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Abstract: This paper presents a comparison system approach to the analysis of Ho
performance and robust stability for linear systems with time-invariant delays. Using
the properties of the diagonal Padé approximation, we establish a covering set for
the delay element via an inner and outer inclusion relation. A comparison system can
then be obtained by replacing the delay elements with a frequency-dilated version of
a Padé approximation. The resulting conditions can be reduced to finite-dimensional

LMIs.
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1. INTRODUCTION

The analysis of linear time-delay systems (LTDS)
has attracted much interest over a half century,
especially in the last decade (Dugard and Verri-
est, 1997). In this paper, we extend the stability
analysis results of (Zhang et al., 20000; Zhang
et al., 2000a) to examine the H,, performance
and robustness of LTDS to parametric and/or
dynamic uncertainties.

1 This research was supported by the National Sci-
ence Foundation of the United States under Grant
DMI—-9713488.

2. PRELIMINARIES
2.1 Comparison Systems

We briefly review the relevant results of (Zhang et
al., 2000a). Throughout this paper, we will confine
our analysis to the case of a single delay so as to
simplify the presentation. The results presented
can be extended straightforwardly to the case
of multiple delay (see (Zhang et al., 2000a) for
some insights regarding this). Consider a nominal
LTDS (denoted as ) , in the sequel) subject to
exogenous disturbance given by

&(t) = Ax(t) + Agz(t — 1) + Biw(t) 1
z(t) = Crz(t) (1)

where A, Ay € R, B; € R*""™ and C; €
R™ *™ are constant matrices, time-delay 7 € [0, 7]
is constant and unknown, and w(t) € L£3[0,00)
is the exogenous disturbance. Without loss of



We will first consider the stability of this system
which may be regarded as homogeneous for such
analysis. To begin, we will introduce the following
definitions:

Definition 1. The actual delay margin 7* for the
system (1) is defined as

7* := sup {7|(1) is asymptotcially stable on [0, 7]}.

The stability of system (1) is said to be delay-
dependent if 7* is finite, and delay-independent
otherwise.

Definition 2. Suppose P is a condition that en-
sures that (1) is asymptotically stable on [0, 7]. If
(1) is delay-dependent with actual delay margin
7*, then the degree of conservatism (d.o.c.) of P
is defined by
d.o.c. := @
=
where
Tp = sup {7|P is true on [0, 7]} .

Moreover, 75 is said to be the delay margin
provided by P .

In the sequel, we decompose A; = HF where
H € R*™ and F € R?*" have full rank. The
following zero exclusion condition lies at the heart
of our analysis.

Lemma 1. (Zero Exclusion Condition) (Zhang et
al., 2000a) The system (1) is asymptotically stable
on [0, 7] if and only if

det[l,—G(jw)®(jTw)] # 0, Yw>0,7€[0,7],

(2)

where

and ®(r,s) := ¢(1s)I,, p(1s) = e 75 — 1.

An indirect but intuitive approach for examining
whether (2) holds, is to cover ®(r,jw) with an-
other set ®(w), that is, to find a value set ®(w)
such that
O(7, jw) € 2(w),
Then (2) holds if
det[I, — G(jw)A(jw)] £ 0,Ye > 0, A(jw) € B(w).
(3)

Yw>0,7 €0, 7]

which is satisfied if the interconnection Y [G(s), A(s)]

(referred to as the comparison system in the se-
quel) is robustly stable. The conservatism of this
approach mainly arises from the manner in which
the covering set @ is chosen, based on the proper-
ties of the delay element. In (Zhang et al., 1999a),

plicitly used in the Lyapunov-based stability cri-
teria of (Verriest and Ivanov, 1994; Niculescu et
al., 1995; Li and de Souza, 1996; Park, 1999).

2.2 Inner and Outer Coverings

We consider the (m, m)-th (m > 3) diagonal Padé

approximation R,,(s) to e *:

where

_ & @2m = k)l (—s)*
Pin(s) = I;O 2m) 1kl (m — k)!

