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Satellite Attitude Control and Power Tracking
with Energy/Momentum Wheels
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A control law for an integrated power/attitude control system (IPACS) for a satellite is presented. Four or more
energy/momentum wheels in an arbitrary noncoplanar con� guration and a set of three thrusters are used to
implement the torque inputs. The energy/momentum wheels are used as attitude-control actuators, as well as an
energy storage mechanism, providing power to the spacecraft. In that respect, they can replace the currently used
heavy chemical batteries. The thrusters are used to implement the torques for large and fast (slew) maneuvers
during the attitude-initialization and target-acquisition phases and to implement the momentum management
strategies. The energy/momentum wheels are used to provide the reference-tracking torques and the torques for
spinning up or down the wheels for storing or releasing kinetic energy. The controller published in a previous work
by the authors is adopted here for the attitude-tracking function of the wheels. Power tracking for charging and
discharging the wheels is added to complete the IPACS framework. The torques applied by the energy/momentum
wheels are decomposed into two spaces that are orthogonal to each other, with the attitude-control torques and
power-tracking torques in each space. This control law can be easily incorporated in an IPACS system onboard
a satellite. The possibility of the occurrence of singularities, in which no arbitrary energy pro� le can be tracked,
is studied for a generic wheel cluster con� guration. A standard momentum management scheme is considered to
null the total angular momentum of the wheels so as to minimize the gyroscopic effects and prevent the singularity
from occurring. A numerical example for a satellite in a low Earth near-polar orbit is provided to test the proposed
IPACS algorithm. The satellite’s boresight axis is required to track a ground station, and the satellite is required
to rotate about its boresight axis so that the solar panel axis is perpendicular to the satellite–sun vector.

Introduction

M OST spacecraft use chemical batteries (usually NiCd or
NiH2) to store excess energy generated by the solar pan-

els during periods of exposure to the sun.1 During an eclipse, the
batteries are used to provide power for the spacecraft subsystems.
The batteries are recharged when the spacecraft is in the sunlight.
The primary problem with this approach is the cycle life of batter-
ies and the additional power system mass required for controlling
the charging and discharging cycles. Chemical batteries have shal-
low discharge depth (approximately 20–30% of their rated energy-
storage capacity), large weight, and require operation within strict
temperature limits (at or below 20°C in a low-Earth orbit) that often
drive the entire spacecraft thermal design.

An alternative to chemical batteries is the use of � ywheels to
store energy. The use of � ywheels has the bene� t of increased ef-
� ciency (up to 90% depth of discharge with essentially unlimited
life), operation in a relatively hot (up to 40°C) environment, and
the potential to combine the energy-storage and the attitude-control
functions into a single device, thus increasing reliability and re-
ducing overall weight and spacecraft size. This concept, termed
the integrated power and attitude-control system (IPACS) has been
studied since the 1960s, but it has been particularly popular since
the 1980s. In fact, the use of � ywheels instead of batteries to store
energy on spacecraft was suggested as early as 1961 in the pa-
per by Roes,2 when a 17 W¢ h/kg composite � ywheel spinning at
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10,000–20,000 rpm on magnetic bearings was proposed. The con-
� guration included two counterrotating � ywheels, and the author
did not mention the possibility of using the momentum for attitude
control. However, because many spacecraft use � ywheels (in the
form of momentum wheels, control moment gyros, etc.) to control
attitude, the integration of these two functions is naturally of great
interest. Numerous studies of this integration have been conducted.
Anderson and Keckler3 originated the term IPACS in 1973. A study
by Cormack4 done for the Rockwell Corporation examined the use
of an integrated IPACS. Keckler and Jacobs5 presented a descrip-
tion of the concept. Will et al.6 investigated the IPACS concept and
performed simulations by using (linearized) equations of motion.
Notti et al.7 performed an extensive systems study and investigated
linear control laws for attitude control. Their study included trade
studies on the use of momentum wheels, control moment gyros,
and counterrotating pairs. NASA and Boeing also conducted sep-
arate studies on the IPACS concept.8,9 Anand et al.10,11 discussed
the system design issues associated with using magnetic bearings,
as did Downer et al.12 Flatley13 studied a tetrahedron array of four
momentum wheels and considered the issues associated with si-
multaneously torquing the wheels for attitude control and energy
storage. Around the same time as Flatley, O’Dea et al.14 included
simultaneous attitude determination in their study of a combined at-
titude, reference, and energy-storage (CARES) system, focusing on
technology-related issues. Oglevie and Eisenhaure15,16 performed a
system-level study of IPACSs. Reference 15 includes a substantial
list of references to earlier work. Olmsted17 presented technology-
related issues associated with a particular � ywheel design. Optimal
design criteria associated with an integrated attitude-control and
energy-storage (ACES) system have been discussed by Studer and
Rodriguez.18

Most of these previous investigations of the IPACS focus on gen-
eral design issues. The exact nonlinear equations of motions are
not considered even when the attitude-control results are provided.
In this paper, the exact nonlinear equations of motion are used to
design an attitude controller that tracks a reference attitude pro� le.

