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HOHMANN-HOHMANN AND HOHMANN-PHASING
COOPERATIVE RENDEZVOUS MANEUVERS

Atri Dutta∗ and Panagiotis Tsiotras†

We consider the problem of cooperative rendezvous between two satellites in cir-
cular orbits, given a fixed time for the rendezvous to be completed, and assuming
a circular rendezvous orbit. We investigate two types of cooperative maneuvers for
which analytical solutions can be obtained. One is the case of two Hohmann trans-
fers, while the other, referred to as HPCM, is the case of a Hohmann transfer and
a Phasing maneuver. For the latter case we derive conditions on the phasing angle
that makes a HPCM rendezvous cheaper than a cooperative rendezvous on an orbit
that is different than either the original orbits of the two participating satellites. It
is shown that minimizing fuel expenditure is equivalent to minimizing a weighted
sum of the ΔV s of the two orbital transfers, the weights being determined by the
mass and engine characteristics of the satellites. Our results show that, if the time
of rendezvous allows for a Hohmann transfer between the orbits of the satellites, the
optimal rendezvous is either a non-cooperative Hohmann transfer or a Hohmann-
Phasing cooperative maneuver. In both these cases, the maneuver costs are deter-
mined analytically. A numerical example verifies these observations. Finally, we
demonstrate the utility of this study for Peer-to-Peer (P2P) refueling of satellites in
two different circular orbits.

INTRODUCTION

The problem of fixed-time impulsive orbital transfers has been studied extensively for a long
time. Methods developed for determining multi-impulse solutions are primarily based on Lawden’s
primer vector theory.1 Lion and Handelsman2 applied calculus of variations to obtain first-order
conditions for the optimal addition of an impulse along the trajectory, or for the inclusion of initial
and final coasting periods. Primer vector theory has also been applied to determine multiple-impulse
fixed-time solutions to rendezvous between two vehicles in circular orbits.3 The Clohessy-Wiltshire
(C-W) equations4 have also been used in the literature to obtain minimum-fuel, multiple-impulse
orbital trajectories. Primer vector theory has also been applied to the C-W equations.5 The com-
putation of the minimum-ΔV , two-impulse orbital transfer between coplanar circular orbits is es-
sentially the well-known Lambert’s problem.4 The multiple revolution solutions to the Lambert’s
problem, in which the vehicle can complete several revolutions in the transfer orbit, have been stud-
ied in Ref. 6, where it has been shown that if the number of maximum possible revolutions isNmax,
then the optimal solution is determined by exhaustively investigating a set of (2Nmax + 1) candi-
date minima.6 Further, studies have led to an algorithm that determines the optimal solution by
investigating at most two of the (2Nmax + 1) candidate minima.7

Although most of the studies in the literature focus on active-passive (non-cooperative) ren-
dezvous, there also exist works that consider active-active (cooperative) rendezvous. The earliest
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works on cooperative rendezvous considered systems with linear or non-linear dynamics with var-
ious performance indices.8, 9 The idea of using differential games to study cooperative rendezvous
problems has also been discussed in the literature.10 The optimal terminal maneuver of two active
satellites engaged in a cooperative impulsive rendezvous has been studied in Ref. 11. Determina-
tion of the optimal terminal maneuver involves the optimization of the common velocity vector after
the rendezvous. Methods to determine optimal time-fixed impulsive cooperative rendezvous using
primer vector theory have been developed in Ref. 12. These accommodate cases of fuel-constraints
on the satellites, and enable the addition of a mid-course impulse to the trajectory of the vehicle. For
the case of fixed-time impulsive maneuvers, cooperative rendezvous may be advantageous when the
time allotted for the maneuver is relatively short. Examples show that a non-cooperative solution
becomes cheaper once the time allotted for the rendezvous is large enough for Hohmann transfers
to be feasible. Although it was demonstrated in Ref. 12 that cooperative rendezvous is beneficial
when the time for transfer does not allow for non-cooperative rendezvous between the participat-
ing satellites, this reference did not provide any general characterization of the optimal cooperative
solutions.

The minimum-fuel rendezvous of two power-limited spacecraft has also been studied using both
non-linear and C-W equations.13,14 For such spacecraft engaging in a rendezvous maneuver, coop-
erative rendezvous is always found to be cheaper than a non-cooperative rendezvous. Constrained
and unconstrained circular terminal orbits have also been analyzed in Ref. 13, where it has been
found that the cooperative solution still remains the cheaper option. Analytical solutions using the
C-W equations can be used to predict the nature of the terminal orbit of the rendezvous. For in-
stance, for the case of a cooperative rendezvous between two satellites in a circular orbit, the two
meet in an orbital slot that is mid-way between the original slots, each satellite essentially removing
half of the phase angle.13

The determination of optimal cooperative rendezvous maneuvers requires, in general, the solution
of a non-linear programming (NLP) problem. Solving a NLP is computationally intensive and there
can also be issues with the convergence to a local minimum rather than the global minimum. This
may not be an issue if we are interested in a single cooperative rendezvous. However, for problems
involving multiple satellites, such as peer-to-peer (P2P) satellite refueling,15–19 numerous cooper-
ative rendezvous need to be computed as part of the overall combinatorial optimization problem.
As a result, the time required to obtain the solution for each rendezvous does become an important
factor that hinders the applicability of the approach for the overall P2P problem.

Figure 1 depicts a constellation involving two coplanar circular orbits, in the context of a P2P
refueling problem: the fuel-sufficient satellites in the inner orbit have large amounts of fuel, while
the fuel-deficient satellites on the outer orbit have small amounts of fuel. The fuel-sufficient and
fuel-deficient satellites may rendezvous with each other to exchange fuel, thus redistributing the fuel
among all satellites in the constellation. In such a case of P2P refueling,15 cooperative rendezvous
may help in bringing down the fuel expenditure incurred during the ensuing orbital transfers. Ef-
ficient determination of the optimal cooperative rendezvous maneuvers is therefore crucial in the
overall optimization scheme. We wish to minimize the computations, even at the expense of ob-
taining slightly suboptimal solutions. Thus, in this work we focus on cooperative rendezvous for
which analytic solutions are easy to obtain. Our approach is justified by the fact that the P2P refu-
eling problem is a discrete combinatorial optimization problem, whose solution (that is, the optimal
matching between different sets of satellites) tends to be immune to the exact numerical values
of the edges of the associated graph structure,15–17,19 the latter being directly related to the fuel



expenditure between the satellites connected by the corresponding edge in the graph.
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Figure 1 Peer-to-Peer (P2P) refueling scenario.

The previous observations provide us with the main motivation in this paper, namely the study
of cooperative rendezvous maneuvers that can be solved analytically or semi-analytically (instead
of numerically). In addition, we wish to determine the conditions under which these maneuvers
are optimal. For this purpose, we consider a restricted case of the general cooperative rendezvous
problem, by constraining the terminal orbit of the rendezvous to be circular. For the problem under
consideration, we illustrate the advantages of a cooperative rendezvous (in terms of lower ΔV )
over its non-cooperative counterpart when the time to complete the maneuver is smaller than that
required for non-cooperative Hohmann transfers.