Qm(s) = Pp(—s).

In the sequel, for constant 7 > 0 and w > 0, we
define the following value sets:
Qa(w,7) = {e ™| € [0,7]},
Qp(w,T) = {Rn(jlanw)|d € [0,7]},
Qc(w,T) = {Rn(j0w)|0 € [0,7]}.
where a,, := %=, and wep, is the phase crossover
frequency of R,,(jw) at the —27 line:

Wem = min{w > 0|Ry, (jw) = 1}.

Since |R.,(jw)| = 1, for every w > 0, Q4(w,7),
Qp(w,7) and Q¢ (w, T) are arcs on the unit circle.

Lemma 2. (Zhang et al., 2000a) For every integer
m > 3, the following statements hold:

(a) All poles of R,,(s) are in the open left half
complex plane.

(b) QC(UJ)”_-) - QA(wai_) - QB(wa’f_%VW > 0.

(¢) am — 1 as m — oo.

2.3 Nominal Stability Analysis

Next, we replace the delay element e~7% with the
real rational function R, (fay,s) and R,,(fs) and
denote the resulting finite-dimensional intercon-
nection systems as ) ,(f) and )" (6), respec-
tively. Therefore, we have

i(t) = Az(t) + Ho(t) + Biw(t)

L v(t) = [(e7° = 1)Fla(t)
z(t) = Crz(t)
i(t) = Az(t) + Ho(t) + Biw(t)
: v(t) = [Rm(Bams)Iy — I;]Fx(t)
2 2(t) = Cra(t)

(t)
: v(t) = [Rm(0s)I; — I, Fx(t)
2 2(t) = Cra(t)

The following theorems gives a sufficient condi-
tion and a necessary condition for the stability of

(D).



is asymptotically stable on [0, 7], if the comparison
system ) (6) is robustly stable for 6 € [0, 7].

Theorem 2. (Zhang et al., 2000a) If (1) is asymp-
totically stable on [0, 7], then ) (f) is robustly
stable for 6 € [0, 7].

Next, we note that the d.o.c. of Theorem 1 is
bounded by a function that depends only on the
order of Padé approximation used, can be reduced
to any desired degree, and is independent of 7*,
A and A,.

Theorem 3. (Zhang et al., 2000a) For m > 5, the
d.o.c. of Theorem 1 satisfies

4.286 2"t
) W

d.o.c. < 0.16 <—
m

Thus, d.o.c. - 0 as m — oo. Furthermore, for
m = 3,4 and 5, we have d.o.c. < 18.9%,3.05%
and 0.361%, respectively.

The comparison system ) () is free of delays,
but it has parametric (real) uncertainties §. Some
care must be taken when examining its robust
stability. Let the minimal realization of P(s) :=
[Bon (o) — 111, be P(s) = [ /cli gl; } _Then
the subsystem P(fs) = [Ry,(faums) — 1)1, can be
realized in the state space as

0&, = Apxp + Bpuyp,
yp = Cpzp + Dpup.

Hence the dynamics of P(fs) vanish when 6 be-
comes 0, causing the system degeneration (de-
gree dropping). This singularity of the system
at # = 0 obviously complicates the employment
of Theorem 1 for analysis. For the single delay
case, the delay margin 75 provided by Theorem 1
can be explicitly calculated without incurring any
additional conservatism.

Theorem 4. (Zhang et al., 2000b) Suppose that
the system (1) is asymptotically stable for all
7 € [0,7,], where 7, > 0. Then the delay margin
provided by Theorem 1 is given by

s Ta 1
g =—+ )
B Qpm, A$ax(_(MO@MO)71(M1 @Ml))( )
)
T g, C
— {1is s
where My := | &n , My = 4, 0 )
Ta B; 0
_Bs AP s
«

_ m
A;:= A+ HDpF,B,; := BpF, and C; := HCp. .

3.1 Problem Description

The H . performance problem is to examine if the
system is asymptotically stable for all 7 € [0, 7]
and satisfies

ITeull < (6)
where T,,(s) is the transfer function from the
disturbance vector w to performance vector z, and
v > 0 is the performance measure. To proceed
with our analysis, we first provide the following
definition.

