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Time-Optimal Control of Axi-Symmetric Rigid
Spacecraft Using Two Controls

Haijun Shen� and Panagiotis Tsiotras†

Georgia Institute of Technology, Atlanta, GA 30332-0150, USA

In this paper, we consider the minimum-time reorientation problem of an axi-symmetric rigid
spacecraft with two independent control torques mounted perpendicular to the spacecraft symmetry
axis. The objective is to reorient the spacecraft from an initial attitude, with some angular velocity,
to a �nal attitude with a certain angular velocity in minimum time. All possible control structures,
including both singular and nonsingular arcs, are studied completely by deriving the corresponding
formulae and the necessary optimality conditions. It is shown that a second order singular control
can be part of the optimal trajectory. It is also shown that for an inertially symmetric and a non-
spinning axi-symmetric rigid body, it is possible for in�nite-order singular controls to be part of or
the whole optimal trajectory. In particular, for a non-spinning axi-symmetric rigid body, the second-
order singular trajectory is shown to be an eigenaxis rotation. An e�cient method for numerically
solving the optimal control problem, based on a cascaded computational scheme which uses both a
direct method and an indirect method, is also presented. Numerical examples demonstrate optimal
reorientation maneuvers with both nonsingular and singular subarcs, and comparisons are made
between eigenaxis rotations and the true time-optimal rotations.

Introduction

I
N recent years, the time-optimal reorientation problem of
a rigid spacecraft has been extensively studied by many

researchers. In Ref. 1, the minimum-time attitude slewing of
a rigid spacecraft is considered. Quasi-linearization is used
to solve the Two-Point Boundary-Value Problem (TPBVP)
arising from Pontryagin's Minimum Principle. An integral
of a quadratic function of the control inputs is used as the
performance index instead of the slewing time. The mini-
mum slewing time is determined by sequentially shortening
the �nal time. The corresponding �xed �nal time problem
is solved until the solution can no longer be obtained, or
until all the resulting controls are bang-bang. The Euler
(eigenaxis) rotation maneuver is used as the initial guess
for the numerical computation. Besides the fact that the
bang-bang solutions show that the minimum-time trajec-
tories are far from an eigenaxis rotation, numerical results
also make the authors suspect that singular controls may
appear for a single principal axis rotation of a symmetric
body. If this is the case, the singular trajectory is a rotation
about a principal axis, i.e., an eigenaxis rotation. In their
following work,2 the authors of Ref. 1 implemented their
method to the Naval Research Laboratory's Recon�gurable
Spacecraft Host for Attitude and Pointing Experiment (RE-
SHAPE) three-axis maneuver facility. The results of these
experiments were presented in Ref. 2.
In Ref. 3, Bilimoria and Wie studied the time-optimal,

rest-to-rest, large-angle, principal-axis rotation of an iner-
tially symmetric rigid body. By solving the TPBVP using
a shooting method, they obtained a variety of bang-bang
controls which showed that the eigenaxis rotation is not
time-optimal, in general. Singular controls are considered
only in the sense that it is shown that all three controls can-
not be singular simultaneously. Later, they extended their
work to an axi-symmetric rigid body (with three control
torques) and they also studied the principal axis rotation.4

The emphasis in this latter work is on the e�ect of the
gyroscopic terms in Euler's equations on minimum time.
Comparing with the minimum �nal time obtained for a sys-
tem with the gyroscopic terms dropped, they showed that
the gyroscopic e�ect increases the �nal time for a rod-like
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body and decreases the �nal time for a disk-like body.
Seywald and Kumar5 extended the work in this area by

analyzing all the possible controls for a general minimum-
time reorientation problem of an inertially symmetric rigid
body. An elegant derivation of all the possible controls, in-
cluding bang-bang control subarcs, �nite-order singular con-
trol subarcs and in�nite-order singular control subarcs was
developed. It was shown that for rest-to-rest maneuvers, the
eigenaxis rotation can appear as a �nite-order singular arc,
but it is not optimal. It follows that an eigenaxis rotation
can, in fact, appear as an optimal in�nite-order singular arc.
Scrivener and Thompson6 explored the minimum-time re-

orientation of a rigid spacecraft numerically, using a direct
method via collocation and nonlinear programming. This
method was �rst introduced by Hargraves and Paris.7 In-
stead of dealing with the necessary conditions from Pontrya-
gin's Minimum Principle, the trajectory is �rst discretized
and the optimal trajectory is found in the �nite dimen-
sional space of the states and controls at each node using
nonlinear programming. The method is shown to be ro-
bust in the sense that it does not require accurate initial
guesses. Scrivener and Thompson applied this method to
the time-optimal, rest-to-rest maneuver of a rigid spacecraft.
Comparison was made between their results and the ones in
Ref. 4. The results were consistent except the case when
the maneuver has a reorientation angle of less than 10deg.
It turns out that in this case { although the maneuver time
is the same { the switching structure is di�erent, indicat-
ing, possibly, a multiple local minimum of the discretized
problem.
Jahangir and Howe8 considered the problem of controlling

a spinning missile in minimum time. The missile was mod-
eled as an axi-symmetric rigid body which is spinning about
its symmetry axis. The task was to control the missile from
some initial attitude and transverse angular velocity to some
�nal attitude and zero transverse angular velocity, with only
a single reaction jet. Instead of solving the TPBVP, the au-
thors integrated the state and co-state equations backwards
in time to generate all possible trajectories in a reachable
set. The control was assumed to be on-o� for the reaction
jet. A data storage scheme and a look-up strategy were used
to implement this control scheme.
A few researchers have worked with a method called