23
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The wheel-control torque space is decomposed into two spaces that
are orthogonal to each other. The attitude-control torques lie in one
of these two spaces, and the torques in the other space are used
to spin up or down the energy/momentum wheels to store or ex-
tract kinetic energy. In the following sections, the system model is
given � rst, then the referenceattitude and energy/momentum-wheel
power-tracking controllers are presented.A numerical example con-
sidering a iridium-type satellite19 in orbit is provided to illustrate the
proposed IPACS methodology.

It should be pointed out that � ywheels used in an IPACS typically
rotate at much higher speeds than standard momentum wheels, as
their operation is driven primarily by the energy-storage function
rather than the attitude-control function. In this paper, we use the
term energy/momentum wheels to emphasize this difference with
commonly used momentum wheels.

System Model
Dynamics

Consider a rigid spacecraft with an N -wheel cluster installed to
provide internal torques. Let B denote the spacecraft body frame.
Then the rotational equations of motion for the spacecraft can be
expressed as

ÇhB = h £
B J ¡ 1(hB ¡ Aha) + ge (1a)

Çha = ga (1b)

where hB is the angular-momentum vector of the spacecraft in the
B frame, given by

hB = J!B + Aha (2)

where ha is the N £ 1 vector of the axial angular momenta of the
wheels, !B is the angular-velocity vector of the spacecraft in the
B frame, ge is the 3 £ 1 vector of external torques, ga is the N £ 1
vector of the internal axial torques applied by the platform to the
wheels, and A is the 3 £ N matrix whose columns contain the axial
unit vectors of the N energy/momentum wheels. J is an inertialike
matrix de� ned as

J = I ¡ AIsAT (3)

where I is the moment of inertia of the spacecraft, including the
wheels, and Is = diag{Is1, Is2, . . . , Is N } is a diagonal matrix with
the axial moments of inertia of the wheels.

The axial angular-momentum vector of the wheels can be written
as

ha = IsAT !B + Is !s (4)

where !s = ( x s1, x s2, . . . , x s N )T is an N £ 1 vector denoting the
axial angular velocity of the energy/momentum wheels with respect
to the spacecraft. We denote the total axial angular velocity of the
wheels relative to the inertial frame as !c = ( x c1 , x c2 , . . . , x cN )T .
Using this notation, we can write Eq. (4) as

ha = Is !c (5)

where !c = !s + AT !B . Note that because typically the wheels spin
at a much higher speed than the spacecraft itself, !s À !B and we
have that !c ¼ !s .

In Eq. (1) the external torques are assumed to include the control
torque that is due to thruster � ring, the gravity gradient torque, and
the other disturbance torques, i.e.,

ge = gt + gg + gd (6)

where the subscripts t, g, and d denote the thruster, gravity gradient,
and disturbance, respectively. The gravity gradient torque is given
by20

gg =
¡
3 l | R3

c

¢
| ĉ £

3 Iĉ3 (7)

where ĉ3 is the unit vector ¡ rc / Rc [the same as ẑl , the z axis of
the local-vertical local-horizontal (LVLH) frame, shown in Fig. 1]

Fig. 1 LVLH frame.

expressed in the body frame, rc is the vector from the Earth
center to the spacecraft center of mass with Rc = j rc j , and l =
3.986005 £ 105 km3 s ¡ 2 is the constant gravitational parameter. It
should be pointed out that although we restrict the discussion to
external control torques that are due to thruster � ring, our approach
remains the same for other choices of actuators, such as magneto-
torques, etc.

Kinematics
The so-called modi� ed Rodrigues parameters (MRPs) given in

Refs.21 and 22 arechosen to describe the attitudekinematicserrorof
the spacecraft.The MRPs are de� ned in terms of the Euler principal
unit vector ê and angle u by

¾ = ê tan( u /4) (8)

The MRPs have the advantage of being well de� ned for the whole
range for rotations, i.e., u 2 [0, 2 p ). The differential equation gov-
erning the kinematics in terms of the MRPs is given by21

Ç¾ = G(¾)! (9)

where

G(¾) = 1
2{1 + ¾ £ + ¾¾T ¡ [(1 + ¾T ¾) /2]1} (10)

and 1 is the 3 £ 3 identity matrix.