The primary contribution of this paper is a characterization of the solutions when the allotted
time for each maneuver is not sufficient for non-cooperative Hohmann transfers. In the following
sections, we discuss the problem, describe cooperative maneuvers that can be determined analyti-
cally, and investigate the conditions under which they are optimal. We present a numerical study
to illustrate these results. Finally, we also demonstrate the benefits of cooperative maneuvers in the
context of P2P refueling of a satellite constellation in two different coplanar circular orbits.

PROBLEM DESCRIPTION

We discretize an orbit of radius r into a set of orbital slots Φr equally spaced along the orbit. Let
I denote the set of indices for these slots. Let us consider two satellites sμ and sν occupying the
orbital slots φi and φj in the circular orbits of radius ri and ro respectively. Let the initial separation
angle between these satellites be θ0. Now consider an orbital slot φkr ∈ Φr on the orbit of radius r
where a cooperative rendezvous takes place, where kr ∈ I. The situation is depicted in Fig. 2.

Let the time allotted for a cooperative rendezvous between the two satellites be given by T , and
let also the velocity change required for an orbital transfer from slot φi to slot φkr be denoted by
ΔVikr , and the velocity change required for an orbital transfer from slot φj to slot φkr be denoted



by ΔVjkr . The total velocity change required for a cooperative rendezvous in which the satellites
meet at slot φkr ∈ Φr is denoted by

ΔV c
ij |kr = ΔVikr + ΔVjkr . (1)

This is the total velocity change required for a cooperative rendezvous between the two satellites.
Had the satellites been involved in a non-cooperative rendezvous, then the total velocity change
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Figure 2 Cooperative rendezvous for the case ri ≤ r ≤ ro.

required to complete the rendezvous would be ΔVij if satellite sμ were active and ΔVji if satellite
sν were active. Hence, the cases φkri

= φi and φkrj
= φj correspond to the two cases of non-

cooperative rendezvous. Note that if the cooperative rendezvous takes place on one of the two
orbits ri or ro, then one of the two orbital maneuvers for the cooperative rendezvous is essentially
a Phasing maneuver. Figure 3 shows the variation of the non-dimensional ΔV with respect to the
transfer time when an orbital transfer takes place in the same orbit. With the allowance of coasting,
ΔV is a non-increasing function of time, with ΔV -invariant intervals denoting Phasing maneuvers.
Since the intervals in which ΔV decrease become negligible with increasing time of transfer, the
optimal transfers are Phasing maneuvers for large times of flight. For such Phasing maneuvers,
analytical expressions for ΔV are known. Furthermore, if the transfer of the second spacecraft
is a Hohmann transfer, then we have an analytic expression for ΔV c

ij |kr as well. Similarly, for
rendezvous on an intermediate orbit, if both the orbital transfers are Hohmann transfers, then we
also have an analytic expression for ΔV c

ij |kr .

One of the slots in Φr results in the cheapest cooperative maneuver between any two satellites
meeting on the orbit of radius r. Let us denote this slot by φc(r) and the corresponding total velocity
change by ΔVc(r). We therefore have

ΔVc(r) � min
φkr∈Φr

ΔV c
ij |kr , (2)

and
φc(r) � arg min

φkr∈Φr

ΔV c
ij |kr . (3)
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Figure 3 Variation of non-dimensional ΔV with time.

Assume now that the optimal cooperative rendezvous involving satellites sμ and sν takes place in
the orbit of radius rmin and at the orbital slot φc,min. This corresponds to the lowest ΔV over all
possible orbits and all possible slots. We also let the corresponding optimal velocity change be
ΔVc,min. We therefore have,

ΔVc,min � min
r

ΔVc(r) (4)

and
φc,min � φc(rmin), where rmin = arg min

r
ΔVc(r). (5)

HOHMANN-HOHMANN COOPERATIVE MANEUVERS (HHCM)

The first cooperative maneuver involves two Hohmann transfers, that is, both satellites perform
Hohmann transfers to complete the cooperative rendezvous. Before we look at the details of the
HHCM, let us first consider a single Hohmann transfer.

Hohmann Transfers

For a Hohmann transfer from an orbit of radius r1 to an orbit of radius r2 (where, for simplicity,
we may assume that r1 < r2), the semi-major axis of the transfer orbit is given by a = (r1 + r2)/2,
so that the velocity change corresponding to the first impulse is given by

Δv1 =

√
2μ
(

1
r1

− 1
r1 + r2

)
−
√
μ

r1
, (6)

and the velocity change corresponding to the second impulse is given by

Δv2 =
√
μ

r2
−
√

2μ
(

1
r2

− 1
r1 + r2

)
. (7)



Using the above expressions, we have the total ΔV requirement for the Hohmann transfer to be

ΔV H =
(√

μ

r2
−
√
μ

r1

)
+
√

2μ
(√

1
r1

− 1
r1 + r2

−
√

1
r2

− 1
r1 + r2

)
. (8)

If r1 = ri and r2 = ro, this represents the cost ΔV H
nc of a non-cooperative Hohmann transfer

between sμ and sν where sμ is the active satellite. A similar expression holds when satellite sν is
active. The available time for the rendezvous and the initial separation angle determines whether a
Hohmann transfer is feasible or not. Hence, if a Hohmann transfer from sμ to sν is possible, we
have ΔVij = ΔV H

nc . By the same token, if a Hohmann transfer from sν to sμ is possible, we have
ΔVji = ΔV H

nc . Since for Hohmann transfers ΔVij = ΔVji we finally obtain that ΔVij = ΔVji =
ΔV H

nc .

The Phasing angle required for a Hohmann transfer to be feasible is given by20

θH = π

[
1 −
(

1 + r1/r2
2

)3/2
]
. (9)

Unless this angle of separation is achieved, the satellite performing the transfer will need to coast
for a time τH given by20

τH =
θ0 − θH

2π (1/T1 − 1/T2)
, (10)

where θ0 is the initial separation angle, and where Ts = (1/T1 − 1/T2)
−1 is the synodic period for

the orbits concerned, with Ti = 2π
√
r3i /μ, for i = 1, 2 is the orbital period. Since we are concerned

with fixed-time transfers, the maximum time allowed for coasting is given by

tc ≤ T − π

√
(r1 + r2)

3

8μ
. (11)

Therefore, the separation angle required for a Hohmann transfer should lie between θH and θH+Δθ,
where

Δθ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2π
Ts

⎛
⎝T − π

√
(r1 + r2)

3

8μ

⎞
⎠ , if r1 < r2,

−2π
Ts

⎛
⎝T − π

√
(r1 + r2)

3

8μ

⎞
⎠ , if r1 > r2.

(12)

A Hohmann transfer is therefore feasible for all separation angles θ0 ∈ [θH , θH + ΔθH ] if r1 < r2
and θ0 ∈ [θH +ΔθH , θH ] if r1 > r2. Therefore, all slots on ri and ro that satisfy the above condition
on the separation angle will allow for a Hohmann transfer to take place.