Switching Time Optimization (STO). STO was used by
Meier and Bryson9 to solve the time-optimal control of a
two-link manipulator. Byers10, 11 used STO to solve the
time-optimal rigid body reorientation problem. More re-
cently, Liu and Singh12 addressed the weighted time/fuel
optimal control of an inertially symmetric spacecraft per-
forming a rest-to-rest maneuver. The authors modi�ed the
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STO method to determine the switching times and total
maneuver time of the bang-o�-bang control pro�les. The re-
sults were compared with those of Bilimoria et al. in Ref. 3.
The e�ect of the fuel penalty in the cost on the number of
switching times was discussed and an interesting result was
presented; namely, as the fuel penalty is beyond a speci�c
value, the eigenaxis control with two switches was shown
to be optimal. An apparent drawback of STO is that the
switching structure, i.e., the number of switches and how
the controls switch, has to be guessed or known in advance.
An approach similar to STO has also been used by Ben-
Asher et al.13 and Singh et al.14 to compute time-optimal
solutions of slewing maneuvers of exible spacecraft.
In relation to the work in this paper, two articles are of

particular interest. First, Chowdhry and Cli�15 considered
the time-optimal reorientation of a rigid body with two con-
trol torques. The existence of singular subarcs was also stud-
ied. However, the authors only considered the time-optimal
control of rigid body angular rates, i.e., they considered only
the dynamics of the motion. Hermes and Hogenson16 stud-
ied the same system as the one in the present work. They
applied feedback linearization to transform the system to
two uncoupled linear double-integrators. The time-optimal
controls can then be calculated explicitly.17 The result
is then transformed back to the original space to obtain
the explicit feedback control for the original nonlinear sys-
tem. However, due to the complex relationship between the
original controls and the transformed ones, as well as the
corresponding control bounds, the controls for the original
system are not necessarily time optimal, as pointed out by
the authors in their conclusions. In addition, since a double-
integrator system has at most one switch and no singular
subarcs (and the feedback linearization transformation be-
tween the original and the resulting systems is continuous),
this method leads to time-optimal controls for the original
nonlinear system with at most two switches and no singular
subarcs. This is shown not to be true in this paper.
In this paper, we address the time-optimal reorientation

problem for an axi-symmetric rigid body. The purpose of
the control is to drive the symmetry axis from some initial
orientation, with some speci�ed angular velocity, to another
�nal orientation, with speci�ed angular velocity. We assume
that the relative orientation of the body about the symme-
try axis is irrelevant and only the location of the symmetry
axis is of interest. This could be the case when the sym-
metry axis coincides with the boresight or line-of-sight of a
camera, an optical telescope, or a gun barrel, for example.
Clearly, the relative rotation of the camera or the barrel has
no inuence on the clarity of the photograph or the accuracy
of the projectile. Spin-stabilized spacecraft also fall into this
category.
For the axi-symmetric case it turns out that the objec-

tive of optimal reorientation of the symmetry axis can be
achieved using only two torques about axes that span the
plane perpendicular to the symmetry axis. For simplic-
ity, we consider the time-optimal reorientation of an axi-
symmetric rigid spacecraft with two control torques acting
perpendicular to the symmetry axis and to each other. It
can be shown that in this case, the torque axes are also
principal directions of the moment of inertia matrix. The
spacecraft may be spinning about its symmetry axis with
a constant angular velocity. The main e�ort in this paper
is devoted on analyzing the formulae for the possible bang-
bang and singular control subarcs and the corresponding
necessary conditions.
The paper is organized in the following manner. First,

the system model is given and the problem formulation
is presented. The optimality conditions are derived from
Pontryagin's Minimum Principle, and the singular arcs are
analyzed completely. We then apply the analysis to the
special case of an inertially symmetric rigid body with two
controls and the case of a non-spinning axi-symmetric rigid
body. A cascaded computational scheme is discussed in
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Fig. 1 Axi-symmetric rigid body with two controls.

the sequel for numerically solving for the optimal trajecto-
ries. This scheme avoids the often intractable task of �nding
\good" initial guesses for the states, co-states and the opti-
mal switching structure. The numerical results at the end
of the paper show the e�ectiveness of the proposed compu-
tational scheme applied to the time-optimal reorientation
problem of an axi-symmetric spacecraft with two controls.

Problem Formulation
Consider an axi-symmetric rigid body with two control

torques as shown in Fig. 1. A body-�xed reference frame
b̂ = (b̂1; b̂2; b̂3) is de�ned with the unit vector b̂3 pointing
along the symmetry axis. The control system generates two
control torques T1 and T2 along the b̂1 and b̂2 axis, respec-
tively, as shown in Fig. 1. Let ω = (ω1;ω2;ω3)

T 2R 3 denote
the angular velocity vector in the b̂ frame, and I1; I2; I3 be
the moments of inertia with respect to the three axes just
de�ned. Then Euler's equations18 with respect to this frame
take the form

I1ω̇1 = (I2� I3)ω2ω3+T1 (1a)

I2ω̇2 = (I3� I1)ω3ω1+T2 (1b)

I3ω̇3 = (I1� I2)ω1ω2 (1c)

Since I1 = I2, if we let the initial condition ω3(0) = ω30,
ω3 will remain constant throughout the maneuver, and the
equations reduce to

ω̇1 = aω30ω2+u1 (2a)

ω̇2 = �aω30ω1+u2 (2b)

where a = (I2� I3)=I1 and u1 and u2 are the new control
inputs given by ui = Ti=Ii ; i = 1;2. Note that for physical
systems we always have that �1< a< 1.
As shown by Tsiotras and Longuski,19 if n̂ = (n̂1; n̂2; n̂3)

denotes the inertial reference frame, then the position of the
n̂3 inertial axis in the body �xed b̂ frame can be uniquely
described by two variables w1 and w2 which are de�ned as

w1 =
β

1+ γ
; w2 =

�α
1+ γ

(3)

where α, β, and γ denote the direction cosines of axis n̂3
with respect to b̂ frame, i.e., n̂3 = αb̂1+βb̂2+ γb̂3. It can be
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shown19 that w1 and w2 can be obtained by stereographi-
cally projecting the unit vector n̂3 onto the b̂1-b̂2 plane.20

Moreover, w1 and w2 obey the following di�erential equa-
tions19, 20

ẇ1 = ω30w2+ω2w1w2+
ω1

2
(1+w2

1�w2
2) (4a)

ẇ2 = �ω30w1+ω1w1w2+
ω2

2
(1+w2

2�w2
1) (4b)

Given the system of Eqs. (2) and (4) we seek to minimize
the performance index

min
u2U

J = min
Z t f

t0
1 dt (5)

subject to the initial conditions

ω(0) = [ω1(0);ω2(0)]
T given

w(0) = [w1(0);w2(0)]
T given

and �nal conditions

Ψ
�
ω(t f );w(t f )

�
= 0 (6)

where Ψ : R 4 7!R k; k� 4 is a given smooth vector function,
and the control constraint set is given by

U = fu : jui j � ui max; i = 1;2g (7)

with ui max> 0; i = 1;2:
This problem has the following physical interpretation.

For an observer in the b̂ frame, the location of the inertial
n̂3 axis is given by w1 and w2. The time-optimal control
problem then consists of reorienting the spacecraft between
given relative locations of the n̂3 (expressed in the body
frame). We point out that using only Eqs. (2) and (4) it is
not possible to specify the absolute orientation of the space-
craft in the inertial frame. In particular, it is not possible
to determine the relative orientation of the spacecraft about
the n̂3 axis. That would require, of course, a third attitude
parameter to complement w1 and w2.