Tracking Controller
In one of our previous works,23 three control laws were presented

to track a reference attitude pro� le by using coordinated action of
both thrusters and momentum wheels. Here we restate the con-
troller II from Ref. 23 that will be used for attitude tracking. This
control law assumes that the reference frame dynamics and kine-
matics are given by

ÇhR = h £
R J ¡ 1hR + gR (11)

Ç¾R = G(¾R )!R (12)
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where the subscript R stands for the reference frame to be tracked
(referred to below as the desired or the target frame) and where
hR = J!R .

Given the reference attitude history to be tracked from Eqs. (11)
and (12), the angular-velocity tracking error in the body frame is

d ! = !B ¡ CB
R ( d ¾)! R (13)

where CB
R ( d ¾) is the rotation matrix from the reference frame R to

the body frame B, and d ¾ is the MRP vector between the reference
frame and the body frame, i.e.,

CB
R ( d ¾) = CB

N

£
CR

N

¤T
(14)

and the attitude error satis� es the following differential equation:

d Ç¾ = G( d ¾) d ! (15)

A feedback control law to render d ! ! 0 and d ¾ ! 0 is found with
the following Lyapunov function:

V = 1
2
d !T J ¡ 1 d ! + 2k2 (1 + d ¾T d ¾) (16)

where k2 > 0. This function is positive de� nite and radially un-
bounded21 in terms of the tracking errors d ! and d ¾. Taking the
derivative of V and using Eqs. (13) and (15) yields the time deriva-
tive of V in terms of !B and !R and the tracking error d ! and d ¾,
i.e.,

ÇV = d !T
£
h £

B J ¡ 1(hB ¡ Aha ) + gt + gg ¡ J! £
B d !

¡ JCB
R ( d ¾)J ¡ 1h £

R J ¡ 1hR ¡ JCB
R ( d ¾)J ¡ 1gR ¡ Aga + k2 d ¾

¤

(17)

The external torque gt is typically chosen to effect a desired large-
angle attitude correction, whereas the internal torques ga are chosen
to eliminate errors. For any external torque, if we select the internal
torques such that

Aga = h £
B J ¡ 1(hB ¡ Aha ) + gt + gg ¡ J! £

B d !

¡ JCB
R ( d ¾)J ¡ 1h £

R J ¡ 1hR ¡ JCB
R ( d ¾)J ¡ 1gR + k1 d ! + k2 d ¾

(18)

with k1 > 0, the derivative of the Lyapunov function is

ÇV = ¡ k1 d !T d ! ·0 (19)

As shown in Ref. 23, the tracking error system is asymptotically
stable, i.e., ! B ! !R and ¾B ! ¾R as t ! 1 .

Equation (18) allows for a variety of different control actions. In
particular, once the thruster control action gt has been chosen, the
energy/momentum-wheel action is computed directlyfromEq. (18).
Later on, we will use this equation to design control laws during
two different phases of the satellite operation, namely the target-
acquisition (attitude-initialization ) phase and the attitude/power-
tracking phase. We also point out that in the absence of initial errors
[ d !(0) = d ¾(0) = 0] and for initial wheel axial momentum zero
[ha (0) = 0], Eq. (18) reduces to Aga = 0 and gt = gR ¡ gg .

Given the torque action gt , we denote the right-hand side of
Eq. (18) by f . The internal torque provided by the wheels, ga , is
given by the solution of the linear system Aga = f . If N < 3, this
system is overdetermined and a solution may not exist; if N = 3
(and for noncoplanar wheels), the solution is uniquely determined;
and if N > 3, the system is underdetermined and there exist an in-
� nite number of solutions. In particular, in the latter case every
solution has the form ga = gr + gn , where gr belongs to the range
space R(AT ) of the matrix AT and gn belongs to the null space
N (A) of the matrix A.

It is seen that gn does not contribute to the attitude control input as
Agn = 0. One can always choose the torque gr to ful� ll the equation
Agr = f and subsequently use gn to perform power/energy-storage
management.24 Note that this approach can be implemented as long
as N (A) has nonzero dimension, which is always true for a cluster
with more than three noncoplanar wheels.