Definition 3. Suppose that a system ) has an
uncertain constant parameter 6 € [0,7], and
that T..,(s,6) is the transfer function from the
disturbance w € £2[0,00) to performance vector
z. If " is asymptotically stable for all 8 € [0, 7],
then the worst case H, performance v* of )
is defined as

= T.w(-,60 . 7
o agl[gf;]ll (> o (7)

We have the following theorem regarding the
relation among the worst case Ho, performances

of the systems > ,, > p and ) .

Theorem 5. Suppose ) 5 is asymptotically stable
for all @ € [0,7]. Then the worst case H, perfor-
mances of the systems ) 4, > and ) satisfy

& <va < VB

Proof. (Only outlined for brevity.) Since ),
is asymptotically stable for all § € [0,7], from
Theorem 1 and Theorem 2, we know that ) ,
is asymptotically stable for all 7 € [0,7], and }_
is asymptotically stable for all § € [0,7]. Then
the transfer functions of these uncertain systems
are analytic in s and bounded in the open right
half complex plane. From the maximum modu-
lus theorem (Boyd and Desoer, 1985), the H
norms of each of the uncertain transfer function
equal the supremum of their singular values over
the imaginary axis. The result then follows from
the value set inclusion Q¢ (w,7) C Qa(w,7) C
Qp(w,7),Yw > 0. |

Next, we present a sufficient condition to compute
the H., performance of )~ , .

Theorem 6. The system ), is asymptotically
stable for any constant time-delay 7 € [0, 7], and
satisfies the following H, performance bound

4 <7
if there exist matrices Xy > 0, Xog € R**", X; €
R™*™ X9 > 0, Xos € R" *™P and X, € R**"P
such that
I1(0) < 0, II(7) < 0 (8)



Xo+7X1 7X12

XD X | 0 )
where
1 () M5 () (Xo + gXl)B1 cr
H(O) — : H2i(0) e_A,l;Bl 8
Vin,
* 0 0 —I,,

H11(0) = (X() + 9X1)As + Xlng + AE(XO +
0X,)+BT XL T115(0) := (Xo+6X1)Cs+ X1, Ap+
0AZX12 + B3X22, and H22(0) = 0X11;Cs +
echlg + X22Ap + A£X22.

Proof. Omitted for brevity; similar to (Zhang et
al., 20004) in handling singularity when § = 0. =

4. ROBUST STABILITY OF LTDS WITH
UNCERTAIN DYNAMICS

4.1 Preliminaries

In this section, we focus on the robust stability
of the LTDS with finite dimensional linear time-
invariant (FDLTT) dynamical uncertainties. Since
the structure of this type of uncertainties can
be well captured by using the linear fractional
transformation (LFT), we adopt the following
system model for our analysis:

x(t) = Ax(t) + Aqz(t — 7) + Baw(t)
y(t) = Cox(t) + Daw(t)

w@)z%AAmw

where A, A; € R**™, By € R**™ and C] €
R™ *™ are constant matrices, time-delay 7 € [0, 7]
is constant and unknown, v > 0 is a constant,
and A, is an FDLTT internally stable uncertain
dynamical system in U, where the structured
uncertainty set U is defined by U := {diag{A,,
AC}| A, €Ry, AL € Cu}; Ry = {diag{rljkf; T
rlrIk;;} Iri € R, |ri] <1}, and Cy, := {diag{c1 I,
SN chIklcc’ Al, BEIIN Alu} |Ci e C, |CZ| < 1,
A; e Cuxni g(A;) < 1}

(10)

Again, we assume A := A+ A, is Hurwitz and let
Agq = HF where H € R"*7 F € RI*™ have full
rank. (10) can be rewritten as

#(t) = Az(t) + Ho(t) + ~ By (t)
o) = [(e = )FJe(t) )
W) = Caalt) + ~Dai(t)

£ —1_)2J

G(s) = {F} 0 0

1
Cs 0 —D»
v

Using the Padé Approximation R, (fau,s) to re-
place the delay element, the resultant system has
the form

i(t) = Ax(t) + Ho(t) + Baw(t)

v(t) = [Rm(Oams)I; — I;|Fx(t)

y(t) = (11235(75) + D2w( ) (12)
wlt) = TA.00)

The following lemma indicates that (12) is a valid
comparison system for (10).