19 Such \reduced" at-
titude information may be su�cient, for example, in case
of reorientation of the symmetry axis of an axi-symmetric
spacecraft along a given direction (e.g., the line-of-sight of
an optical telescope).

Optimality Conditions

For simplicity, let the state vector [ω1;ω2;w1;w2]
T 2R 4 be

denoted by the vector [x1;x2;x3;x4]
T 2 R 4 and let m= ω30.

Then Eqs. (2) and (4) are re-written as

ẋ1 = amx2+u1 (8a)

ẋ2 = �amx1+u2 (8b)

ẋ3 = mx4+x2x3x4+
x1

2
(1+x2

3�x2
4) (8c)

ẋ4 = �mx3+x1x3x4+
x2

2
(1+x2

4�x2
3) (8d)

The Hamiltonian H for this problem is de�ned by

H = 1+λ1ẋ1+λ2ẋ2+λ3ẋ3+λ4ẋ4

= 1+amλ1x2+λ1u1�amλ2x1+λ2u2

+mλ3x4+λ3x2x3x4+λ3x1(1+x2
3�x2

4)=2

�mλ4x3+λ4x1x3x4+λ4x2(1+x2
4�x2

3)=2 (9)

The co-state equations, de�ned by λ̇ =�(∂H =∂x)T , are

λ̇1 = amλ2�λ3(1+x2
3�x2

4)=2�λ4x3x4 (10a)

λ̇2 = �amλ1�λ4(1+x2
4�x2

3)=2�λ3x3x4 (10b)

λ̇3 = �λ3x2x4�λ3x1x3+mλ4�λ4x1x4+λ4x2x3 (10c)

λ̇4 = �λ3x2x3+λ3x1x4�mλ3�λ4x1x3�λ4x2x4(10d)

with λ(t f ) given by the transversality condition

λT(t f ) = νT ∂Ψ
∂x(t f )

(11)

where ν 2 R k is a constant multiplier vector.
From Pontryagin's Minimum Principle,17 the optimal

control u� is chosen such that the Hamiltonian H is min-
imized, i.e.,

u�(t) = arg min
u2U

H (x(t);λ(t);u); 8t � 0 (12)

Since both controls u1 and u2 appear only linearly in the
Hamiltonian H , the optimal control u�i is given by

u�i =

(
+ui max if λi < 0
�ui max if λi > 0 i = 1;2
singular if λi � 0

(13)

The transversality condition associated with the �nal time
t f is given by

H (t f ) = 0 (14)

Equation (9) shows that the Hamiltonian H is not an ex-
plicit function of time t, hence H (t)� 0; for t 2 [t0; t f ].

Singular Control Analysis
Let Si ; i = 1; 2 be the switching functions, de�ned by

Si =
∂H
∂ui

; i = 1;2 (15)

Here Si = λi ; i = 1; 2. From Eq. (13), u�i is singular when-
ever Si � 0 during a nonzero interval [t1; t2] � [t0; t f ]. In
this case the control component u�i is determined implicitly
by the condition Si � 0. Indeed, u�i can be obtained by dif-
ferentiating Si � 0 until the control component ui appears
explicitly.21 For u�i to be optimal, it is required that Si be

di�erentiated an even number of times5, 22, 23 Therefore, u�i
can be determined by solving

u�i = arg

��
d2ki Si

dt2ki

�
= 0

�
; i = 1;2 (16)

where 2ki is the least number of di�erentiations of Si that are
required until the corresponding ui appears. It is also evi-
dent that the switching functions and their time derivatives
up to (2ki � 1)th order are zero along the singular subarc

[t1; t2], i.e., Si = Ṡi = : : : = S(2ki�1)
i = 0; t 2 [t1; t2]. In addi-

tion, Kelley's optimality condition23, 24 (also known as the
Generalized Legendre-Clebsch condition)

(�1)ki
∂

∂ui

�
d2ki Si

dt2ki

�
� 0 (17)

has to be satis�ed along an optimal singular subarc.
A complete analysis of all possible singular control cases,

i.e., with two and only one control being singular, is pre-
sented in the following two subsections. Before proceeding
with this analysis, note that Ṡ1 and Ṡ2 are given by Eqs.
(10a) and (10b), respectively, and that

S̈1 = am2λ1+m(1+a)λ̇2+(λ3x4�λ4x3)x2 (18a)

S̈2 = am2λ2�m(1+a)λ̇1� (λ3x4�λ4x3)x1 (18b)

Another important equation which we will frequently use
in the derivation is

d
dt

(λ3x4�λ4x3) = (amλ1+ λ̇2)x1+(amλ2� λ̇1)x2 (19)

which can be readily derived from Eq. (8) and Eq. (10).
Henceforth, it will be assumed that m 6= 0 and a 6= 0; namely,
the rigid body is not inertially symmetric and it is spinning
about its symmetry axis with a nonzero angular velocity
ω3 = m. The cases a= 0 and/or m= 0 are treated separately
in Section .
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Case I: both u1 and u2 are singular

From Eq. (13), when both u1 and u2 are singular during
t 2 [t1; t2]� [t0; t f ], we have

S1 = λ1 � 0; S2 = λ2 � 0 (20)

which imply that

Ṡ1 = λ̇1 � 0; Ṡ2 = λ̇2 � 0 (21)

Substitution of Eqs. (20) and (21) into Eq. (9) yields

H = 1+m(λ3x4�x3λ4) (22)

and substitution of Eqs. (20) and (21) into Eq. (18) yields

S̈1 = (λ3x4�λ4x3)x2; S̈2 =�(λ3x4�λ4x3)x1 (23)

From Eqs. (14) and (22), we have that H � 0 implies that
(λ3x4 � x3λ4) 6= 0. Thus, during the singular arc [t1; t2],
Eq. (23) imply x2 = 0 and x1 = 0. Taking the third time
derivative of S1 and S2 and using Eqs. (8a) and (8b), we
get explicit expressions for controls u1 and u2. In particular,

S(3)
1 = 0 implies that u2 = 0 and S(3)

2 = 0 implies that u1 = 0.
The control u2 appears in the third time derivative of S1
and u1 appears in the third time derivative of S2. Since the
controls appear after di�erentiating the switching functions
an odd number of times, the controls are not optimal.22

The previous analysis has shown that the case when both
u1 and u2 are singular is ruled out. Nevertheless, a more
careful look reveals that this case may be very close to op-
timal for large values of the spin-rate m. To this end, recall
that along a singular arc, the conditions λ1 =λ2 = λ̇1 = λ̇2= 0
should be satis�ed. Thus, Eqs. (10a) and (10b) imply that� �(1+x2

3�x2
4)=2 �x3x4

�x3x4 �(1+x2
4�x2

3)=2

��
λ3
λ4

�
= 0 (24)

Since (λ3;λ4) 6= (0;0) the previous coe�cient matrix must
be singular. Calculating the determinant of this matrix,
one obtains that a singular arc with both u1 = u2 = 0 can
occur only if x2

3+x2
4 = 1.