In the following section, we consider a general momentum-wheel
cluster and construct the torques in the null space of A so as not
to disturb the attitude-control operation of the spacecraft and to
track a desired power pro� le. In other words, the power- and the
attitude-tracking operations are performed simultaneously and in-
dependently of one another. Power-tracking objectives do not inter-
fere with attitude-tracking objectives and vice versa. We insist on
this separation of objectives as it is unlikely that any IPACS that
compromises either power or attitude-control requirement will be
acceptable for use in routine spacecraft operations.

Power Tracking
As shown in the preceding section, the energy/momentum-wheel

torque required for controlling the attitude is given by an expression
of the form

Aga = f (20)

where f is the 3 £ 1 required torque vector. The general solution for
ga is given by

ga = A+ f + gn (21)

where A+ = AT (AAT ) ¡ 1 is the projection operator on the range of
AT , and thus A+ f = gr 2 R(AT ), and where gn 2 N (A), i.e.,

Agn = 0 (22)

Note that Aga = A(A+ f + gn) = f , so gn does not affect the space-
craft motion.

The total kinetic energy stored in the wheels is

T = 1
2 !T

c Is!c (23)

The power (rate of change of the energy) is given by

dT

dt
= P = !T

c Is Ç!c (24)

The objective here is to � nd a controller gn in the null space of A
to provide the required power function P(t ). Equation (5) implies
that ga = Çha = Is Ç!c , so from Eq. (24) we have

!T
c ga = P (25)

Therefore, simultaneous attitude control and power management
require a control torque vector ga that satis� es the following set of
linear equations:

³
A

!T
c

´
ga =

³
f

P

´
(26)

From Eq. (21), we have that the torque gn in the null space of A has
to satisfy

!T
c (A+ f + gn ) = P (27)

or let the modi� ed power Pm = P ¡ !T
c A+ f ,

!T
c gn = Pm (28)

Because gn 2 N ( A), there always exists a vector º 2 RN such that

gn = PN º (29)

where PN = 1N ¡ AT (AAT ) ¡ 1A is the (orthogonal) projection on
N ( A). Thus we have !T

c PN º = Pm , to which a minimum norm
solution is given by

º = PN !c

¡
!T

c PN !c

¢ ¡ 1
Pm (30)

and the energy management torque gn can then be chosen as

gn = PN !c

¡
!T

c PN !c

¢ ¡ 1
Pm (31)
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A solution of Eq. (31) exists as long as PN !c 6= 0. This implies
that either !c 6= 0 or that !c 62 N (A) ? = R(AT ). The last require-
ment is also evident from Eq. (26), in which the matrix on the
left-hand side does not have full row rank if !c 2 R(AT ).

It should be pointed out that, for satellite applications, during
sunlight the solar panels provide enough power for the spacecraft
equipment, and the wheels spin up to absorb and store the excess
energy. Because the sunlight period is longer than the eclipse pe-
riod, tracking a speci� c power function is less signi� cant during the
sunlight than during the eclipse period, when the power is solely
provided by spinning down the wheels. Some authors have there-
fore chosen to discard power tracking altogether and simply spin
up the wheels during sunlight to store the excess energy. This is the
approach used, for example, in Ref. 13. On the contrary, unloading
of the wheels during the eclipse is more critical, because the wheel
deceleration should be done at a certain rate in order to provide the
necessary power to the spacecraft bus.

Singularity Avoidance and Momentum Management
So far, we have found a controller ga that tracks desired power

pro� les while controlling the spacecraft attitude. In addition, as was
mentioned already, from Eq. (28) we can see that if !c lies in the
range space of AT , then because gn is in the null space of A, we have

!T
c gn = 0 (32)

This case is termed as singular, which implies that the controller
loses the capabilityof tracking an arbitrarypower function, and from
Eq. (27) the only power the wheels can supply is !T

c A+ f . However,
the latter case is undesirable in many practical applications. For
example, for a stabilized spacecraft when the torque f is small, the
amount of supplied power can be less than the required power level
during the singularity.

For a three-axis stabilized satellite, if the angular momenta of the
wheels are not distributed such that the total angular momentum
of the wheels stays close to zero, the gyroscopic effects will play
a signi� cant role, increasing the required torque for the attitude
control. Hence, in the following, a momentum management scheme
will be included such that the total angular momentum of the wheels
will become zero when some external torques are applied to the
spacecraft,when needed. It will be seen that this scheme will further
reduce the occurrence of the singularity mentioned above.

