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Abstract

Recent results show that a nonsmooth, time-invariant feedback control law can be used to rotate an axi-
symmetric rigid spacecraft to the zero equilibrium using only two control torques. This method, however,
may require a significant amount of control effort, especially for initial conditions close to an equilibrium
manifold corresponding to rotations about the unactuated principal axis. In this paper a control law is
proposed which reduces the control effort required to perform rest-to-rest maneuvers for initial conditions
close to this equilibrium manifold. Specifically, the phase space of the system is divided into two parts,
one corresponding to initial conditions producing large control effort (the “bad” region) and the other
corresponding to initial conditions producing small control signals (the “good” region). The proposed
control law then renders this undesirable equilibrium manifold unstable driving the trajectories of the
closed-loop system into the “good” region, where the original control law is subsequently used. Numerical
simulations indicate reduction of the control magnitude at the order of 80-90 % for initial conditions close

to the equilibrium manifold.

1 Introduction

The problem of stabilization of a rigid body using less
than three control inputs has received considerable at-
tention in the recent literature. Both the problems of
the stabilization of the dynamics, and the stabilization
of the kinematics have been treated in the literature'™®.
The stabilization problem of the complete system, i.e.,
the dynamics and the kinematics, has been addressed in
Refs. 7-13. The attitude stabilization of an axially sym-
metric rigid body using two independent control torques
was studied by Krishnan, et al.®° and Tsiotras et al.?°.
If the uncontrolled principal axis is not the axis of sym-
metry, the system is strongly accessible and small time
locally controllable’. When the uncontrolled axis coin-
cides with the axis of symmetry, the complete system
fails to be controllable or even accessible. However, the
system equations are strongly accessible and small time
locally controllable in the case of zero spin rate. A non-
linear control approach was developed in Ref. 8, which
achieves arbitrary reorientation for this restricted case.
In Refs. 14-15, the authors presented a new formulation
of the attitude kinematics which was used in Ref. 10 to
solve the same problem avoiding the successive switch-
ings of Ref. 8. References 8 and 10 treated the axi-
symmetric case, whereas the non-symmetric case was
dealt with in Refs. 11-13 and 16.

In this paper, a modification of the control law pre-
sented in Ref. 10 for the attitude stabilization of an
axi-symmetric rigid body using two independent con-
trol torques is proposed. Because Brockett’s neces-
sary condition for smooth stabilizability i1s not satisfied
for this system, any stabilizing (time-invariant) control
law is necessarily nonsmooth. (Stabilizing time-varying
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smooth control laws may still exist, however.) This non-
smoothness is evident in Ref. 10 in the form of the non-
differentiability of the control law at the origin. Because
of the singularity at the origin, this control law may sat-
urate the actuators, especially for initial conditions close
to the equilibrium manifold. It is therefore desirable to
modify the control law of Ref. 10 to reduce the required
control signals. Compared to the control law in Ref. 10,
the modified control law proposed here remedies this
large control input problem by driving the trajectories
of the closed-loop system away from the singular equi-
librium manifold, towards a region in the state space
where the “high authority” part of the control input re-
mains small and bounded. The procedure is simple and
can be easily validated using phase portrait considera-
tions. A numerical example illustrates the control effort
improvement using the new control law.

2 The Underactuated Spacecraft

The dynamics of a rigid spacecraft with two controls
can be written as

(,211 = a1 wals —|— U1 (la)
(,ZJQ = a2 W3 Wi —|— U2 (lb)
wg = aszwi W (lc)

where a; are the inertia parameters satisfying a1 + a2 +
a3 +ai1azaz = 0. Here we assume a body-fixed reference
frame along the principal axes of inertia.

Equations (1) describe an underactuated spacecraft
with no control authority about the 3rd principal axis.
Notice in this case, w3 can be controlled only indirectly
through judicious choice of the time histories of wy(t)
and wz(t). In case of an azi-symmetric body (about the
3-axis), az = 0 and a1 = —a2 = a and Eqgs. (1) reduce



to

w1 =  awsowz + U1 (2a)
wy = —awsowi + U2 (2b)
Wy = 0 (2¢)

where wg(O) = wao 1s constant. Introducing the complex
variables w = w1 +twy and v = g +iuz (with 1 = /—1)

the previous equations can be written as

W= —tawiw+u (3)

3 Kinematics of the Attitude
Motion

The orientation of a rigid spacecraft can be specified
using various parameterizations, for example, Eulerian
Angles, FEuler Parameters, Cayley-Rodrigues Parame-
ters, Cayley-Klein parameters, etc!”. Recently, a new
parameterization using a pair of complex and real co-
ordinates was introduced'*'®. According to these re-
sults, the relative orientation between two given refer-
ence frames can be represented by two rotations, one
corresponding to the real coordinate (z) and the other
corresponding to the complex coordinate (w). Specif-
ically, one can align an (inertial) reference frame to a
body-fixed frame by first performing an initial rotation
of magnitude z about, say, the inertial 3-axis and then
performing a second rotation to move the intermedi-
ate 3-axis to the body 3-axis. The second rotation can
be completely characterized by the complex coordinate
W = Wi +1 Wo. [t is a rotation of magnitude

