx = 0, � = 0, 1, · · · ,m− 1 (1)

2) All polynomials of degree up to m − 1 can be
expressed as a linear combination of shifted scaling
functions at any scale. �

A wavelet is of order m if it has m vanishing moments.

C. Wavelets as frames for L2(Ω)

Definition 2 ([4]): Let {ϕn}∞n=1 be a subset of a Banach
Space (B, ‖·‖B). Let span{ϕn} be the set of all elements of
the form

∑
αnϕn, (αn ∈ R) which converge (strongly) in

B. Then {ϕn}∞n=1 is said to be a frame of B if span{ϕn} =
B. �
Roughly speaking, frames are redundant (linearly depen-
dent) “bases.”

In the following we use the notation Ω = (−R,+R) and
Ω+ = (0, R). The proofs of the following results can be
found in [10].

Theorem 2 ([10]): Let suppψ−1,0 = suppψ0,0 = (0, R).
Then the set {ψj,k|Ω : j ≥ −1, k ∈ Ij} where

Ij :=
{
k ∈ Z

∣∣∣∣ 1 − 2R ≤ k ≤ R− 1, j = −1
1 − (2j + 1)R ≤ k ≤ 2jR− 1, j ≥ 0

}

forms a frame for L2(Ω). �
Corollary 1 ([10]): Let the space

VJ(Ω) := span{ψj,k|Ω : −1 ≤ j < J, k ∈ Ij}. (2)

Then VJ(Ω) ⊂ VJ+1(Ω) and
⋃∞

J=0 VJ(Ω) is dense in
L2(Ω). �
Theorem 3 ([10]): The semi-norm | · |1,2,Ω is equivalent to
the norm ‖ · ‖1,2,Ω in W 1,2

0 (Ω). �
Lemma 1 ([10]): Let {ψj,k|Ω : j ≥ −1, k ∈ Ij} be a
frame for L2(Ω). Then, for j ≥ −1 and k ∈ Ij , the set{

Ψj,k(x) :=
∫ x

0

ψj,k(s) ds, ∀x ∈ Ω
}

⊂W 1,2
0 (Ω)

forms a frame for W 1,2
0 (Ω). �

In the next section, we give the degree of approximation
when using the antiderivatives of wavelets to represent
functions in W 1,2

0 (Ω).

III. THE DEGREE OF APPROXIMATION

Definition 3 ([13]): Let Ω ⊂ R be an open set. An exten-
sion operator T for W s,2(Ω) is a bounded linear operator

T : W s,2(Ω) →W s,2(R)

such that Tz|Ω = z for every z ∈W s,2(Ω). �



Lemma 2: Let ψ be a wavelet of order at least s. For j ≥ 0
and 1 ≤ s < ∞, let f ∈ W s,2

0 (R) and αj,k be given by
αj,k = 〈f, ψj,k〉L2(R), where k ∈ Z. Then

|αj,k| � 2−js|f |s,2,Sj,k

where, Sj,k = suppψj,k. �

Proof: Let f ∈ W s,2
0 (R) and αj,k = 〈f, ψj,k〉L2(R). For

any polynomial q(x) of degree less than equal to s− 1 and
a wavelet of order greater than or equal to s, Theorem 1
implies that ∫

R

q(x)ψj,k(x) dx = 0

Therefore, we can write

αj,k =
∫

R

fψj,kdx−
∫

R

qψj,kdx =
∫

Sj,k

(f − q)ψj,kdx

or that αj,k = 〈f − q, ψj,k〉L2(Sj,k).

|αj,k| = |〈f − q, ψj,k〉L2(Sj,k)|
≤ ‖f − q‖0,2,Sj,k

‖ψj,k‖0,2,Sj,k

= ‖f − q‖0,2,Sj,k
‖ψj,k‖0,2,R

= ‖f − q‖0,2,Sj,k

where the last equality follows from the fact that
‖ψj,k‖0,2,R = 1. Therefore,

|αj,k| ≤ inf
q
‖f − q‖0,2,Sj,k

, j ≥ 0, k ∈ Z. (3)

Using the Bramble-Hilbert Lemma [14] we have

|f − q|0,2,Sj,k
� |Sj,k|s|f |s,2,Sj,k

� 2−js|f |s,2,Sj,k

since |Sj,k| = R/2j . Furthermore,

inf
q
‖f − q‖0,2,Sj,k

≤ |f − q|0,2,Sj,k
� 2−js|f |s,2,Sj,k

(4)

Combining (3) and (4) one obtains

|αj,k| � 2−js|f |s,2,Sj,k

This concludes the proof of the lemma.