The ideal purpose of the momentum management is to make
the total angular momentum of the wheels zero or keep it within
certain limits. Here it is assumed that zero total momentum is re-
quired, i.e., Aha = 0, which implies that ha 2 N (A). For a clus-
ter with identical wheels (the typical case), Eq. (5) implies that
!c 2 N (A). Recall now that singularity occurs when !c 2 R(AT ).
But N (A) = R(AT ) ? and, aftermomentum management, the wheel
angular-velocity vector is orthogonal to the singularity subspace
R(AT ). The possibility of singularity has thus been reduced as
much as possible. This does not, of course, include the case in which
!c = 0, which belongs to both N (A) and R(AT ). However, because
for a safety margin the energy stored in the wheels must always
exceed the minimum energy level necessary for the spacecraft op-
eration, the all-zero wheel angular velocity can happen only during
initial satellite deployment, when the wheels may be in a locked
position. In this case, the wheel angular-velocity initialization is
performed after the deployment. In doing so, a torque in the null
space of A is applied to the wheels to accelerate the wheel angular
velocities to their normal operation range.

A simple momentum management scheme is adopted from
Ref. 25. The torque required for momentum management is

gt = ¡ k(Aha ¡ Ahan) (33)

where han denotes the nominal angular-momentum vector of the
wheels and k > 0 is a feedback control gain. For the purpose of
momentum unloading and singularity avoidance here we choose
Ahan = 0.

Numerical Example
To demonstrate the aforementioned algorithm for the attitude-

and power-tracking controller, the following numerical example has

Table 1 Iridium 25578 orbital elements

n , rev/day 14.57788549
M0 , deg 234.7460
x , deg 125.5766
X , deg 132.8782
i , deg 86.5318
e 0.00216220
Epoch 05/23/1999 00:16:12.24

Fig. 2 Con� guration of energy/momentum wheels.

been performed. A near-polar orbital satellite (orbital data chosen
from the satellite Iridium 25578) is considered in this simulation.19

The orbital elements are shown in Table 1; n is the orbital frequency,
M0 is the mean anomaly at the epoch time, x is the argument of
perigee, X is the right ascension of the ascending node, i is the
orbital inclination, and e is the eccentricityof the orbit. The satellite
is assumed to have moment of inertia matrix in a principal axes
system,

I =

2

4
200 0 0

0 200 0

0 0 175

3

5 kg m2 (34)

The four-wheel cluster, shown in Fig. 2, is chosen for this simu-
lation. The wheels are assumed to have the same axial moments of
inertia. The A matrix in this case is given by

A =

2
64

1 0 0
p

3/3

0 1 0
p

3/3

0 0 1
p

3/3

3
75 (35)

The normal power requirement of this satellite is 680 W. How-
ever, it is required to be able to provide an instantaneous peak
power of 4 kW for up to 5 min. Considering the 34-min eclipse
time and assuming that the 4-kW peak power lasts 5 min, we � nd
that the wheels should store at least 0.72-kWh energy. With a 100%
safety margin taken into account, the wheels are required to store
1.5-kWh energy when they are fully charged. Suppose that the nom-
inal speed for the fourth wheel when the wheels are fully charged
is ¡ 4000 rad/s ( ¡ 38,197 rpm), and the speed for the other three is
2309.4 rad/s (22,053 rpm). These speeds render zero total angular
momentum of the wheels. The energy and the wheel speed require
that each wheel have an axial moment of inertia 0.338 kg m2. Each
energy/momentum wheel is assumed to provide a maximum torque
of 1 N¢ m.

The disturbance torque that is due to aerodynamics, solar pres-
sure, and other environmental factors is assumed to be25

gd =

2

4
4 £ 10 ¡ 6 + 2 £ 10 ¡ 6 sin(nt )

6 £ 10 ¡ 6 + 3 £ 10 ¡ 6 sin(nt )

3 £ 10 ¡ 6 + 3 £ 10 ¡ 6 sin(nt )

3

5 N ¢ m (36)
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Fig. 3 Satellite mission illustration.

Fig. 4 Body frame of the satellite.

The satelliteis required toperformsun and ground station tracking
as follows. The symmetry axis should point to a ground station
while the satellite is rotated by this axis such that the solar panel is
perpendicular to the vector from the satellite to the sun. The ground
station in this example is chosen to be Cape Canaveral (longitude
80.467°W, latitude 28.467°N). The sun and the ground station are
assumed to be always available to the satellite. In the following
subsection, we brie� y describe the mission and the algorithm for
obtaining the reference attitude maneuver history.