_ 1—|w|?
f = arccos (m) (4)

about the unit vector

o= () e (U)o

This situation is depicted in Fig. 1, where (1'1,1'2,1'3)
is the intermediate reference frame resulting from the
rotation z about the inertial i3 axis, and where (a, b, ¢)
denote the coordinates of the unit vector along the 1'3
axis in the body frame, that is,

It can be shown®® that the coordinates of the 133 axis

in the I’ frame are also related to (a,b,¢)
133:—a§/1—b§/2—|—ci/3 (7)

With this notation, w represents the stereographic coor-
dinates corresponding to the unit vector (a,b, c) defined
by 1815
W b—1a (8)
T 1+4¢

Alternatively, the equations

a_i(W—W) W4+ W

L+ |w[2”’ W

1—|w?
c= ———
L4 |w]?

()

Fig. 1 Attitude representation using (w, z) coordinates.

and can be used to find @, b and ¢ once w is known. Here
|-| denotes the absolute value of a complex number, i.e.,
WW = |W|2, W € C.

The kinematic equations, which provide the geomet-
ric constraints of the motion and relate the rates of the
kinematic parameters w and z to the angular velocity
vector, can be written as follows!®!®

- 4%W+%+%W2 (10a)

2 = ws+Im(ww) (10b)

where w = w1 + 17w and W = w; 4+ ¢ wo. Notice these
equations take the convenient form

d 2 _ 2 _

T wl®* = (14 |w|")Re(ww) (11a)
2 = ws+Im(ww) (11b)

where bar denotes complex conjugate, Re(-) and Im(-)
denote the real and imaginary parts of a complex num-
ber respectively. In Eq. (11b) only the imaginary part
of the product ww appears, while in Eq. (11a) only the
real part appears. This duality (or anti-symmetry) of
Eqgs. (11a) and (11b) is desirable and can be used to
derive stabilizing control laws for the kinematics de-
scribed by Egs. (10). Clearly, w = 0 if and only if
|w| = 0, and stabilization of the system in Eqgs. (10) is
equivalent to stabilization of the system in Eqgs. (11).
References 10,19,18 indicate that the coordinates (w, z)
offer some significant advantages for attitude analysis
and control problems.

4 Problem Statement

Consider an axi-symmetric body with the applied
torque vector in the plane which is perpendicular to
the symmetry axis. In such a case, the system is de-
scribed by Eqgs. (2) and thus ws remains constant. If
initially w3(0) # 0, no control input can bring the sys-
tem to the equilibrium. The system is not controllable



to the equilibrium, but it is controllable to the sub-
manifold w = w = 0 in the (w,ws, W, z)-space. For a
more detailed discussion on this issue, refer to Refs. 8—
10. Therefore, for an axi-symmetric body, actively con-
trolled rotation to the equilibrium for the system in
Eqgs. (3)-(10) makes sense only if ws = 0. In this case,
the system equations simplify to

w = u (12a)
W= 2y ng’ (12b)
z = Im(ww) (12¢)

This system can be stabilized to the origin, but any
time-invariant stabilizing control law has to be neces-
sarily nonsmooth, since Egs. (12) fail Brockett’s neces-
sary condition for smooth stabilizability®®. Therefore we
concentrate on using nonsmooth (albeit time-invariant)
stabilizers for this system.

Equations (12) represent a system in cascade form,
with the kinematics (12b)-(12c) being the driven sub-
system and the dynamics (12a) being the driving sub-
system. Methodology in Ref. 10 used this structure to
derive a non-smooth control law to stabilize Eqgs. (12).
In essence, the controller design consists of a two-step
process. In the first step, only stabilization of the kine-
matics is addressed, with the angular velocity treated as
the control input. In the second step, the control torque
u 18 chosen to shape the desired velocity profile. Since
the angular velocity in the first step is (necessarily) a
nonsmooth function of w and z, caution should be ex-
ercised when implementing this angular velocity in the
second step. The nonsmooth controller of Ref. 10, along
with its potential drawbacks, is summarized in the next
section.