Lemma 3: Let Ω = (−R,R) and let suppψj,k = [a, b]
such that −R ≤ a < R ≤ b or a ≤ −R < b ≤ R. Then

‖ψj,k(x)‖0,2,Ω ≤ 1. �

Now since
⋃∞

J=0 VJ (Ω) is dense in L2(Ω) and each VJ (Ω)
is finite dimensional, we construct finite-dimensional sub-
spaces of W 1,2

0 (Ω) from the frame of VJ(Ω).

Theorem 4: For J ≥ 0, let

XJ(Ω) := span{Ψj,k : −1 ≤ j < J, k ∈ Ij}.
Then XJ(Ω) is a finite-dimensional subspace of W 1,2

0 (Ω)
and for any v ∈W 1,2

0 (Ω) ∩W s+1,2(Ω)

inf
�∈XJ (Ω)

|v − �|1,2,Ω � 2−Js|v|s+1,2,Ω

where, 0 ≤ s <∞. �

Proof: The proof is rather long but it is similar to the one
of Theorem 3.1 in [4], and thus it is omitted.

IV. APPLICATION TO TIME-OPTIMAL CONTROL

PROBLEMS

In this section we provide numerical solutions to the
one-dimensional time-optimal HJB equation using the an-
tiderivatives of wavelets as the underlined expansion func-
tions of the solution space.

A. Problem Formulation

Consider an optimal control problem whose dynamics are
given by the nonlinear differential equation

ẋ(t) = f [x(t)] + g[x(t)]u (5)

with boundary conditions x(t0) = x0 and x(tf ) = 0, where
x(t) ∈ R, f : R → R, g : R → R, and tf is free. The
control is constrained by |u| ≤ 1. Notice that by writing
g(x)u = |g(x)| sgn[g(x)]u := |g(x)|v where |v| ≤ 1 we
can further assume, without loss of generality, that g(x) ≥ 0
for all x ∈ R. The cost function to be minimized is

min
|u|≤1

∫ tf

t0

dt. (6)

The minimizing control for this problem is obtained from
the solution of the following Hamilton-Jacobi-Bellman
(HJB) equation

1 + min
u∈[−1,1]

(
∂V

∂x

(
f(x) + g(x)u

))

= 1 + f(x)
∂V

∂x
(x) − g(x)

∣∣∣∣∂V∂x (x)
∣∣∣∣ = 0,

(7)

subject to the boundary condition V (0) = 0. Once V is
known, the optimal control is given in a feedback form as
follows (since g(x) ≥ 0 for all x ∈ R)

u = −sgn
(
∂V

∂x

)
. (8)

In this paper we deal specifically with symmetric (i.e., even)
solutions of (7). The following assumptions will ensure that
V is even.

A1: f is an odd function, i.e. f(x) = −f(−x), ∀x ∈ R.
A2: g is an even function, i.e., g(x) = g(−x), ∀x ∈ R.

B. The Wavelet Reflection Algorithm (WRA)

In [15] it is shown that the half space W 1,p(R+) has the
following extension property.

Theorem 5 ([15]): Let v ∈ W 1,p(R+) (1 ≤ p < ∞) and
define v̄ on R by

v̄(x) =

{
v(x), x > 0,
v(−x), x ≤ 0.

(9)



The map v �→ v̄ defines an extension operator from
W 1,p(R+) onto W 1,p(R). �
Corollary 2: Let Ω+ = (0, R) and Ω = (−R,+R). Let
v ∈ W 1,2(Ω+) and define v̄ on Ω as in (9). The map
v �→ v̄ defines an extension operator from W 1,2(Ω+) onto
W 1,2(Ω). �
Let now Vsym ∈W 1,2

0 (Ω+) be the value function satisfying
the HJB equation (7). From (8) we have that ∂Vsym

∂x (x) >
0, ∀x ∈ Ω+. Therefore, the HJB equation (7) for x ∈ Ω+

can be written as

1 + f(x)
∂Vsym

∂x
(x) − g(x)

∂Vsym

∂x
(x) = 0, x ∈ Ω+,

with boundary condition Vsym(0) = 0 or, equivalently, as

1 + f(|x|)
∣∣∣∣∂Vsym

∂x
(|x|)

∣∣∣∣ − g(|x|)
∣∣∣∣∂Vsym

∂x
(|x|)

∣∣∣∣ = 0, (10)

with boundary condition Vsym(0) = 0.

We now extend the value function Vsym from W 1,2
0 (Ω+) to

W 1,2
0 (Ω) such that

V̄sym(x) =

{
Vsym(x), x ∈ Ω+,

Vsym(−x), x ∈ Ω \ Ω+.

Now V̄sym ∈W 1,2
0 (Ω) and

∂V̄sym

∂x
(x) =

⎧⎪⎨
⎪⎩

∂Vsym

∂x
(x), x ∈ Ω+,

−∂Vsym

∂x
(−x), x ∈ Ω \ Ω+,

or, equivalently,
∣∣∣∂V̄sym

∂x (x)
∣∣∣ =

∣∣∣∂Vsym
∂x (|x|)

∣∣∣ , ∀x ∈ Ω.