Optimal HHCM Rendezvous

Let satellites sμ and sν engage in a HHCM rendezvous. We assume that for all orbits of radius r
where a cooperative rendezvous can take place, there exists at least one slot φkr ∈ Φr at which both



satellites can perform a Hohmann transfer. Using the expression for the cost of a Hohmann transfer
in (8), the total velocity change required for the HHCM rendezvous, when ri ≤ r ≤ ro, is given by

ΔV H
c (r) =

(√
μ

ro
−
√
μ

ri

)
+

√
2μ
(√

1
ri

− 1
ri + r

−
√

1
r
− 1
ri + r

+
√

1
r
− 1
ro + r

−
√

1
ro

− 1
ro + r

)
. (13)

Taking the derivative of the previous expression with respect to r, we have,

√
2
μ

d
dr
(
ΔV H

c

)
=
(

1
r

)2
[

1√
1/r − 1/(ri + r)

− 1√
1/r − 1/(ro + r)

]

+
(

1
ri + r

)2
[

1√
1/ri − 1/(ri + r)

− 1√
1/r − 1/(ri + r)

]

+
(

1
ro + r

)2
[

1√
1/r − 1/(ro + r)

− 1√
1/ro − 1/(ro + r)

]
. (14)

By defining the following two parameters

β1 = 2 (ro + ri)
3 , β2 = ro (ro + 3ri)

2 , (15)

and by substituting r = ri in (14), we have√
2
μ

[
d
dr
(
ΔV H

c

)]
r=r+

i

=
√
β1 −

√
β2

r
3/2
i (ri + ro)

3/2
. (16)

Note that β1 − β2 = (ro − ri)
[
ro (ro + ri) − 2r2i

]
> 0 since ro > ri. It follows that 0 <

√
β2 <√

β1. We therefore have that [
d
dr
(
ΔV H

c

)]
r=r+

i

> 0. (17)

Substituting r = ro in (14), and by performing similar calculations, we obtain[
d
dr
(
ΔV H

c

)]
r=r−o

< 0. (18)

Similarly, we consider the cost of a HHCM rendezvous for the cases r < ri < ro and ri < ro < r.
These two cases yield [

d
dr
(
ΔV H

c

)]
r=r−i

< 0, (19)

and [
d
dr
(
ΔV H

c

)]
r=r+

o

> 0. (20)

The results can be summarized as[
d
dr
(
ΔV H

c

)]
r=ri

{
< 0, if r < ri,

> 0, if r > ri,
(21)



and [
d
dr

(ΔV )
]

r=ro

{
< 0, if r < ro,

> 0, if r > ro.
(22)

Therefore, we conclude that the ΔV cost for a HHCM rendezvous attains a local minimum when
either r = ri or r = ro. Note that a HHCM rendezvous for r = ri or r = ro is actually a
non-cooperative Hohmann transfer. It follows that if either Hohmann transfer is possible, then the
non-cooperative maneuvers are local minimizers. Figure 4 shows how the cooperative rendezvous
cost varies with r for different values of ro (ri is fixed at 1). For a cooperative rendezvous at an
outer orbit, the cost of the maneuver increases rapidly. As ro approaches ri, the cooperative cost
for any intermediate orbit r approaches the non-cooperative Hohmann transfer cost and the concave
region flattens out. In the limiting case when ro → ri, the minimum is obtained at r = ri = ro with
the total cost of transfer being zero.
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Figure 4 Variation of HHCM cost with r.

For convenience, let the difference of the HHCM and the non-cooperative Hohmann maneuver
costs be denoted by the function η(r), given by

η(r) � ΔV H
c (r) − ΔV H

nc√
2μ

.

Clearly, η(ri) = 0 and η(ro) = 0. The function η(r) can be calculated analytically, and its variation
over r (Fig. 5(a)) shows that η(r) is marginally sub-optimal for all r ∈ (ri, ro) compared to r = ri
or r = ro. If enough time is available so that Hohmann transfers are possible for the given separation
of the satellites, the optimal rendezvous is non-cooperative.

If the optimal cooperative rendezvous is comprised of two Hohmann transfers, we have ΔVc(r) =
ΔV H

c (r). However, both Hohmann transfers may not be possible. In this case ΔVc(r) �= ΔV H
c (r).

Let us define the following function:

ζ(r) � ΔVc(r) − ΔV H
c (r)√

2μ
.
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Figure 5 Variation of auxiliary functions η(r) and ζ(r) with r.

Since a Hohmann transfer is the optimal two-impulse transfer between all coplanar circular orbits,
a HHCM rendezvous is the optimal cooperative rendezvous at a radius r /∈ {ri, ro}. Hence, ζ(r)
measures the sub-optimality of the cooperative rendezvous solution when a HHCM rendezvous is
not feasible at any slot on the orbit. The function ζ(r) is shown in Fig. 5(b). Note that if a HHCM
rendezvous is feasible at any slot on the orbit, we have ζ(r) = 0.

HOHMANN-PHASING COOPERATIVE MANEUVERS (HPCM)

The second cooperative maneuver we investigate is comprised of one Hohmann transfer and one
Phasing maneuver (HPCM), that is, the cooperative rendezvous occurs at one of the orbits ri or ro.
Before we look at a HPCM, let us consider first a single Phasing maneuver.

Phasing Maneuvers

Optimal two-impulse orbital transfers from one position in a circular orbit to another position
on the same orbit in a given time are essentially Phasing maneuvers (recall that the cost-invariant
intervals in Fig. 2 correspond to Phasing maneuvers). Let us consider a Phasing maneuver by the
satellite located on the orbit of radius r�. Also, let T� denote the time period for the orbit of radius
r�. In our case, either satellite sμ or satellite sν performs a Phasing maneuver, that is, r� ∈ {ri, ro}.
The satellite can transfer from its original slot (φi for sμ and φj for sν) to another orbital slot φkr�

in the same orbit, by performing one of the following two maneuvers:

• A supersynchronous maneuver, in which the transfer orbit has a higher apoapsis than r�,

• A subsynchronous maneuver, in which the transfer orbit has a lower periapsis than r�.

Let us denote the phasing angle by ψ, where −π ≤ ψ ≤ π. We consider the cases of ψ < 0 and
ψ > 0 separately. For each of these cases, we have one of the two maneuvers (supersynchronous or
subsynchronous). We therefore have four cases to consider:21



i) Supersynchonous and ψ > 0: The velocity change required for this transfer is given by

ΔV p = 2
√
μ

r�

⎡
⎣
√

2 −
(


− 1

− ψ/2π

)2/3

− 1

⎤
⎦ , (23)

where

 = � T/T� + ψ/2π �. (24)

ii) Supersynchonous and ψ < 0: The velocity change required for this transfer is given by

ΔV p = 2
√
μ

r�

⎡
⎣
√

2 −
(





− ψ/2π

)2/3

− 1

⎤
⎦ . (25)

iii) Subsynchonous and ψ > 0: The velocity change required for this transfer is given by

ΔV p = 2
√
μ

r�

⎡
⎣1 −

√
2 −
(





− ψ/2π

)2/3
⎤
⎦ . (26)

iv) Subsynchonous and ψ < 0: The velocity change required for this transfer is given by

ΔV p = 2
√
μ

r�

⎡
⎣1 −

√
2 −
(


+ 1

− ψ/2π

)2/3
⎤
⎦ . (27)
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Figure 6 Hohmann-Phasing Cooperative Maneuver (r� = ro).