Using the fact that x1 = x2 = 0 we have that along a sin-
gular arc the system equations are given by

ẋ3 = mx4 (25a)

ẋ4 = �mx3 (25b)

The solution of the previous system is given by�
x3(t)
x4(t)

�
=

�
cosmt sinmt
�sinmt cosmt

��
x3(0)
x4(0)

�
(26)

Note that if x2
3(0) + x2

4(0) = 1 then x2
3(t) + x2

4(t) = 1 for all
t � 0. This implies that singular subarcs indeed exist for
speci�c boundary conditions. From the de�nition of the
state vector, the condition x2

3+x2
4 = 1 corresponds to the case

when the inertial n̂3 and the body b̂3 axes are perpendicular
to each other. For an observer in the spacecraft frame, the
inertial n̂3 axis rotates about b̂3 axis at a constant rate �m
rad/sec in the b̂1� b̂2 plane. Both initial and �nal conditions

correspond to di�erent locations of the n̂3 axis in the b̂1� b̂2
plane. The singular solution suggests letting the body coast
from the initial to the �nal position by a pure rotation about
the b̂3 axis. This situation is shown in Fig. 2.
The time to complete the maneuver can be calculated

explicitly from Eq. (26). For example, in case (x3(0);x4(0))=
(1;0) and (x3(t f );x4(t f )) = (0;�1) one obtains that

t f =
π

2m
(27)

The optimality conditions in this section have shown that
this maneuver is not optimal. Indeed, simulations using

O

b̂1

b̂3

b̂2

n̂3(0)
n̂3(t f )

mt

Fig. 2 Singular control maneuver (u1 = u2 = 0).

the numerical scheme described in Section showed that
a bang-bang solution consisting of one switch for each u1
and u2 gives a better (smaller) �nal time, i.e., an additional
nutation decreases the maneuver time. Table 1 gives the
numerical results for ui max = 1, i = 1;2 and for initial and
�nal conditions as above. Note that these results are valid
for any ui max. As the upper bound of the control ui max is
decreased, the bang-bang (optimal) solution increases and
approaches the coasting maneuver as ui max! 0.

Table 1 Comparison between singular and bang-bang
solutions.

m (rad/sec) t f (singular) t f (bang-bang)
0.5 3.141592 2.328614
1.0 1.570796 1.507866
1.5 1.047197 1.038082
2.0 0.785398 0.783575
4.0 0.392699 0.392674
6.0 0.261799 0.261798
10.0 0.157080 0.157080

∞ 0 0

The results in Table 1 show that the di�erence of the �nal
time between the coasting maneuver in Eq. (26) and the
bang-bang solution decreases as the spin-rate m increases.
This agrees with our intuition. For this example, the two
solutions give essentially the same value of t f for m= 10
rad/sec. For values above m= 10 rad/sec numerical issues
prevent accurate calculation of the optimal trajectory using
EZopt (see Section for a discussion on the numerical scheme
used in this paper to calculate the optimal trajectories). The
results in Table 1 correspond to an inertia parameter a =
0:5, but similar results were obtained for other values of a.
Therefore, the results are generic regardless of whether the
body is prolate or oblate. We can conclude that the singular
maneuver is not optimal in this case. In practice, however,
when the spinning rate is high, this coasting maneuver can
be used as a suboptimal minimum-time maneuver.

Case II: only u1 is singular

In the previous subsection, we have ruled out the possi-
bility that both controls u1 and u2 become singular at the
same time. This observation is in accordance with similar
results for the inertially symmetric case with three con-
trols.5 In this subsection we will assume that only u1 is
singular during some interval [t1; t2] � [t0; t f ], while u2 is
bang-bang. From Eq. (13) we therefore have S1 = λ1 = 0
which implies that along the singular arc, Ṡ1 = λ̇1 = 0.
Substitution of these two equations into Eq. (18a) yields

S̈1 = m(1+ a)λ̇2 + (λ3x4� λ4x3)x2. Because the control u1
does not appear in the equation of S̈1, we have to take the
third derivative of S1,

S(3)
1 = am3(1+a)λ2�m(1+2a)(λ3x4�λ4x3)x1+
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x1x2λ̇2+amx22λ2+u2(λ3x4�λ4x3) (28)

where we have made use of the fact that λ1 = λ̇1 = 0.
Again, the control u1 does not appear in the equation of

S(3)
1 , so we shall take the fourth derivative of S1. The control

u1 appears in S(4)
1 explicitly; i.e.,

S(4)
1 = A1+B1u1 (29)

where A1 and B1 are the coe�cients which are given by

A1 = [2a(a+1)2m3�2amx21+2amx22+2x1u2]λ̇2�
(4a2m2x1�3amu2)x2λ2 (30a)

B1 = x2λ̇2�m(1+2a)(λ3x4�λ4x3) (30b)

and λ̇2 is given by Eq. (10b). From the discussion in Section
, the optimal singular control u1 is of second order and is
given by

u1 =�A1

B1
(31)

Kelley's necessary condition for optimality requires that

B1 � 0 (32)

Case III: only u2 is singular

The same analysis as for the case when only u1 is singular
can be repeated for u2 if only u2 is singular while u1 is bang-
bang. In general, the optimal singular control u2 is of second
order and is given by

u2 =�A2

B2
(33)

where

A2 = [�2a(a+1)2m3�2amx21+2amx22+2x2u1]λ̇1�
(4a2m2x2+3amu1)x1λ1 (34a)

B2 = x1λ̇1�m(1+2a)(λ3x4�λ4x3) (34b)

Kelly's necessary condition for optimality requires

B2 � 0 (35)

Special Cases

In the discussion in the previous section, it was assumed
that m 6= 0 and a 6= 0. In this section, we will consider two
special cases when a= 0 and m= 0, respectively. These two
cases correspond to an inertially symmetric rigid body and
a non-spinning axi-symmetric rigid body, respectively. For
these cases, the equations are simpli�ed signi�cantly and a
better insight is gained about the optimal solutions.