Therefore, for all x ∈ Ω equation (10) can be written as

1 + f(|x|)
∣∣∣∣∂V̄sym

∂x
(x)

∣∣∣∣ − g(|x|)
∣∣∣∣∂V̄sym

∂x
(x)

∣∣∣∣ = 0, (11)

with boundary condition V̄sym(0) = 0.

C. Solution to the HJB equation

We have two cases to consider.

Case 1: Assume that ∂V̄sym
∂x > 0. In this case equation (11)

reduces to

1+f(|x|)∂V̄sym

∂x
(x)−g(|x|)∂V̄sym

∂x
(x) = 0, x ∈ Ω, (12)

with boundary condition V̄sym(0) = 0.

Case 2: Assume that ∂V̄sym
∂x < 0. In this case equation (11)

reduces to

1−f(|x|)∂V̄sym

∂x
(x)+g(|x|)∂V̄sym

∂x
(x) = 0, x ∈ Ω, (13)

with boundary condition V̄sym(0) = 0.

Let us now denote by V̄sym1 the solution to equation (12)
and by V̄sym2 the solution to equation (13).

For convenience, in the following we denote r1(x) :=
f(|x|) − g(|x|) and r2(x) := −f(|x|) + g(|x|). Therefore,
equations (12) and (13) can be re-written as

HJBmod(V̄symi , ri) := 1 +
∂V̄symi

∂x
(x) ri(x) = 0, (14)

with boundary condition V̄symi(0) = 0, for i = 1, 2.

We seek an approximate solution VWRAi
to equation (14)

using the method of weighted residuals [16]. To this end,
we assume a solution VWRAi

∈ XJ(Ω), (i = 1, 2) of the
form

VWRAi
(x) =

J−1∑
j=−1

∑
k∈Ij

cij,kΨj,k(x), i = 1, 2 (15)

and cij,k are the associated coefficients. Substituting expres-
sion (15) into equation HJBmod(V̄symi , ri) = 0 results in
the error

Erri := HJBmod

⎛
⎝ J−1∑

j=−1

∑
k∈Ij

cij,kΨj,k, ri

⎞
⎠ , i = 1, 2.

(16)
The coefficients cij,k are determined by setting the projection
of the error (16) on each element that spans the subspace
VJ (Ω) (namely, {ψj,k} where −1 ≤ j < J and k ∈ Ij) to
zero. Thus,

〈Erri, ψj,k〉L2(Ω)
:= 0, i = 1, 2 (17)

This approach will yield two solutions for V̄sym,
namely VWRA1 and VWRA2 , such that

∂VWRA1
∂x (x) >

0 and
∂VWRA2

∂x (x) < 0, ∀x ∈ Ω respectively. The solution
to the HJB equation (7) for all x ∈ Ω is then given as
follows

VWRA(x) =

{
VWRA1(x), x ∈ Ω+,

VWRA2(x), x ∈ Ω \ Ω+.
(18)

D. Convergence

We show that the solution (VWRA) obtained using the WRA
algorithm converges to V � (the unique viscosity solution
[17], [18]) as J → ∞.

Theorem 6: Let V � ∈ C0(Ω) be the unique viscosity
solution defined as

V �(x) :=

{
V �

1 (x), x ∈ Ω+,

V �
2 (x) = V �

1 (−x), x ∈ Ω \ Ω+.

where, V �
i ∈ W 1,2

0 (Ω)
⋂
W s+1,2(Ω) (i = 1, 2) for some

s ≥ 1, and VWRA be the approximate solution (using
WRA) of the time-optimal HJB equation (7). Then ‖V � −
VWRA‖1,2,Ω → 0 as J → ∞. �

Proof: The proof is a direct consequence of Theorem 4 in
[10] therefore we only give a sketch of the proof here. Let
VJi

be the projection of V �
i on XJ for i = 1, 2. Therefore



TABLE I

NUMBER OF SC USING DAUBECHIES WAVELETS FOR EXAMPLE 1

p J Mw MSC δ E0 E1

2 3 56 14 0.026 0.0058 0.0458
4 3 136 34 0.013 0.0064 0.0314

TABLE II

NUMBER OF SC USING SYMLETS FOR EXAMPLE 1

p J Mw MSC δ E0 E1

2 3 56 14 0.026 0.0058 0.0457
4 3 136 35 0.014 0.0089 0.0364

using Theorem 4 we have that limJ→∞ ‖V �
i −VJi

‖1,2,Ω =
0. Then we prove that limJ→∞ ‖VJi

− VWRAi
‖1,2,Ω =

0. Now limJ→∞ ‖V �
i − VWRAi

‖1,2,Ω = limJ→∞ ‖V �
i −

VJi
+ VJi

− VWRAi
‖1,2,Ω ≤ limJ→∞ ‖V �

i − VJi
‖1,2,Ω +

limJ→∞ ‖VJi
− VWRAi

‖1,2,Ω = 0 which completes the
proof.