Note that during a HPCM rendezvous the Phasing maneuver can occur either on the orbit ri or
on the orbit ro. We now consider a cooperative maneuver comprised of a Hohmann transfer and a
Phasing maneuver. Two such maneuvers are possible. First, the satellite sν performs a Hohmann
transfer from ro to ri and the satellite sμ performs a Phasing maneuver. Second, the satellite sμ

performs a Hohmann transfer from ri to ro and the satellite sν performs a Phasing maneuver. This
case is depicted in Fig. 6, in which ψ represents the phasing angle and θ0 is the initial separation
angle between satellites sμ and sν . Denoting by ΔV c(r�) the cooperative cost, we therefore have

ΔV c(r�) = ΔV p + ΔV H
nc , � = i, o. (28)



Optimality of Hohmann-Phasing Cooperative Maneuvers (HPCM)

The total ΔV for a HPCM rendezvous depends on the phasing angle ψ. The phasing angle ψ
determines the location of the cooperative rendezvous on the orbit r�, where r� = ri or r� = ro. In
this section, we consider the four cases of Phasing maneuvers and find the locations on r� for which
the corresponding HPCM rendezvous is cheaper (in terms of ΔV ) than a cooperative maneuver
on an intermediate orbit. According to the previous discussion, these are exactly the locations for
which a HPCM rendezvous is feasible.

First, note the following expressions:

� T/T� − 1 � ≤ 
 ≤ � T/T� � if ψ ≤ 0, (29)

and
� T/T� � ≤ 
 ≤ � T/T� + 1 � if ψ ≥ 0. (30)

We therefore have,

ΔVc(r) − ΔV c(r�)√
2μ

=
ΔVc(r) − ΔV H

c (r)√
2μ

+
ΔV H

c (r) − ΔV H
nc√

2μ
+

ΔV H
nc − ΔV c(r�)√

2μ

= η(r) + ζ(r) − ΔV c(r�) − ΔV H
nc√

2μ

= η(r) + ζ(r) − ΔVp√
2μ

(31)

We are interested in finding the phasing angle such that ΔVc(r) ≥ ΔV c(r�). It follows that

η(r) + ζ(r) ≥
√

2
r�

⎡
⎣
√

2 −
(


− 1

− ψ/2π

)2/3

− 1

⎤
⎦ , (32)

which gives √
r�
2

(η (r) + ζ (r)) ≥
√

2 −
(


− 1

− ψ/2π

)2/3

− 1. (33)

Simple calculations lead to(

− 1


− ψ/2π

)
≥
[
2 −
(√

r�/2 (η(r) + ζ(r)) + 1
)2
]3/2

. (34)

This inequality yields

ψ

2π
≥

⎛
⎜⎜⎜⎝1 − 1[

2 −
(√

r�/2 (η(r) + ζ(r)) + 1
)2
]3/2

⎞
⎟⎟⎟⎠ 
+

1[
2 −
(√

r�/2 (η(r) + ζ(r)) + 1
)2
]3/2

.

(35)
Finally, using (24), the above inequality yields

ψ

2π
≥ �T/T�� − �T/T�� − 1[

2 −
(√

r�/2 (η(r) + ζ(r)) + 1
)2
]3/2

. (36)



Inequality (36) provides a lower bound ψ1
� (r) for the supersynchronous phasing angle. This lower

bound is given by

ψ1
� (r) = 2π

⎡
⎢⎢⎢⎣1 + �T/T��

⎛
⎜⎜⎜⎝1 − 1[

2 −
(√

r�/2 (η(r) + ζ(r)) + 1
)2
]3/2

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦ , (37)

and determines the minimum value of the supersynchronous phasing angle that defines locations on
r� for which a HPCM rendezvous is feasible. Since for this case we have by definition 0 ≤ ψ ≤ π,
the lower bound on the phasing angle is given by max{0, ψ1

� (r)}. Naturally, π represents an upper
bound for the phasing angle. Similarly, for the case of a supersynchronous Phasing maneuver with
ψ < 0, we can show that

ψ

2π
≥ (�T/T�� − 1)

⎛
⎜⎜⎜⎝1 − 1[

2 −
(√

r�/2 (η(r) + ζ(r)) + 1
)2
]3/2

⎞
⎟⎟⎟⎠ (38)

ensures that a HPCM is cheaper than the optimal cooperative rendezvous on any orbit of radius
r �= r�. The above inequality imposes a lower bound on the supersynchronous phasing angle given
by

ψ2
� (r) � 2π (�T/T�� − 1)

⎛
⎜⎜⎜⎝1 − 1[

2 −
(√

r�/2 (η(r) + ζ(r)) + 1
)2
]3/2

⎞
⎟⎟⎟⎠ . (39)

For this case, we have −π ≤ ψ ≤ 0 by definition. The lower bound on the phasing angle is
therefore given by max{−π, ψ2

� (r)}. Naturally, it follows by definition that the upper bound on the
phasing angle is 0. In summary, for the case of a supersynchronous maneuver, the lower bound on
the phasing angle is given by

ψ�(r) =

{
max{0, ψ1

� (r)}, if 0 ≤ ψ ≤ π,

max{−π, ψ2
� (r)}, if − π ≤ ψ ≤ 0.

(40)

Note that the maximum value of ψ�(r) represents a lower bound on the phasing angle that defines
the location on r� for which a HPCM is optimal. Note also that the maximum for both ψ1

� (r) and

ψ2
� (r) occurs when the quantity

(
2 −
(
1 +
√
r�/2 (η(r) + ζ(r))

)2
)

is maximum, equivalently,

when
(
1 +
√
r�/2 (η(r) + ζ(r))

)
is minimum, which occurs when η(r) + ζ(r) is minimum.

For the case of a sub-synchronous maneuver with ψ > 0, we have

ψ

2π
≤ �T/T�� − (�T/T�� + 1)[

2 −
(
1 −√r�/2 (η(r) + ζ(r))

)2
]3/2

(41)



φi

φj

φk

(a) r < ri < ro

φi

φj

φk

(b) ri < ro < r

Figure 7 Cooperative rendezvous.

as the corresponding condition that makes HPCM cheaper. The above inequality imposes an upper
bound ψ1

u(r) on the subsynchronous phasing angle in a HPCM

ψ3
u(r) � 2π

⎛
⎜⎜⎜⎝�T/T�� − (�T/T�� + 1)[

2 −
(
1 −√r�/2 (η(r) + ζ(r))

)2
]3/2

⎞
⎟⎟⎟⎠ , (42)

such that a HPCM rendezvous is feasible. However, for this case, we have by definition, 0 ≤ ψ ≤ π.
Therefore, min{ψ3

u(r), π} denotes the upper bound on the phasing angle, while the lower bound is
zero. Finally, for the case of a sub-synchronous maneuver with ψ < 0, we can show that

ψ

2π
≤ 1 + (�T/T�� − 1)

⎛
⎜⎜⎜⎝1 − 1[

2 −
(
1 −√r�/2 (η(r) + ζ(r))

)2
]3/2

⎞
⎟⎟⎟⎠ (43)

is required to have a HPCM maneuver to be optimal. This inequality imposes an upper bound ψ4
u(r)

on the subsynchronous phasing angle

ψ4
u(r) � 2π

⎡
⎢⎢⎢⎣1 + (�T/T�� − 1)

⎛
⎜⎜⎜⎝1 − 1[

2 −
(
1 −√r�/2 (η(r) + ζ(r))

)2
]3/2

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦ , (44)

which is a bound on the location on r� for which a HPCM rendezvous is feasible. Since by defini-
tion, −π ≤ ψ ≤ 0, the upper bound on the phasing angle is given by min{0, ψ4

u(r)}, and the lower
bound is given by −π. Therefore, by combining the two cases of subsynchronous maneuvers, we
have the following expression

ψu(r) =

{
min{π, ψ3

u(r)}, if 0 ≤ ψ ≤ π,

min{0, ψ4
u(r)}, if − π ≤ ψ ≤ 0.