Inertially Symmetric Rigid Body (a= 0)

For an inertially symmetric rigid body, it is a= 0, and the
dynamics are simply

ẋ1 = u1 (36a)

ẋ2 = u2 (36b)

while the kinematics remain the same as given by Eqs. (8c)
and (8d). In this section, we assume that m 6= 0, i.e., the
rigid body has a nonzero angular velocity component about
the b̂3 axis. As before, we examine the three di�erent cases
separately.

Case I: both u1 and u2 are singular

In this case, as in Section , since both u1 and u2 are sin-
gular, we have λ1 = λ̇1 = λ2 = λ̇2 = 0. The Hamiltonian then
becomes H = 1+m(λ3x4� x3λ4). From Eq. (18) the sec-
ond derivative of S1 and S2 yields S̈1 = (λ3x4�λ4x3)x2 and
S̈2 =�(λ3x4�λ4x3)x1. Since the Hamiltonian has to be zero
along the whole trajectory, and since m 6= 0, one obtains
(λ3x4� x3λ4) 6= 0. Now letting the second derivative of S1
and S2 be zero yields x2 = 0 and x1 = 0. Taking the third
time derivative of S1 and S2 and letting it be zero, we get
u2 = 0 and u1 = 0. As in Section , since the controls u1 and
u2 appear in the third time derivative of S1 and S2, these
controls are not time optimal.22

Case II: only u1 is singular (u2 is bang-bang).

In this case, since u2 is bang-bang, we have x2 6= 0, except
possibly at some isolated points. The control u1 is assumed
singular, so we have λ1 = λ̇1 = 0, and following the same
approach as in Section one obtains that the singular control
is of second order and is given by

u1 =� 2x1u2λ̇2

x2λ̇2�m(λ3x4�λ4x3)
(37)

where

λ̇2 =�λ4
1+x2

4�x2
3

2
�λ3x3x4 (38)

Kelley's optimality condition requires

x2λ̇2�m(λ3x4�λ4x3)� 0 (39)

Since in this case the Hamiltonian takes the simple form

H = 1+λ2u2� λ̇2x2+m(λ3x4�λ4x3) (40)

and since u2 =�u2maxsgn(λ2), we have

λ̇2x2�m(λ3x4�λ4x3) = 1+λ2u2 = 1�u2maxjλ2j (41)

and Kelley's optimality condition is equivalent to u2maxjλ2j �
1.
From Eqs. (37) and (41), we can see that the optimal

control u1 is only de�ned when jλ2j 6= 1=u2max except at some
isolated points. In practice, it is possible that jλ2j= 1=u2max
along the singular arc and u1 is no longer de�ned in Eq. (37).
In this case, since λ2 is continuous,17 either λ2 = 1=u2max or

λ2 = �1=u2max holds. Therefore, λ̇2 = 0, and S̈1 = 0 implies
λ3x4� λ4x3 = 0 since x2 6= 0. From Eq. (18a), we can see

that S(3)
1 automatically equals to zero, and all higher order

derivatives of S1 will be zero identically as well. Therefore,
the optimal control u1 is an in�nite-order singular control
and it can be chosen arbitrarily as long as the boundary
conditions are satis�ed.5 In this case, substitution of λ3x4�
λ4x3 = 0 into λ̇1 = 0 and λ̇2 = 0 yields λ3 = λ4 = 0 along the
in�nite-order singular arc.

Case III: only u2 is singular (u1 is bang-bang).

This case is similar to Case II above. If jλ1j 6= 1=u1max
except possible at some isolated points, the optimal singular
control u2 is of second order and is given by

u2 =� 2x2u1λ̇1

x1λ̇1�m(λ3x4�λ4x3)
(42)

where

λ̇1 =�λ3
1+x2

3�x2
4

2
�λ4x3x4 (43)

Kelley's optimality condition requires jλ1j � 1=u1max. If
jλ1j = 1=u1max along the singular trajectory, the optimal
singular control u2 is of in�nite-order and can be chosen
arbitrarily as long as all the boundary conditions are satis-
�ed. In this case necessarily λ3 = λ4 = 0 along the singular
arc.
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Non-spinning Axi-Symmetric Rigid Body (m= 0)

If the body is not spinning, i.e., m= 0, then the system
equations are simpli�ed as

ẋ1 = u1 (44a)

ẋ2 = u2 (44b)

ẋ3 = x2x3x4+x1(1+x2
3�x2

4)=2 (44c)

ẋ4 = x1x3x4+x2(1+x2
4�x2

3)=2 (44d)

These equations describe the dynamics and kinematics of
both an axi-symmetric and an inertially symmetric body.
Again in the analysis we will discuss the possibility of both
controls being singular and only one control being singular.

Case I: both u1 and u2 are singular

In this case, as in Section , since both u1 and u2 are sin-
gular during [t1; t2] � [t0; t f ], we get λ1 = λ̇1 = λ2 = λ̇2 = 0.
Substituting these equations into Eq. (9), it follows immedi-
ately that H = 1. This contradicts the necessary condition
which states that the Hamiltonian has to be zero along the
whole trajectory. Therefore both controls being singular is
impossible for a non-spinning symmetric body.

Case II: only u1 is singular (u2 is bang-bang)

In this case, since u2 = �u2maxsgn(λ2), we have x2 6= 0
except possibly at some isolated points. The control u1 is
assumed to be singular, so by taking successive derivatives of
λ1 one obtains λ̇1 =�λ3(1+x2

3�x2
4)=2�λ4x3x4 = 0 and λ̈1 =

(λ3x4�λ4x3)x2 = 0. Since x2 6= 0, necessarily λ3x4�λ4x3 = 0.
From Eq. (28) we have for the third derivative of S1,

S(3)
1 = x1x2λ̇2 (45)

If λ̇2 6= 0, then letting S(3)
1 = 0, we have x1 = 0. Taking the

fourth derivative of S1, we have that u1 explicitly appears in

S(4)
1 . Letting S(4)

1 = 0, we get the explicit expression for the
second order optimal singular control u1 as

u1 = 0 (46)

Kelley's optimality condition requires that x2λ̇2 � 0. Since
in this case the Hamiltonian takes the simple form H =
1+λ2u2� λ̇2x2 we have