V. NUMERICAL EXAMPLES

In this section we provide several examples to demonstrate
the benefits of the proposed method. In all examples, the
solution to the HJB equation is not differentiable at the
origin. The problems are also simple enough so that the
solution can be obtained analytically. This allows us to make
meaningful comparisons on the accuracy of the solution
obtained in each case.

Example 1: Consider system (5) with f(x) = −ax, g(x) =
1, and a > 0. The optimal value function is analytically
obtained as V (x) = 1

a ln(a|x| + 1).

Using the WRA algorithm (for a = 2) with the Daubechies
wavelets of order p = 2, 4 (for scales J = 3, 3 respectively)
provides the results shown in Fig. 1 and Fig. 2 respectively.

We define the significant coefficients (SC) as the coefficients
that are required to calculate the cost function VWRA using
the wavelets of order p at the minimum scale J so that
the error E0 = ‖V − VWRA‖0,2,Ω ≈ 10−2, where V is
the exact solution to the HJB equation. The number of
significant coefficients used in the calculation of VWRA with
Daubechies wavelets and symlets, and for different values
of p, are given in Tables I and II respectively.

In these tables Mw,MSC denote the total number of wavelet
coefficients for scale J and the number of SC respectively
and δ is the threshold for selecting the SC. For reference, the
last column also shows the error E1 = ‖V − VWRA‖1,2,Ω.

Example 2: Consider system (5) with f(x) = −5
3x and

g(x) = 1+25x2

6 . The optimal value function is analytically
obtained as V (x) = 6|x|

1+5|x| .

Using the WRA algorithm with Daubechies wavelets of
order p = 2, 4 (for scales J = 5, 5 respectively) provides the
results shown in Fig. 3 and Fig. 4 respectively. The number
of significant coefficients used for calculating VWRA for
p = 2, 4 using Daubechies wavelets and symlets are given
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Fig. 1. Example 1 using Daubechies wavelets (p = 2, J = 3, MSC =
14).
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Fig. 2. Example 1 using Daubechies Wavelets (p = 4, J = 3, MSC =
34).

in Tables III and IV, respectively.

VI. COMPARISON WITH POLYNOMIAL EXPANSIONS

We have also used polynomials to solve the previous exam-
ples. The results for both the examples using polynomials
are shown in Fig. 5 and Fig. 6. The comparison between the
wavelets and polynomials is summarized in Table V which
shows the superiority of the use of wavelets when compared
to polynomial expansions. (In Table V, Mp are the number
of polynomials that were used to solve the problem.)

VII. CONCLUSIONS

In this paper we have proposed a numerical scheme for
solving the time-optimal Hamilton-Jacobi-Bellman Equa-
tion on the interval. It is well known that the solution is
often non-differentiable at the origin. Our approach uses
antiderivatives of wavelets as trial functions in order to ef-
ficiently capture this behavior. Numerical examples clearly

TABLE III

NUMBER OF SC USING DAUBECHIES WAVELETS FOR EXAMPLE 2

p J Mw MSC δ E0 E1

2 5 204 20 0.035 0.0076 0.0978
4 5 484 39 0.009 0.0058 0.0587

TABLE IV

NUMBER OF SC USING SYMLETS FOR EXAMPLE 2

p J Mw MSC δ E0 E1

2 5 204 20 0.035 0.0076 0.0978
4 5 484 43 0.009 0.0102 0.0444



−3 −2 −1 0 1 2 3
0

0.5

1

1.5

 x

 V

 E0 = ||V−VWRA||0,2,Ω = 0.0076064

V
VWRA

(a) Value Function

−3 −2 −1 0 1 2 3

−6

−4

−2

0

2

4

6

x

dV
/ d

x

 E1 − E0 = |V−VWRA|1,2,Ω = 0.09019

dV/dx
dVWRA/dx

(b) Its Derivative

Fig. 3. Ex. 2 using Daubechies wavelets (p = 2, J = 5, MSC = 20).
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Fig. 4. Ex. 2 using Daubechies wavelets (p = 4, J = 5, MSC = 39).
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Fig. 5. Example 1 using polynomials (Mp = 14).
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Fig. 6. Example 2 using polynomials (Mp = 20).

TABLE V

WAVELETS VS. POLYNOMIALS

Ex. MSC E0 E1 Mp E0 E1

1 14 0.0058 0.0458 14 0.1559 0.3362
2 20 0.0076 0.0978 20 1.1008 2.5504

demonstrate the advantage of using wavelets in the proposed
numerical algorithm as compared to the polynomials.
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