(45)



Note that the minimum of ψu(r) over r represents an upper bound on the phasing angle that gives
the position on r� for which HPCM is feasible, hence also optimal. Note that the minimum of both

ψ3
u(r) and ψ4

u(r) occurs when

(
2 −
(
1 −√r�/2 (η(r) + ζ(r))

)2
)

is minimum, that is, when(
1 −√r�/2 (η(r) + ζ(r))

)
is maximum, which occurs when η(r) + ζ(r) is minimum.

The above analysis gives the location of the cooperative rendezvous of HPCM to be the cheapest
rendezvous option between the two satellites.

SHORT TIME TO RENDEZVOUS

In the previous sections it has been assumed that a phase-free Hohmann transfer is always possible
between the orbits ri and ro. However, if the time allowed for rendezvous is sufficiently small, a
Hohmann transfer between orbits ri and ro and vice versa becomes infeasible. In this section, we
consider the case of short-time rendezvous between satellites sμ and sν . We therefore assume that

T < π

√
(ri + ro)

3

8μ
. (46)

Clearly, HPCM maneuvers are not possible in this case. However, HHCM maneuvers may be

sμ

sν

rμ

rν

ri

ro

Figure 8 Short time of rendezvous: Feasibility of HHCM.

possible for some orbit r �∈ {ri, ro}. Let us determine the orbits r for which HHCM maneuvers can
occur for short-time rendezvous. To this end, let us investigate if the time T is sufficient for both
satellites sμ and sν to perform Hohmann transfers to an orbit of radius r. It follows from inequality
(8) that

T < π

√
(r + ro)

3

8μ
, for all r ≥ ri. (47)

Therefore, satellite sν cannot perform a Hohmann transfer to an orbit of radius r if r ≥ ri. For the
given time T , the satellite sν can nonetheless perform a Hohmann transfer from orbit ro to an orbit
r, provided r ≤ rν , where rν is defined as

rν =
(

8μT 2

π2

)1/3

− ro < ri. (48)



Similarly, for the given time T satellite sμ can perform a Hohmann transfer from orbit ri to an orbit
or radius r, provided that r ≤ rμ, where rμ is defined as

rμ =
(

8μT 2

π2

)1/3

− ri < ro. (49)

Note that rν < rμ < ro and rν < ri < ro. Hence, a HHCM rendezvous is feasible only for
r ≤ rν . Consequently, if the optimal solution is a HHCM rendezvous, the location of rendezvous
is at an orbit of radius r ≤ rν . Otherwise, the optimal rendezvous takes place on an orbit of radius
r > rν . Figure 8 shows the two satellites sμ and sν in the orbits ri and ro respectively, along with
the orbits rμ and rν .

The results of the previous analysis are summarized in Table 1. In the table, TH
nc denotes the time

required for a non-cooperative Hohmann transfer between the satellites (which is a function of the
initial separation angle θ0) and TH

pf denotes the time required for a phase-free Hohmann transfer.

Table 1 Summary of results.

Time of Rendezvous Optimal Solution Optimal Rendezvous Location

T ≥ TH
nc(θ0) Non-Cooperative Hohmann r� = ri or r� = ro

Transfer

TH
pf ≤ T < TH

nc(θ0) HPCM r� = ri or r� = ro

T < TH
pf Cooperative Rendezvous r� ≤ rν if HHCM

FUEL EXPENDITURE DURING COOPERATIVE RENDEZVOUS

We have discussed so far only the minimization of total velocity change required for a cooperative
rendezvous. In this section, we consider the minimization of the true objective, which is the fuel
expenditure during the cooperative rendezvous between the satellites sμ and sν . Let msμ and msν

denote the mass of the permanent structure of the satellites sμ and sν respectively, while f−μ and
f−ν denote the initial fuel content of satellites sμ and sν , respectively. For the transfer of sμ from
φi to φkr , let ΔVikr denote the required velocity change. The fuel expenditure during the transfer is
given by

pμ
ikr

=
(
msμ + f−μ

)(
1 − e

−ΔVikr
c0μ

)
. (50)

For the transfer of sν from φj to φ�, let ΔVj� denote the required velocity change. The fuel expen-
diture during this transfer is given by

pν
jkr

=
(
msν + f−ν

)(
1 − e

−ΔVjkr
c0ν

)
. (51)



The total fuel expenditure during the cooperative rendezvous between satellites sμ and sν is there-
fore given by

pμ
ikr

+ pν
jkr

=
(
msμ + f−μ

)(
1 − e

−ΔVikr
c0μ

)
+
(
msν + f−ν

)(
1 − e

−ΔVjkr
c0ν

)
, (52)

and is a function of the location (slot φkr of orbit of radius r) of the cooperative rendezvous. Now,
let us assume that the minimum fuel expenditure occurs at the slot φ� of orbit of radius r�. We
will denote all quantities associated with the optimal fuel expenditure by the subscript ’�’. In other
words, we have

pμ
ikr�

+ pν
jkr�

≤ pμ
ikr

+ pν
jkr

(53)

for all possible r and φkr . Using (52), we have from (53),

(
msμ + f−μ

)(
e
−ΔVikr

c0μ − e
−ΔVikr�

c0μ

)
+
(
msν + f−ν

)(
e
−ΔVjkr

c0ν − e
−ΔVjkr�

c0ν

)
≤ 0 (54)

Expanding the exponential term, and neglecting higher powers of ΔV/c0 
 1∗, we have

(
msμ + f−μ

)(ΔVikr�

c0μ
− ΔVikr

c0μ

)
+
(
msν + f−ν

)(ΔVjkr�

c0ν
− ΔVjkr

c0ν

)
≤ 0, (55)

which reduces to(
msμ + f−μ

)
c0μ

ΔVikr�
+

(msν + f−ν )
c0ν

ΔVjkr�
≤
(
msμ + f−μ

)
c0μ

ΔVikr +
(msν + f−ν )

c0ν
ΔVjkr (56)

Note that the right-hand side of the above inequality is a function of r and φkr . The inequality holds
for all r and φkr . Hence, we have

min
r,φkr

[(
msμ + f−μ

)
c0μ

ΔVikr +
(msν + f−ν )

c0ν
ΔVjkr

]
=

(
msμ + f−μ

)
c0μ

ΔVikr�
+

(msν + f−ν )
c0ν

ΔVjkr�

(57)
We therefore conclude that the total fuel expenditure is minimized at the location where a weighted
sum of ΔV is minimized, the weights being a ratio of mass and specific impulse for each satellite.
If this ratio is the same for the two satellites, that is, msμ/c0μ = msμ/c0μ, then the minimum fuel
expenditure during cooperative rendezvous is equivalent to minimizing the total ΔV . Furthermore,
if the satellites have the same engine characteristics and nearly the same mass, minimizing fuel is
the same as minimizing total ΔV .