λ̇2x2 = 1+λ2u2 = 1�u2maxjλ2j (47)

and Kelley's optimality condition is equivalent to u2maxjλ2j �
1. Substituting λ3x4� λ4x3 = 0 into λ̇1 = 0, we get λ3 = 0
necessarily along the singular arc, so λ̇2 6= 0 implies λ4 6= 0.
Therefore, λ3x4�λ4x3 = 0 implies that x3 = 0. Thus along
the singular subarc, x1 = x3 = 0.
If λ̇2 = 0 along the singular arc, from Eq. (45), we can see

that S(3)
1 automatically equals to zero, and all higher order

derivatives of S1 will be zero identically as well. Therefore,
the optimal control u1 is an in�nite-order singular control
and it can be chosen arbitrarily as long as the boundary
conditions are satis�ed.5 From Eq. (47), λ̇2 = 0 implies

λ2 = �1=u2max. Substitution of λ3x4�λ4x3 = 0 into λ̇1 = 0
and λ̇2 = 0 yields that λ3 = λ4 = 0 along an in�nite-order
singular arc.

Case III: only u2 is singular (u1 is bang-bang).

Consider the case when only u2 is singular and u1 is bang-
bang. Then the same analysis as in Case II yields the
following results. If λ̇1 6= 0, except possible at some isolated
points, the optimal singular control u2 is of second order and
given by

u2 = 0 (48)

Kelley's optimality condition requires that u1maxjλ1j � 1.
Along the singular subarc, x2 = x4 = 0.

If λ̇1 = 0 along the singular arc, the optimal singular con-
trol u2 is of in�nite order and can be chosen arbitrarily as
long as all the boundary conditions are satis�ed. In this
case, λ1 =�1=u1max and λ3 = λ4 = 0.
We note that from Eqs. (46) and (48), it can be seen that

the second order singular arc for a non-spinning body is an
eigenaxis rotation.

A Numerical Approach for Computing
Optimal Solutions

The optimal solutions are obtained numerically using a
cascaded computational scheme. Both a direct method and
an indirect method are used in this scheme. A direct method
is applied �rst to get initial guesses for the indirect method,
which is then solved to obtain accurate optimal solutions.
The idea of combining direct and indirect methods for solv-
ing optimal control problems was introduced by Stryk and
Bulirsch25 and later by Seywald and Kumar26 to take ad-
vantage of both the good convergence properties of the
direct methods and the accuracy of the indirect methods.
This scheme is illustrated in Fig. 3. Three programs

are used in this numerical approach: EZopt, COSCAL and
BNDSCO. BNDSCO solves the problem using an indirect
method, i.e., the optimal solutions are determined by solv-
ing the Multipoint Boundary Value Problem arising from
Pontryagin's Minimum Principle using a multiple shooting
method.27 It converges quickly to the optimal solution, and
the solution obtained is of very high accuracy. However, the
radius of convergence of this method is rather small since it
requires very good initial guesses for the states, controls, co-
states, Lagrange multipliers and switching structure.25, 26 A
major di�culty lies in the fact that in most cases we do not
know the optimal switching structure in advance. Also, ini-
tial guesses for the co-states and the Lagrange multipliers
are nontrivial because these do not, in general, have any
intuitive physical interpretation.

         States
        Controls
 Kuhn−Tucker Multipliers

Optimal Solution

     BNDSCO
(Indirect Method)

 Initial Guesses for
        States
       Costates
       Controls
 Switching Structure

COSCAL

     EZopt
(Direct Method)

Fig. 3 Cascaded computational scheme for optimal so-
lution computation.

EZopt28 solves the problem using a direct method,
namely, the optimal solution is determined by directly min-
imizing the cost criterion through collocation and nonlin-
ear programming. The radius of convergence of the direct
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method is usually much larger than that of the indirect
method.25, 26 The program converges upon much less accu-
rate initial guesses. The speed of convergence is, however,
much slower compared with BNDSCO. Since this method
does not involve co-states, one needs to provide only initial
guesses for the states and controls. In addition, the switch-
ing structure does not have to be known in advance. A
disadvantage of this method is that the solutions obtained
may not be as accurate as those obtained from an indirect
method.6, 25 This is especially true around switching points
and when singular subarcs appear as part of the overall op-
timal solution. The accuracy of the solution depends on
the discretization scheme and the number of the discrete
nodes. However, these solutions are good enough to roughly
determine the trajectories, states, controls, switching struc-
ture and, if they exist, singular subarcs. Thus, they provide
good initial guesses for a direct optimization software pack-
age such as BNDSCO.
Based upon the foregoing discussion, we have developed

a software package that combines the two programs (EZopt
and BNDSCO) together to overcome the drawbacks of each
method. That is, we use the results from EZopt as an ini-
tial guess for BNDSCO. With this initial guess, BNDSCO
typically converges very fast and gives accurate and reliable
results. In addition, the optimality of the solution can be
readily checked from the time history of the corresponding
switching functions. One major obstacle with this approach
is that BNDSCO needs the initial guesses for the co-states
(in addition to the states and the correct switching struc-
ture) which EZopt does not provide. Thus, the program
COSCAL was developed by the authors to calculate the
co-states at each node from the Kuhn-Tucker multipliers
associated with the nonlinear programming, provided by
EZopt. The methodology is based on the work of Seywald
and Kumar.26

Numerical Results
EZopt, COSCAL and BNDSCO together form a cascaded

computational scheme which is very e�ective in carrying out
the optimal control computations. It has been used exten-
sively by the authors to solve several optimal control prob-
lems. In this section we present three numerical examples
for the minimum-time reorientation problem, demonstrating
the trajectories with bang-bang control subarcs, �nite-order
control subarcs, and in�nite-order control subarcs. Finally,
we will give a comparison between the eigenaxis rotation
and the true minimum-time rotation for an axi-symmetric
rigid body.