Lemma 8. If the comparison system (12) is ro-
bustly stable for every FDLTI internally stable
uncertain dynamical system A, € U and 6 € [0,
7], then the uncertain LTDS (10) is also robustly
stable for every FDLTT internally stable uncertain
dynamical system A, € U and 7 € [0, 7.

Proof. Omitted for brevity. [ ]

Now, the system v(t) = [Ry,(Qams)l; — I, Fx(t)

can be realized by

Tp = OilApZ‘p +97%BPF£L’
v = 07%0131‘19 + DpFx

Hence the comparison system (12) becomes

() + Brw(t)

tp(t) = Ap(f)z
yt) = ?LHJ“L( ) + Daw(t) (13)
w(t) = ;Au[y](t)
T a) _| 4 6o
where z, (t) = [a:p(t) }, Ar(0) = 6B 614,

B, = {%2} and Cp, := [C> 0], where A, :=
A+ HDpF, B, := BpF, and C, := HCp.

Since Gy(s) depends on the parameter 6, if the
small p theorem to directly test the robust stabil-
ity of (13), a frequency sweep must be performed
for many points of 6, resulting in a very tedious
computation. One alternative is to incorporate 6
into the uncertainty structure, but then a two-step
1 test must be employed to avoid the singularity
when # = 0. Herein, we seek an LMI-based con-
dition that avoids the frequency sweep and can
be solved efficiently. This condition is based on
the recent advancements in the computation of u
upper bound which we review first.




The structured singular value p is defined for a
constant complex matrix along with a specified
uncertainty structure. For robustness analysis of
a dynamic system, a frequency sweep is typically
used. For the case when the uncertainties are real,
it has been demonstrated that it is possible for
u to be discontinuous. Hence, strictly speaking,
a test with a frequency sweep with finite num-
ber of frequency points does not guarantee the
robustness of the system. A common approach
to avoid this problem has been to develop the
1 upper bounds in the state space to test the
robust stability of the dynamical system without
any frequency sweep. Our result for LTDS builds
on the recent result by (Chen and Sugie, 1998)
which employs parameter-dependent multipliers,
positive real lemma and the S procedure in its
development. A further refinement to this was
later developed in (Chen et al., 1999), but the
resulting condition is much more complex and is
not considered herein.

4.3 An LMI Condition for LTDS Robust Stability

Recall that the robust stability of the comparison
system (13) ensures the robust stability of (10).
For every given 6, (13) is a delay-free closed-
loop system subject to structured uncertainty.
Its robust stability can be determined by using
the result of (Chen and Sugie, 1998) along with
the small p theorem, however, the computation
is rather tedious due to the parameter sweep
over . More importantly, as # approaches 0, the
matrix Ay (6) becomes ill-conditioned. A similar
technique to that used in (Zhang et al., 2000q)
(i.e., using appropriately chosen basis function so
as to render LMIs affine in #) can be applied to
obtain sufficient conditions which are convex in 6
and immune from singularity. Then, rather than
testing the whole range [0, 7], we are only required
to test the two ends of this interval. This result is
stated as the following theorem.