Note that for a cooperative rendezvous on an orbit of radius r, both satellites sμ and sν must have
enough fuel to complete the rendezvous at an orbital slot φkr on the orbit r. Next, we determine the
necessary conditions for the feasibility of a cooperative rendezvous at a slot φkr on the orbit r.

For satellite sμ to be able to complete the rendezvous, we must have

pikr ≤ f−μ , (58)

∗This assumption is justified because a typical value of c0 = 2943 m/s and the ΔV requirement for the transfers
would be much smaller (of the order of 10 m/s).



which, under the assumption ΔV/c0 
 1, implies(
msμ + f−μ

)
c0μ

ΔVikr ≤ f−μ . (59)

Similarly, for the satellite sν to be able to complete the rendezvous, we must have

pjkr ≤ f−ν , (60)

which, under the assumption ΔV/c0 
 1, yields

(msν + f−ν )
c0ν

ΔVjkr ≤ f−ν . (61)

Equations (59) and (61) imply that the radius r of the orbit for the cooperative rendezvous to take
place is bounded above and below by r� ≤ r ≤ ru. Hence, minimizing the total fuel is equivalent to
minimizing the weighted sum of ΔV over all locations of all orbits or radius r such that r� ≤ r ≤ ru.

Assuming the orbits ri and ro are close enough, that is ro − ri 
 ri, we can derive explicit
expressions for r� and ru. To this end, let us consider the transfer of sμ from the orbit ri to some
orbit r > ri. For a given amount of fuel, the highest orbit the satellite sμ can transfer to is the one
given by a Hohmann transfer. The velocity change for a Hohmann transfer from orbit ri to r is
given by

ΔVikr = Δru
√
μ

r3i
, (62)

where Δru = r − ri and where we have assumed that Δru/ri 
 1. Using (62), we obtain from
(59),

Δru ≤ f−μ(
msμ + f−μ

)c0μ

√
r3i
μ
. (63)

This expression yields the upper bound ru as follows

ru = ri +
f−μ(

msμ + f−μ
)c0μ

√
r3i
μ
. (64)

Let us now consider the transfer of sν from the orbit or radius ro to the orbit r < ro. For a given
amount of fuel, the lowest orbit the satellite sν can transfer to is a Hohmann transfer from ro and r.
Letting Δr� = r − ro, and assuming again that Δr�/ro 
 1, we have,

ΔVjkr =
1
2
Δr�
√
μ

r3o
. (65)

Using the above expression, we obtain from (61),

Δr� ≤ 2
f−ν(

msν + f−ν
)c0ν

√
r3o
μ
, (66)

which yields the following expression for the lower bound r� as follows

r� = ro − 2
f−ν(

msν + f−ν
)c0ν

√
r3o
μ
. (67)



In summary, a cooperative rendezvous is feasible at an orbit of radius r if and only if r� ≤ r ≤ ru.
If r� > ri and ru > ro, none of the non-cooperative rendezvous are feasible and the rendezvous has
to be cooperative.

From the above analysis (recall also (57), we find that the fuel expenditure is minimized when
the weighted sum (

msμ + f−μ
)

c0μ
ΔVikr +

(msν + f−ν )
c0ν

ΔVjkr (68)

is minimized for all r� ≤ r ≤ ru. Assume now that the satellites sμ and sν perform a HHCM
rendezvous at an orbit or radius r. For ri ≤ r ≤ ro, the total ΔV required for the HHCM rendezvous
remains roughly constant, say, ΔV0. For similar satellites, that is,msμ = msν = ms and c0μ = c0ν ,
we have for the expression in (68)

ms + f−ν
c0

ΔV0 +
f−μ − f−ν

c0
ΔVikr =

ms + f−μ
c0

ΔV0 +
f−ν − f−μ

c0
ΔVjkr . (69)

If f−μ < f−ν , the above expression is minimized when ΔVikr is maximized, which occurs at r = rμ.
Similarly, if f−ν < f−μ , the above expression is minimized when ΔVjkr is maximized, which occurs
at r = rν . In either case, the fuel-deficient satellite moves as close to the fuel-sufficient satellite as
possible. This is a particularly important case for the refueling problem because refueling typically
takes place towards the end of fuel life-time of the satellite. Hence, it is likely that the fuel-deficient
satellites would be almost depleted of fuel. In such a case, even if enough time is permitted for
Hohmann transfers to take place, the optimal rendezvous has to be cooperative, at an orbit of radius
r = rν or r = rμ.

NUMERICAL EXAMPLE

In this section, we first consider an example of a cooperative rendezvous between two satellites
in two different circular orbits. According to the previous developments, the terminal orbit of the
satellites at the end of the cooperative maneuver is assumed to be circular as well. With the help
of this example, we illustrate that the optimal rendezvous that minimizes the total ΔV , is either
a non-cooperative Hohmann transfer or a cooperative maneuver that is comprised of a Hohmann
transfer and a Phasing maneuver, provided there is sufficient time to perform a phase-free Hohmann
transfer between the orbits ri and ro.

Example 1. Cooperative rendezvous between two satellites in different circular orbits.

Let ri = 1, ro = 1.05 and θ0 = 60 deg. First we determine the optimal cooperative rendezvous
for a time-of-flight less than the one necessary for a Hohmann transfer for either one of the non-
cooperative maneuvers. For this example, a non-cooperative Hohmann transfer for which sμ is the
active satellite becomes possible when t = 2.6290. The other non-cooperative Hohmann transfer,
in which sν is the active satellite, becomes possible at t = 3.1479. In other words, if t < 2.6290,
non-cooperative Hohmann transfers are not feasible between the two satellites. We therefore con-
sider the time for rendezvous to be t = 1.50. We determine the total cost (ΔV ) of a cooperative
rendezvous for all possible slots and compute the minimum. We consider cooperative rendezvous
to occur in orbits of radius r, where 0.98 ≤ r ≤ 1.07. This allows us to consider all three cases
of cooperative rendezvous, namely (i) r < ri < ro, (ii) ri < r < ro and (iii) ri < ro < r.
Figure 9(a) shows the variation of cooperative ΔV with the radius r of the orbit. On each orbit
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Figure 9 Case study (ri = 1, ro = 1.05, θ = 60deg, T = 1.5).
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Figure 10 Explaining the discontinuity: Competing local minima.
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Figure 11 Explaining the discontinuity: Detail of the two competing local minima.

of radius r where the cooperative rendezvous takes place, there is an optimal location that yields
the minimum ΔV for that particular orbit. Figure 9(b) depicts the variation of the optimal position
of cooperative rendezvous φc(r) with r. The plot shows a discontinuity in the optimal rendezvous
position as the value of r changes from r = 1.0150 to r = 1.0175. To investigate the reason for this
discontinuity, let us consider the variation of ΔV c

ij |kr over various slots Φr of a given intermediate
orbit. Figure 10(a) shows such a variation for the orbit with radius r = 1.0150, while Fig. 10(b)
shows the same for the orbit with radius r = 1.0175. A detailed view of the two competing local
minima is shown in Fig. 11.