Bang-bang control example

For the problem at hand, bang-bang control is obtained in
most situations, including both rest-to-rest and non rest-to-
rest maneuvers. The optimal control is given in Eq. (13). As
an example of a bang-bang maneuver, consider the following
initial and �nal conditions: x(0) = [0;0;1:5;�0:5] and x(t f ) =
[0;0;0;0]. The parameters a and m are chosen to be a= 0:5
and m= �0:5 rad/sec. The control inputs are assumed to
be bounded by u1max= u2max= 1:0.
This example represents a \rest-to-rest" maneuver with

respect to the two control axes since the body is spinning
only about its symmetry axis at a constant rate. The ini-
tial boundary condition corresponds to a relative attitude
such that the initial angle between the b̂3 axis and n̂3 axis
is 115:38deg. An optimal control is to be found to reorient
the body until b̂3 and n̂3 axes are aligned in a rest situa-
tion. The optimal control for this example was found to be
bang-bang with the �rst control having one switch and the
second control having two switches. The minimum time to
complete this maneuver is 2:61 sec.
Figures 4 and 5 show the control inputs and the corre-

sponding switching functions. Figure 6 shows the history of
the angular velocities ω1 and ω2, and Fig. 7 shows the time
history of w1 and w2. Recall that w1 and w2 represent the
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Fig. 4 Control u1 and co-state λ1 for bang-bang maneu-
ver.
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Fig. 5 Control u2 and co-state λ2 for bang-bang maneu-
ver.
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Fig. 6 Angular velocities ω1 and ω2 for bang-bang ma-
neuver.

relative position of the inertial axis n̂3 with respect to the
body �xed frame b̂. In these �gures, the solid lines stand
for the optimal results obtained from BNDSCO (states, con-
trols and co-states), while the circles show the initial guesses
obtained from EZopt (states and controls) or COSCAL (co-
states).
From these plots, one can see that the solution obtained

from EZopt almost captures the properties of the optimal
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Fig. 7 Time histories of w1 and w2 for bang-bang ma-
neuver.
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Fig. 8 Control u1 and co-state λ1 for singular subarc
maneuver.

solution, although some discrepancy exists at the switching
points. The plots also show that COSCAL provides very
accurate guesses for the co-states.
For the calculations shown in Figs. 4-7, 21 nodes were used

for EZopt. The initial guesses for EZopt are trivial (all the
initial guess values are zero). EZopt converged in 2 minutes
on a SPARCstation 5. 11 nodes are used in BNDSCO, and
with the initial guesses provided by EZopt and COSCAL,
BNDSCO converged in less than 2 seconds.

Finite-order singular control example

Finite-order singular subarcs can be part of an optimal
solution only in some particular situations. As an example, a
second order singular control was observed for the boundary
conditions x(0) = [�0:45;�1:1;0:1;�0:1] and x(t f )= [0;0;0;0].
The parameters for this case are given by a= 0:5 and m= 0,
and the control inputs are bounded by u1max= u2max= 1:0.
This example corresponds to a non-spinning axi-symmetric
body. For these values of w1 and w2 the angle between
b̂3 axis and n̂3 axis is 16:1deg. The control is required to
reorient the body until the symmetry axis b̂3 is aligned with
the inertial axis n̂3 in a rest situation. It turns out that the
�rst control has a singular subarc and the second control is
bang-bang. The expression for the optimal singular control
is given by Eq. (46). The minimum time is 2:88 sec. The
results of the numerical simulations are shown in Figs. 8-12.
It should be noted here that although the analysis in Sec-

tion does not preclude the existence of singular subarcs
in the case when m 6= 0, we were unable to �nd optimal
trajectories with singular subarcs for the spinning case. Fig-
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Fig. 9 Control u2 and co-state λ2 for singular subarc
maneuver.
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Fig. 10 Angular velocities ω1 and ω2 for singular subarc
maneuver.
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Fig. 12 Optimal trajectory with singular subarc in w1-w2
plane.

ures 8 and 9 show the control inputs and the corresponding
switching functions. Figure 10 shows the time history of
the angular velocities ω1 and ω2 and Fig. 11 shows the time
history of w1 and w2. Figure 12 shows the same trajectory
on the w1-w2 plane. From Fig. 8 we can see that the control
u1 is singular after t = 1:904 sec. In the w1-w2 plane, if the
body is not spinning about its symmetry axis, then an eige-
naxis rotation is represented by a straight line. Figure 12
indicates that along the bang-bang subarc, the time-optimal
trajectory is not an eigenaxis rotation and along the singular
subarc the time optimal trajectory is an eigenaxis rotation.
In these �gures, the solid lines show the optimal solution

obtained from the solution of the TPBVP and the stars in-
dicate the solution of the direct method, which was used as
an initial guess for the TPBVP solver. From these plots it is
seen that the bang-bang subarc obtained from EZopt cap-
tures the optimal bang-bang subarc very well. The singular
control subarc obtained from EZopt is not as accurate, but
the output from EZopt gives a good understanding about
the existence and location of a singular subarc. Again,
COSCAL captures the time history of the co-states very
well.
In this example, the calculations in EZopt were performed

using 31 nodes, which required EZopt about 5 minutes to
converge from all-zero initial guesses. On the other hand, us-
ing the output from EZopt/COSCAL, BNDSCO converged
in about 2 seconds.
The appearance of a singular subarc in the optimal trajec-

tory deserves special mention. Kelley's necessary condition
alone (which was found to be satis�ed for this example) does
not guarantee that the singular subarc will indeed be part
of the composite optimal trajectory. The boundary con-
ditions will determine if this is true or not. Even in the
case when a trajectory composed of bang-bang and singu-
lar subarcs satis�es the boundary conditions, the �rst order
necessary conditions, and Kelley's condition on the singu-
lar subarc, it is still not guaranteed that this solution is
optimal. In particular, the joining between bang-bang and
singular subarcs has to satisfy certain junction conditions.
Such optimality conditions are given in Refs. 23 and 29. For
a second order singular arc (as the one in Fig. 8) the main
condition in Ref. 29 states that the optimal control should
be continuous at each junction, i.e., a jump discontinuity
when joining a non-singular and a singular control is not
allowed. At �rst glance, this seems to contradict the re-
sult in Fig. 8. However, the results in Ref. 29 assume that
the control is piecewise analytic. This is shown not to be
the case for singular arcs of even order (and also for arcs
of odd order greater than one) in Ref. 30; see also Ref. 31.
Thus, for even-order singular subarcs (and odd-order sin-
gular arcs of order greater than one) the junction between
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Fig. 13 Two possible solutions for u1 for an in�nite-order
singular arc maneuver.

singular and non-singular arcs is not analytic, i.e., the con-
trol consists of a sequence of an in�nite number of switchings
between u= umin and u= umax with the time between switch-
ings rapidly decreasing. More relevant to our case is the fact
that singular controls may manifest themselves as the cu-
mulative e�ect of the in�nite number of bang-bang control
actions (chattering). If this is the case, the solution of the
di�erential equations have to be interpreted in the Filippov
sense,32 and the singular control is then the \equivalent"
control action associated with the chattering control.31

The previous discussion reinforces our observations for the
singular control in Fig. 8. The solution from EZopt shows
that the optimal control switches rapidly after t = 1:904.
The subarc after that point is identi�ed as a singular sub-
arc, and the solid line stands for the optimal solution (given
from BNDSCO) which uses the \equivalent" singular con-
trol u1 = 0, obtained using the necessary conditions. This
singular control has the equivalent e�ect of a bang-bang con-
trol with in�nite number of switchings. It must be pointed
out that the substitution of a chattering bang-bang control
with its \equivalent" singular form is more than a mathe-
matical convenience. In practice, it is often preferable to use
the \equivalent" singular control action instead of switching
between the upper and lower bounds in�nitely fast. At any
rate, in both cases, the optimal state trajectory is the same.