Mission De� nition
The example is shown in Fig. 3. The inertial frame is chosen

to be the J2000 geocentric inertial coordinate system, denoted by
the subscript n. The vectors rs , rt , and rc denote the positions of
the sun, the ground station, and the satellite, respectively, and the
vectors ls and lt denote the vectors from the satellite to the sun and
the ground station. The following coordinate systems are used in
the simulation besides the inertial frame, shown in Figs. 1 and 4.
Hereafter, ˆ(¢ ) denotes a unit vector, and Ç(¢ ) denotes the derivative
with respect to time, taken in the inertial frame:

1) LVLH orbital frame, ox̂l ŷl ẑl , with the ẑl axis pointing toward
the Earth center, the ŷl axis normal to the orbital plane, and the x̂l

axis completing the orthogonal frame

2) body frame, ox̂b ŷb ẑb , with the ẑb axis along the boresight axis
of the satellite and the ŷb axis pointing along the solar panels.

The mission requires that at each moment along the orbit, the ẑb

axis should track the ground station, i.e., ẑb tracks the unit vector
along lt . In addition, the satellite should also track an attitude such
that the ŷb axis is perpendicular to ls .

Computing the Reference Attitude Pro� le
The satellite orbit is propagated by the orbit generator given in

Ref. 26. From this, we know rc , Çrc , and r̈c in the inertial frame at any
time. The sun position (rs ), velocity, ( Çrs ), and acceleration(r̈s ) in the
inertial frame are computed by the algorithm given in Ref. 27. We
can compute the position (rt ), velocity ( Çrt ), and acceleration (r̈t ) of
the ground station in the inertial frame by converting the Universal
Time (UT) into Greenwich Sidereal Time26 (GST). From these, we
know that

ls = rs ¡ rc , Çls = Çrs ¡ Çrc, l̈s = r̈s ¡ r̈c (37a)

lt = rt ¡ rc , Çlt = Çrt ¡ Çrc, l̈t = r̈t ¡ r̈c (37b)

In the following subsection, the attitude, angular velocity, and angu-
lar accelerationof the referenceframe,which are the desiredattitude,
angular velocity, and angular acceleration for the body frame, will
be computed. The desired, or target, reference frame is denoted by
ox̂r ŷr ẑr and is shown in Fig. 3.

Attitude Reference
The rotation matrix CL

N from the inertial frame to the LVLH frame
can be readily computed by the orbital elements. Once the LVLH
frame is known, we can write

lt = (lt ¢ x̂l )x̂l + (lt ¢ ŷl )ŷl + (lt ¢ ẑl)ẑl (38)

so that

ẑr = [(lt ¢ x̂l )x̂l + (lt ¢ ŷl )ŷl + (lt ¢ ẑl )ẑl ]/ t̀ (39)

where lt = t̀ l̂t . Because the ŷr axis is perpendicular to ls and ẑr , it
can be computed by

ŷr =
ẑr £ l̂s

j ẑr £ l̂s j
(40)

and the x̂r axis is then given by

x̂r = ŷr £ ẑr (41)
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From the unit vectors x̂r , ŷr , and ẑr we can compute CR
N , the

rotation matrix from the inertial frame to the target reference frame.
The value of g s = l̂s ¢ ŷb is used as a condition for sun tracking, i.e.,
g s = 0 implies that the sun is being tracked. In addition, the value
g t = j l̂t £ ẑb j is used as a condition for ground station tracking, i.e.,
g t = 0 implies that the ground station is being tracked.

Angular-Velocity and the Angular-Acceleration References
We proceed to compute the angular velocityof the referenceframe

with respect to the inertial frame expressed in the target reference
frame, !R = [ x r x , x ry , x r z]T . The algorithm for computing x r x and
x r y can be found in Ref. 28.

The derivative of the vector lt in the inertial frame can be written
in the desired reference frame as

Çlt = ( Çlt ¢ x̂r )x̂r + ( Çlt ¢ ŷr )ŷr + ( Çlt ¢ ẑr )ẑr (42)

Fig. 5 Error in angular velocity of the satellite during target acquisition.

Fig. 6 Attitude error during target acquisition.