Both these plots show two local minima that compete with each other for the cheapest solution
for cooperative rendezvous on that particular orbit r. Each of these local minima corresponds to
a cooperative maneuver in which one of the orbital transfers is a Hohmann transfer. As r changes
from r = 1.0150 to r = 1.0175, there is a change of optimal cooperative rendezvous from one local
minimum to the other. This shift of the optimal position appears as a discontinuity in the plot of φ.
Naturally, there is no discontinuity in the variation of ΔV .

Referring back to Fig. 9(a), we see that the minimum ΔV for cooperative rendezvous occurs at
one of the orbits r = ri or r = ro. The optimal cooperative rendezvous on orbit ri occurs at the slot
φ = 28 deg, while the optimal cooperative rendezvous on orbit ro occurs at the slot φ = 32 deg.
Calculations of the feasible slots for Hohmann transfers indicate that Hohmann transfers are possible
for slots φ = 28.28 deg to φ = 53.21 deg on orbit ri, while Hohmann transfers are possible for
slots φ = 6.39 deg to φ = 31.32 deg on orbit ro. These are obtained by calculating the lead
angles necessary for a Hohmann transfer, as given by equation (12). Because of the discretization
used for our calculation of slots at intervals of 2 deg, we obtain the optimal rendezvous locations at
φ = 28 deg (instead of φ = 28.28 deg) on orbit ri and at φ = 32 deg (instead of φ = 31.32 deg)
on orbit ro. The results indicate that the optimal rendezvous locations on orbits ri and ro occur near
the slots where Hohmann transfers are possible, indicating that the optimal cooperative rendezvous
is indeed a Hohmann-Phasing cooperative maneuver. Hence, when the time of rendezvous does not
allow for a Hohmann non-cooperative transfer, the best possible cooperative maneuver is found to
be comprised of a Hohmann transfer and a Phasing maneuver.

Next, we investigate the optimal cooperative rendezvous between two satellites for a time of ma-
neuver T = 3.0 that allows for non-cooperative rendezvous using Hohmann transfers. Figure 12(a)
shows the variation of cooperative ΔV with the radius r of the orbit where the cooperative ren-
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Figure 12 Case study (ri = 1, ro = 1.05, θ = 60deg, T = 3.0).

dezvous takes place. Figure 12(b) depicts the variation of the optimal position of the cooperative
rendezvous φc(r) with r. It is found that the non-cooperative Hohmann transfers provide the best
ΔV for the rendezvous of the two satellites. In summary, this numerical example shows that the
optimal rendezvous between two satellites in different orbits is either non-cooperative Hohmann or
it is a cooperative maneuver comprised of a Hohmann and a Phasing maneuver.

Let us now consider a time for the rendezvous T , so that a phase-free Hohmann transfer between
orbits ri and ro is not possible. For our example, if T < 0.519 a Hohmann transfer between ri and
ro is not possible, so we let T = 0.50. In this case rν = 0.95, so that HHCM maneuvers are not
possible at any orbit of radius r > 0.95. The optimal rendezvous is cooperative and occurs at the
orbit of radius r = 0.9879 (not a HHCM rendezvous). However, there are cases when the optimal
solution is a HHCM rendezvous. For instance, when ri = 1, ro = 1.05, θ0 = 7 deg and T = 0.518,
we have rν = 0.9975 and the optimal maneuver is a HHCM rendezvous. The optimum occurs at
the orbit of radius r = 0.9975, when the HHCM maneuver just becomes feasible. Figures 13(a)
and 13(b) show the variation of ΔV for both of these cases. The optimal rendezvous in either case
occurs at an orbit other than ri or ro. Figures 13(c) and 13(d) show the detail of the region where
the minimum occurs. Note that the function is relatively flat in this region. We may use this result
to compute (analytically) HHCM maneuvers that are only slightly suboptimal.

In order to confirm the occurrence of cooperative (but not HHCM) rendezvous when the time
to rendezvous is very short, we repeated the analysis for the cases T = 0.40 and T = 0.45. The
results are shown in Fig. 14. In both cases the HHCM maneuver is sub-optimal. In the first case
the optimum occurs at r = 0.9487 whereas rν = 0.6735. In the second case the optimum occurs
at r = 0.9765 whereas rν = 0.8143. Note that the optimal cooperative maneuver in either case is
substantially cheaper than the corresponding HHCM solution.

Thus far we only considered the minimization of ΔV . Let us now consider the fuel expenditure
during the cooperative rendezvous between the satellites in orbits ri = 1 and ro = 1.05 and with
angle of separation θ0 = 60 deg. Fig. 15 shows the variation of fuel expenditure with r. The fuel
expenditure has been normalized by dividing the total fuel expenditure by the maximum of the fuel
capacities of the satellite. In the first case, the satellites have 25 and 5 units of fuel and the time for
rendezvous is T = 1.5. The fuel-deficient satellite has enough fuel to complete the non-cooperative
rendezvous. The plot shows that there are indeed two local minimum at r = 1 and r = 1.05, that
is, at the end orbits. In this case, the fuel is minimized at the same location as the total ΔV and
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Figure 13 Case study for small time of flight (ri = 1, ro = 1.05).

the optimal rendezvous is a HPCM. In the second case, the time of rendezvous is T = 3.0 and the
fuel content of the satellites are 25 and 1.3 units respectively. Had the fuel-deficient satellite enough
fuel to complete a non-cooperative Hohmann transfer, the optimal rendezvous would have taken
place at r = 1.00. However, the 1.3 units of fuel is not sufficient for the fuel-deficient satellite to
complete a non-cooperative Hohmann transfer. Consequently, the optimal rendezvous takes place
at r = 1.0175. The fuel-deficient satellite uses all of its fuel in order to transfer to an orbit that is as
close as possible to the fuel-sufficient satellite. The optimal rendezvous is HHCM.

The next and final example demonstrates the benefits of cooperative rendezvous for P2P refueling
for a large number of satellites in two different coplanar circular orbits.

Example 2. P2P refueling for a constellation of 12 satellites in two circular orbits, each orbit
having 6 satellites.

Consider a satellite constellation of two circular orbits, one at an altitude of 1000 Km and the
other at an altitude of 1075 Km. The upper orbit has 6 fuel-deficient satellites, while the lower
orbit is populated with 6 satellites, all of which are fuel-sufficient. The orbital slots of the satellites
in the lower orbit are given by Φ1 = {0, 60, 120, 180, 210, 270, 330}deg. The fuel content of
these satellites are 27, 29, 30, 29.5, 28.5 and 28 units respectively. Similarly, the orbital slots
of the satellites in the upper orbit are given by Φ2 = {30, 90, 150, 210, 270, 330}deg. The fuel
content of these satellites are 0.75, 0.70, 0.80, 0.60 and 0.65 units respectively. Each satellite
has a minimum fuel requirement of f

i
= 12 units, where i = 1, . . . , 12, while the maximum

amount of fuel is f̄i = 30 units. Each satellite has a permanent structure of msi = 70 units,
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Figure 14 Optimal cooperative (but non-HHCM) rendezvous for short time of flight.
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Figure 15 Variation of fuel with r.

and a characteristic constant of c0i = 2943 m/s. The indices of the fuel-sufficient satellites are
Is,0 = {1, 2, 3, 4, 5, 6} and those of the fuel-deficient satellites areJd,0 = {7, 8, 9, 10, 11, 12}. If all
satellites are restricted to engage in non-cooperative rendezvous, then the optimal P2P assignments
are s1 ↔ s12, s2 ↔ s11, s3 ↔ s10, s4 ↔ s9, s5 ↔ s8, and s6 − s7. The corresponding total
fuel expenditure during the refueling process is 12.80 units. The optimal solution is depicted in
Fig. 16(a).