In�nite-order singular control example

As a demonstration of the in�nite-order singular con-
trol, the boundary conditions x(0) = [0;0;0;0] and x(t f ) =
[1:0;2:0; free; free] are considered. In this example a = 0,
m = �0:3 and u1max = u2max = 1 are also assumed. The
in�nite-order singular control corresponding to these param-
eters is discussed in Section . From the boundary conditions
we can see that the purpose of this maneuver is to accelerate
the angular velocity components ω1 and ω2 from zero to 1.0
rad/sec and 2.0 rad/sec, respectively. The �nal position is
not important in this case. Since ẋ1 = u1 and ẋ2 = u2, the
minimum time that x2 reaches 2:0 rad/sec is 2 seconds, dur-
ing which, x1 can obtain its �nal value x1(t f ) = 1 rad/sec in
many ways. Therefore, an in�nite-order singular control is
a possible solution for this problem. Two possible solutions
for u1 are presented. Figures 13 and 14 show the two possi-
ble solutions for the control u1 and the angular velocity ω1.
Similar in�nite-order results can be obtained when m= 0,
with this case discussed in Section .

Comparison Between Eigenaxis Rotation and
Time-Optimal Rotation

It has been shown in the previous sections that the eige-
naxis rotations, in general, are not time optimal. A compar-
ison between eigenaxis rotations and time-optimal rotations
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Fig. 14 Two possible solutions for ω1 for an in�nite-
order singular arc maneuver.

of an inertially symmetric rigid body with three controls
can be found in Bilimoria and Wie .3 In this section, we
compare eigenaxis rotations and time-optimal rotations for
an axi-symmetric rigid body with two controls which are
bounded by umax= 1.
Figure 15 shows the con�guration of the desired maneu-

ver and eigenaxis rotation. Initially the b̂3 and n̂3 axes are
perpendicular to each other, in a rest situation. The n̂3 axis
lies in the b̂1-b̂2 plane and the angle from the b̂1 axis to the
n̂3 axis is denoted by θ. The desired maneuver is such that
the b̂3 axis and n̂3 axis are aligned in a rest situation.

0

u1
b̂1

u2 b̂2

n̂3

ê

b̂3

Desired Maneuver

θ

Fig. 15 Desired maneuver for the comparison between
eigenaxis rotation and optimal rotation.

The minimum-time solution for this rest-to-rest maneu-
ver can be obtained for any value of θ using the software
EZopt/COSCAL/BNDSCO. It turns out that for θ = nπ=4,
n= 0;1; � � � ;7 the time-optimal maneuver is an eigenaxis rota-
tion, and for other values of θ, the time-optimal maneuver is
not an eigenaxis rotation. In addition, the time-optimal ma-
neuvers in each interval [iπ=4;(i +1)π=4], i = 0;1; � � � ;7 have
similar switching structure.
The previous reorientation can also be obtained by an

eigenaxis rotation about an eigenaxis êwhich is �xed in the
inertial frame, lies in the b̂1-b̂2 plane and is perpendicular to
the n̂3 axis. Suppose 0� θ� π=4. Then the available control
input along the ê axis is bounded by 1=cosθ. Hence the
minimum time te for the time-optimal rest-to-rest eigenaxis
rotation can be calculated analytically; i.e.,

te =
p

2π cosθ (49)

Table 2 shows the comparison between the eigenaxis rota-
tion and the minimum-time rotation. Due to symmetry,
only the maneuver times for θ 2 [0;π=4] are shown, since the

rotation times for other values of θ can be calculated sim-
ilarly. Shown in the table are the switching sequences for
u1 and u2, the �nal time t f of the eigenaxis rotations and
the minimum-time rotation, and the time savings using the
min-time rotation.

Table 2 Comparison between eigenaxis and time-
optimal rotations.

Eigenaxis Rotation
θ u1 u2 t f

0 [0] [1;�1] 2.5066
π=24 [� tanθ; tanθ] [1;�1] 2.4959
π=12 [� tanθ; tanθ] [1;�1] 2.4639
π=8 [� tanθ; tanθ] [1;�1] 2.4093
π=6 [� tanθ; tanθ] [1;�1] 2.3327

5π=24 [� tanθ; tanθ] [1;�1] 2.2327
π=4 [�1;1] [1;�1] 2.1078

Minimum-Time Rotation
θ u1 u2 t f Savings

0 [0] [1;�1] 2.5066 0%
π=24 [�1;1;�1] [1;�1] 2.4742 0:87%
π=12 [�1;1;�1] [1;�1] 2.4191 1:82%
π=8 [�1;1;�1] [1;�1] 2.3527 2:35%
π=6 [�1;1;�1] [1;�1] 2.2787 2:31%

5π=24 [�1;1;�1] [1;�1] 2.1973 1:59%
π=4 [�1;1] [1;�1] 2.1078 0%

Conclusions
The time-optimal reorientation control problem of an axi-

symmetric rigid spacecraft with two control torques has
been studied in detail. It is assumed that no control torque
is available along the symmetry axis and the remaining two
torques are perpendicular to the symmetry axes and to each
other. The spacecraft may be spinning about its symmetric
axis. The relative rotation about the symmetry axis is there-
fore indeterminate. A complete analysis of all the possible
time-optimal control structures is presented, including cases
with singular and nonsingular subarcs. It is shown that sec-
ond order singular arcs and in�nite-order singular arcs can
appear as part of the optimal trajectory for speci�c bound-
ary conditions. Results are also presented for an inertially
symmetric rigid body with two controls. It is shown that
for a non-spinning, axi-symmetric body, the second order
singular arc is an eigenaxis rotation. A cascaded compu-
tational scheme is developed and used for the numerical
computation of the optimal trajectories. The method does
not require any a priori knowledge of the optimal switch-
ing structure. Examples show that this is a very e�ective
approach to compute optimal trajectories numerically.
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