Notice that Çlt can also be written as

Çlt =
Rdlt
dt

+ ! R £ lt =
R dlt
dt

+ !R £ ( t̀ ẑr ) (43)

where Rdlt /dt is the derivative of lt taken in the target reference
frame. A comparison of Eqs. (42) and (43) then yields

x r x = ¡ Çlt ¢ ŷr / t̀ (44a)

x r y = Çlt ¢ x̂r / t̀ (44b)

dR lt

dt
= Çlt ¢ ẑr (44c)

Because ŷr ¢ ls = 0, its time derivative is

Çŷr ¢ ls + ŷr ¢ Çls = 0 (45)
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Expanding the derivative terms in the above equation, we end up
with

x rz =
x r x ls ¢ ẑr + ŷr ¢ Çls

ls ¢ x̂r

(46)

We can obtain the angular-acceleration vector Ç! R = ( Çx r x , Çx r y ,
Çx r z)T by taking the derivatives of x r x , x ry , and x r z . By doing so,
we get

Çx r x = ¡ ( l̈t ¢ ŷr + 2x r x Ç̀ t ) / t̀ + x r y x r z (47a)

Çx r y = ( l̈t ¢ x̂r ¡ 2x r y Ç̀ t ) / t̀ ¡ x r x x r z (47b)

Çx rz = ( ÇMN ¡ M ÇN ) / N 2 (47c)

Fig. 7 Sun tracking condition during target acquisition (´s = Ãls ¢ Ãyb ).

Fig. 8 Ground station tracking condition during target acquisition (´t = j Ãlt £ Ãzb j ).

where

M = x r x ls ¢ ẑr + ŷr ¢ Çls (48)

N = ls ¢ x̂r (49)

ÇM = Çx rx ls ¢ ẑr + x r x
Çls ¢ ẑr + x r x ls ¢ (! R £ ẑr )

+ !R £ ŷr ¢ Çls + ŷr ¢ l̈s (50)

ÇN = Çls ¢ x̂r + ls ¢ (!R £ x̂r ) (51)

Given !R and Ç!R , we compute the reference torque gR from
Eq. (11).
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Simulation Results
With the reference satellite attitude pro� le computed in the pre-

ceding section, we can apply the attitude- and power-tracking con-
troller. Two simulations are conducted in sequence. First, a target-
acquisition maneuver is performed with the thrusters, in which the
satellite is maneuvered from the LVLH frame to the required sun
and ground station tracking attitude. Then the attitude-control and
energy-storage functions are switchedon and the energy/momentum
wheels are used to keep tracking the sun and the ground sta-
tion. Here we assume that the wheels are spun up to their nomi-
nal angular velocities before deployment. This can be done with
the power provided by the launch vehicle. If the wheels are in the
locked position (not spinning) after separation, a constant torque
ga = [1/

p
3 1/

p
3 1/

p
3 ¡ 1]T (N¢ m), which is in the null space

of the matrix A, can be used to spin the wheels up without disturbing
the satellite motion. The power for this initial spinup of the wheels

Fig. 9 Required thruster torque for the target acquisition (ga = 0).

Fig. 10 Angular-velocity error during tracking.

can be provided by the solar panels of the satellite. A problem may
occur in case the solar panels do not face the sun at deployment. With
body-mounted solar cells, it should not be a major concern, as some
of the cells will be facing the sun any time the spacecraft is in the
sunlight. Another approach is to have a primary (nonrechargable)
battery for the initial deployment/acquisition stage.

In the simulations, quaternions are used to describe the attitude
from the inertial frame to the body and reference frames due to the
large-angle orbital maneuver, and MRPs are used to describe the
difference between the body and the reference frame. The results
are presented in the following two subsections.

Target Acquisition
Before the satellitecan be operated to track the sun and the ground

station, target acquisition has to be performed so that the satellite is
maneuvered to obtain the right attitude in order to start continuous
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tracking. The simulation starts with the satellitebody frame aligned
with the LVLH frame. Because this initial target-acquisition ma-
neuver is usually a fast, large-angle (slew) maneuver and the wheels
are of fairly low control authority (1 N¢ m in this example), external
thrusters have to be used to issue the required torque, i.e., in Eq. (17),
we choose

Aga = 0 (52)

gt = ¡ h £
B J ¡ 1(hB ¡ Aha ) ¡ gg + J! £

B d ! + JCB
R ( d ¾)J ¡ 1h £

R J ¡ 1hR

+ JCB
R ( d ¾)J ¡ 1gR ¡ k1 d ! ¡ k2 d ¾ (53)

The controller gains are chosen as k1 = 24 and k2 = 27. Figure 5
shows the angular-velocity tracking error of the satellite, and Fig. 6
shows the quaternions of the body frame and the reference frame.
It is seen that after » 70 s the satellite attitude tracks the refer-

Fig. 11 Attitude error during tracking.