If the satellites are allowed to engage in cooperative rendezvous, the optimal C-P2P assignments
are s1 ↔ s12, s2 ↔ s8, s3 ↔ s9, s4 ↔ s7, s5 ↔ s11, and s6 ↔ s10. All of these refueling transac-
tions involve cooperative rendezvous. The total fuel expenditure is given by 11.38 units, implying a
reduction of fuel consumption by 11% when we allow for cooperative rendezvous between the satel-
lites. Figure 16(b) shows the optimal C-P2P assignments. For instance, satellites s1 and s2 meet
on the orbit of radius r = 1.0042 after both preforming Hohmann transfers. In fact, for all of the
refueling transactions, the satellites engage in HHCM rendezvous. In each case, although the allot-
ted time is enough for a non-cooperative Hohmann transfer between the participating satellites, the
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Figure 16 Optimal assignments for P2P refueling.

fuel-deficient satellites do not have enough fuel to complete the non-cooperative Hohmann transfer.
Instead, they move as close as possible to the orbit of a fuel-sufficient satellite by expending all their
fuel.

CONCLUSIONS

In this paper we have studied the problem of cooperative impulsive rendezvous between two
satellites in circular orbits. We assume that the terminal orbit for each rendezvous maneuver is
circular. We have specifically looked at cooperative maneuvers that are comprised of two Hohmann
transfers, or a Hohmann transfer and a Phasing maneuver (HPCM). We derive bounds on the phasing
angle that makes the HPCM rendezvous the optimal solution. We illustrate via an example that
when the time to rendezvous is not sufficient for a non-cooperative Hohmann transfer between the
satellites, the optimal rendezvous that yields the minimum ΔV is the Hohmann-Phasing cooperative
maneuver. However, if the time for the maneuver allows for a non-cooperative Hohmann transfer,
the optimal solution is non-cooperative. In both these cases, we assume that the time of transfer is
sufficient for a (phase-free) Hohmann transfer to take place between the orbits of the satellites. If
the time of transfer is sufficient to allow a Hohmann transfer between the orbits, the optimal solution
is either a non-cooperative Hohmann transfer or is a cooperative maneuver that is comprised of a
Hohmann transfer and a Phasing maneuver. If the time to complete the rendezvous is too short, a
cooperative Hohmann rendezvous in a lower orbit is the most likely optimal candidate. In all cases
the optimal solution and associated cost can be calculated explicitly. Finally, we demonstrate the
benefits of HHCM and HPCM rendezvous for cooperative peer-to-peer refueling.

ACKNOWLEDGMENT

This work has been supported by AFOSR award no. FA9550-04-1-0135.

REFERENCES

[1] D. Lawden, Optimal Trajectories for Space Navigation. Butterworths, London, 1963.
[2] P. M. Lion and M. Handelsman, “Primer Vector on Fixed-time Impulsive Trajectories,” AIAA Journal, Vol. vol.6,

No. 1, 1968, pp. 127–132.



[3] J. E. Prussing and J. Chiu, “Optimal Multiple-impulse Time-fixed Rendezvous Between Circular Orbits,” Journal
of Guidance, Control and Dnamics, Vol. 9, Jan-Feb 1986, pp. 17–22.

[4] J. Prussing and B. Conway, Orbital Mechanics. Oxford University Press, 1993.
[5] D. Jezewski, “Primer Vector Theory Applied to the Linear Relative-motion Equations,” Optimal Control Applica-

tions and Methods, Vol. 1, No. 4, 1980, pp. 387–401.
[6] J. E. Prussing, “A Class of Optimal Two-impulse Rendezvous Using Multiple-revolution Lambert Solutions,” The

Journal of the Astronautical Sciences, Vol. 48, Apr-Sep 2000, pp. 131–148.
[7] H. Shen and P. Tsiotras, “Optimal Two-impulse Rendezvous Between Two Circular Orbits Using Multiple-

revolution Lambert’s Solution,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 26, 2003, pp. 50–61.
[8] P. Meschler, “Time Optimal Rendezvous Strategies,” IEEE Transactions on Automatic Control, Vol. 8, 1963,

pp. 279–282.
[9] D. Eller, T. Mueller, and J. Aggarwal, “On Optimal Cooperative Rendezvous,” IEEE Transactions on Automatic

Control, Vol. 12, April 1967, pp. 202–202.
[10] R. Wong, “Some Aerospace Differential Games,” Journal of Spacecraft and Rockets, Vol. 4, No. 11, 1967, pp. 1460–

1465.
[11] J. Prussing and B. Conway, “Optimal Terminal Maneuver for a Cooperative Impulsive Rendezvous,” Journal of

Guidance, Control and Dynamics, Vol. 12, 1989, pp. 433–435.
[12] K. Mirfakhraie and B. Conway, “Optimal Cooperative Time-fixed Impulsive Rendezvous,” Journal of Guidance,

Control and Dynamics, Vol. 17, 1994, pp. 607–613.
[13] V. Coverstone and V. Prussing, “Optimal Cooperative Power-limited Rendezvous Between Neighboring Circular

Orbits,” Journal of Guidance, Control and Dynamics, Vol. 16, 1993, pp. 1045–1054.
[14] V. Coverstone and J. Prussing, “Optimal Cooperative Power-limited Rendezvous Between Coplanar Circular Or-

bits,” Journal of Guidance, Control and Dynamics, Vol. 17, 1994, pp. 1096–1102.
[15] H. Shen and P. Tsiotras, “Peer-to-Peer Refueling for Circular Satellite Constellations,” AIAA Journal of Guidance,

Control, and Dynamics, Vol. 28, 2005, pp. 1220–1230.
[16] A. Dutta and P. Tsiotras, “Asynchronous Optimal Mixed P2P Satellite Refueling Strategies,” The Journal of the

Astronautical Sciences, Vol. 54, Jul-Dec 2006, pp. 543–565.
[17] A. Dutta and P. Tsiotras, “A Greedy Random Adaptive Search Procedure for Optimal Scheduling of P2P Satellite

Refueling,” AAS/AIAA Space Flight Mechanics Meeting, No. AAS Paper 07-150, Sedona, AZ, Jan. 2007.
[18] A. Dutta and P. Tsiotras, “A Network Flow Formulation for an Egalitarian P2P Refueling Strategy,” AAS/AIAA

Space Flight Mechanics Meeting, No. AAS Paper 07-151, Sedona, AZ, Jan. 2007.
[19] A. Dutta and P. Tsiotras, “An Egalitarian Peer-to-Peer Satellite Refueling Strategy,” Journal of Spacecraft and

Rockets, Vol. 45, No. 3, 2008, pp. 608–618.
[20] V. A. Chobotov, Orbital Mechanics. AIAA Education Series, third ed., 2002.
[21] E. Lamassoure, “A Framework to Account for Flexibility in Modeling the Value of On-Orbit Servicing for Space

Systems,” Master’s thesis, Dept. of Aeronautics and Astronatics, Massachusetts Institute of Technology, Cambridge,
MA, June 2001.