Theorem 7. The system (10) is robustly sta-
ble, if there exist following appropriate size
real matrices, Cs(A,), Dn(A;), Pi1(A,0) =

Py (A, 0)T, Py, Py = Ph,U; = Ul > 0,
Wi, Vi =V’ >0, and Q(A,) > 0 such that
Hll(Ar) ng(Ar)]
II(A,,0) := <0, 14
P(A,,6) := {P“(A“e) 9”)12} >0, (15)
* Py

Vr; € {-1,1},0 € {0,7},

B ~
Xci::—He{[Dr]J[Cﬁ,l mrt]}+UzZO)
(16)

Ui o — [ % VzJ = Y,
Vie{l,2,---,1.},

where A, := diag{rllk;,rglkg, s Ay 1

B. B.
Hll(Ar,G) = XT(AT,Q) + 0

Ly U; 0
+ OT 0
i=1 | W 0

(2

~

S o=

X,(A,,0) := He {[Xij(Ar,B)]3X3}
X11(A,0) := A, P (A, 0) + C, P

X12(A,,0) :==0A, Py + Cr Py — B.A,CA(A,)
X13(Ar;0) = _BrArDmr(Ar)a

X21 (AT,G) = BTPH(AT,G) + Applg
Xo22(A,0) :=0B;Piy + Ay Pas,
Af23(A 50) = Oa

<

X31 (Ara 0)
X32(A7‘7 0)
X33(A7‘7 0)

Cs(A )

CoPri(A,,0) + 7CA( r)
CaPra(Ay) + 'YCsB(Ar) -
=+D (Ar) D.A Dmr(Ar)a

[cian) €2 (an],

I A
=[G ] n [

1=

EAR s

scO

puis = [53] = [Brln B

ch mcz

I
Pll(Ar,G) = GXO + PO + Zripi:

i=1
I
Q(A) = Qo+ > _1iQi,
i=1
Ji = diag{Oy, -+, Okr_ Inr, 5 Okr, oo, Oy}
and @Q; € {diag{l'y,--- , [y, diln,, -, d; I, }
IT; =TT € R¥ ¥ki d; € R}.

Proof. Omitted for brevity. [

5. NUMERICAL EXAMPLE

Consider the uncertain LTD system motivated
by the dynamics of machining chatter (Zhang et
al., 1999b)

#(t) = Az(t) + Agz(t — 1) + Bow(?)
y(t) = Cox(t)

o 0

wi) = = % [ "

— B.ACA(A,),

- D,ACA(A
D, ACE(A,)



r 0 0 1 0
0 0 0 1
A= — (K10 + K) @ 0 0
mi m1
Ko — (Ko + K>) o —%o
L mo mo mao
T 0 000
0 000
Aa=1E o0l
m
0 00O
0 0
0 0
By = L) 0 7022[_1100}-
m 0 001
Ko G
ma ma

and J;, and 6. are real valued with |dx] < 1 and
DES?

In this example, we choose the parameters as
follows. mip= ]., mo = 2, K10 = 10, K2 = 20,
Co = 05, and K = 1. From (5), we know
that the system is asymptotically stable for all
T € [0,1.4196]. So herein, we chose 7 = 1.0
for our robust stability analysis. The Lyapunov-
based stability results of (Park, 1999; Li and
de Souza, 1996; Niculescu et al., 1995; Verriest
et al., 1993) all fail for the nominal system, and
hence their corresponding robust stability tests,
if any, cannot be used to examine this uncertain
system.

The minimal value of v found by using Theorem
7 is 6.557. We caution that the conservatism
of this result may be significant. We can have
some sense of how large the conservatism may
be by using a parameter sweep for both J§; and
0. and examining the delay-dependent stability
of the comparison system using the formula (5)
. Using this approach, it was found that a lower
bound on the minimal obtainable v is 1.853. But
since real 4 may be discontinuous and only a
finite number of (dx,d.) points were checked, it
is unknown whether minimal feasible ~ is close
to1.853 or is nearer to 6.557. For comparison, we
note that a u test with a frequency sweep and D-
G scaling yielded a minimal value of v of 7.124
(the procedure employed two steps to avoid the
singularity at 8 = 0).

6. CONCLUSIONS

In this paper, we have further extended the sta-
bility analysis results developed in (Zhang et
al., 2000a) to LTDS under exogenous disturbances
and parametric/dynamic uncertainties.Sufficient
conditions based on LMIs were obtained.
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