Fig. 12 Sun tracking condition during tracking (´s = ls ¢ Ãyb ).

ence. In Fig. 7 it is shown that the sun tracking condition value
g s goes to zero after » 90 s. In Fig. 8 it is shown that the ground
station tracking condition value g t goes to zero also after » 90 s. Fig-
ure 9 shows the torque required for performing the target-acquisition
maneuver.

Continuous Tracking
After the satellite tracks the sun and the ground station, the

energy/momentum-wheel attitude- and power-tracking control is
switched on, so that the satellite will keep tracking the sun and the
ground station. In this case, the wheels will provide both the target-
tracking torques and the energy-storage torques. The thrusters will
only be used to issue the necessarymomentum management torque,
i.e., in Eq. (17), we choose for every two orbits

gt = ¡ k(Aha ¡ Ahan ) (54)
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Aga = h £
B J ¡ 1(hB ¡ Aha ) + gt + gg ¡ J! £

B d !

¡ JCB
R ( d ¾)J ¡ 1h £

R J ¡ 1hR ¡ JCB
R ( d ¾)J ¡ 1gR

+ k1 d ! + k2 d ¾ (55)

The simulation orbit starts from 02/23/99 07:59:32.28 and lasts for
25,000 s (approximately 4 orbits). The controller gains are chosen
as k1 = 24, k2 = 27, and k = 0.005. During the eclipse, the nominal
power requirement during eclipse is 680 W, with an additional re-
quirement of 4-kW power for 5 min. During sunlight, the wheels
are charged with a power level of 1 kW until the total energy stored
in the wheels reaches 1.5 kWh. After the wheels are charged, the
momentum management is switched on every two orbits. Figures 10
and 11 show the angular velocity and attitude error during tracking.

Fig. 13 Ground station tracking condition during tracking (´t = j lt £ Ãzb j ).

Fig. 14 Sunlight/eclipse indication and power pro� le.

The angular-velocity errors are practically zero for the whole pe-
riod of the maneuver. The largest errors occur at the times of the
highest wheel momenta; compare with Fig. 15. The attitude error in
Fig. 11 corresponds to a pointing error of less than 0.1 deg about all
three axes. Figures 12 and 13 show that the sun and ground station
tracking conditions are being satis� ed. Figure 14 shows the power
pro� le with the sunlight and eclipse indication, where sunlight is
indicated by 1 and eclipse is indicated by ¡ 1. The corresponding
torque applied by the wheels is shown in Fig. 15, along with the
total angular momentum of the wheels. As expected, the wheels
charge during sunlight and discharge during the eclipse. Every two
orbits (at approximately 0.6 £ 104 and 1.8 £ 104 s in Fig. 15) the
total angular momentum of the wheels Aha goes to zero because of
proper momentum management. Finally, Fig. 16 shows the wheel
speeds.
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Fig. 15 Axial torques and the total angular momentum of the energy/momentum wheels.

Fig. 16 Angular velocities of the energy/momentum wheels.

These plots indicate that there are no major theoretical problems
in using a cluster of four or more energy/momentum wheels in a
suitable geometric con� guration to successfully control the attitude
and power requirements of a satellite in a typical Earth orbit ex-
ample. In reality, several issues need to be addressed before the
implementation of such a control law for an IPACS. For instance,
vibration suppression algorithms for high-speed � ywheels, proper
rotor sizing, and containment issues are of great interest in that re-
spect. These and other similar issues are left for future investigation.

Conclusions
In this paper, we develop an algorithm for controlling the space-

craft attitude while simultaneously tracking a desired power pro� le
by using a clusterof more than threenoncoplanar energy/momentum
wheels. The torque is decomposed into two perpendicular spaces.
One is the null space of this matrix whose columns are the unit

vectors along the axes of each wheel. The torque in this space is
used to track the required power level of the wheels, and the torque
in the space perpendicular to the null space of this matrix is used
to control the attitude of the satellite. The torque decomposition is
based on solving a set of linear equations. Singularities may occur
in case the coef� cient matrix does not have full row rank. In this
case, no arbitrary power pro� le can be tracked. A momentum man-
agement scheme is considered to null the total angular momentum
of the wheels in order to minimize the gyroscopic effects and also
prevent the occurrence of singularities. A numerical example based
on a realistic example for an iridium-type satellitedemonstrates the
ef� cacy of the proposed algorithm.
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