5 A Nonsmooth Controller for the
Kinematics

In Ref. 10 a nonsmooth control law was proposed for
the kinematic system described by

. w W5
= 242 13
W 5 T3V (13a)
z = Im(ww) (13b)
and was later implemented though the integrator in
Eq. (12a). The proposed control law in Ref. 10 was
motivated by the decoupling of these equations with re-

spect to the product ww, as evident from the discussion
following Eqs. (11). This control law is given by

w= —KW—i/L% (14)

where p > /2 > 0. With this control law, the closed
loop system in terms of |w| and z is given by

dlwl|®

- —k( W P)wl (15a)

;= —uz (15b)

which is globally exponentially stable. As can be eas-
ily inferred by observing Egs. (14) and (11), the first

term in the control law (14) has an effect only on the
differential equation for w, whereas the second term in
Eq. (14) has an effect only on the differential equation
for z. Moreover, the second term in Eq. (14) is a nons-
mooth function of z and w.

The main disadvantage of the control law in Eq. (14)
is that the last term, which involves the ratio z/ W, may
become unbounded without careful choice of the gains.
The previously imposed gain condition u > /2 ensures
that the rate of decay of z is at least as large as the rate
of decay of w, such that their ratio remains bounded.
Actually, one can easily establish from Eqgs. (15) that for
u > k/2, along the solutions of the system, z/W — 0 as
t — oo.

Introducing the variable v = |w|?, the system in
Eqgs. (15) takes the form

)

—k(14v)v (16a)
;= —pz (16b)

This is a system which evolves on IRy x IR. Typical tra-
jectories and the vector field of the closed-loop system
in Eq. (16) for Kk = 1 and g = 2 are shown in Fig. 2.
(Since z does not change sign it suffices to plot only the
z > 0 case.)
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Fig. 2 Phase portrait of system in Eqgs. (16).

Although in Eq. (14), the ratio z/W, and hence the
control effort w, remains bounded by proper choice of
control gains, the control input w may take large values
in the region where w is small. From Eq. (15a), |w(¢)| <
|w(0)]| for all ¢ > 0 and for small initial conditions w(0),
the control law may use a substantial amount of energy,
especially in regions where |z| is large. In Fig. 2, for
example, the region which is close to the z axis is clearly
undesirable as far as control expenditure is concerned.
Modification of the control law in Eq. (14), such that
the vector field close to the z axis points away from this
axis, 1s highly desirable. In short, the idea is to divide
the (z,v) phase space into two regions according to the
value of the ratio

z

z
WZW:; (17)



This ratio is a direct indication of the relative magnitude
between z and w. This ratio should be kept small in or-
der to avoid high control effort. Hence, if initially the
states are in an undesirable region where 5 attains large
values, the feedback control strategy should drive the
trajectories to a “safe” region in the state space where
7 remains relatively small. Without loss of generality,
choose as undesirable the region where || > 1, leaving
|7| < 1 as the desirable region. These two regions, de-
noted by D; and D; respectively, are therefore defined
by

D1 =
Dy, =

{(z,v) EIR xRt :00>|n| >1} (18a)
{(50) € R xRy : ol < 1) (1h)

These two regions are shown in Fig. 3.
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Fig. 3 Regions D; and D; in (z,v) phase space.

6 Main Results

The proposed modification to the control law in
Eq. (14) is simple. Positive feedback is used for v when
the trajectory is in region Di, while z is decreasing.
This change will make the manifold v = 0 (equivalently,
w = 0) unstable and the trajectories will move towards
the region Dy and subsequently stay there. The control
law in region D; is essentially the same as in Eq. (14).
Notice that, by definition, inside the region D2 we have
|n| < 1, and since |z|/|W| = |n||W| we can ensure that
w will not take excessive values as long as the trajecto-
ries remain in P>. These statements will be made more
precise in the sequel.

6.1 Proposed Control Law for Kinematics

The proposed control law for the system in Eqgs. (13)
is defined by

. z
w=—k(nw —ip(n)— (19)
W
where £(n) and p(n) are smooth functions satisfying
—ke < k(n) <0,

0< p(n) < “7 V(z,0) € Dy (20a)

0 < k(n) < ke “7 < u(n) < pe, ¥ (5,v) € Dy (20b)

and 0 < k. < pt.. One possible choice is, for example,
2Kc 2

— t 1—- 21
— arctan (p( N )) (21a)
He 2 He

— t 1—- — 21b
—arc an(p( 17))—1— 5 (21b)

From Egs. (21), k and p are bounded as

0<pum <wme (22)

for all n € IR. Moreover, notice that x(n) < 2u(n) for
all (z,v) € Ds.

The next theorem gives the main result of the paper.

— ke < K(n) < Ke and

Theorem 6.1 Consider the system in Eqs. (13) and let
the control law be as in Egs. (19)-(21) with 0 < k. < pe.
Then for initial conditions (z(0), w(0)) € IR x (C\{0}),
the following properties hold:

(i) w(t)#0,Vt>0.
(ii) the trajectory(z(-), w(-)) is bounded and

lim (=(8), w(t)) = 0 (23)

(iii) the controllaw w(-) is bounded and it has a bounded
derivative.

With the control law in Eq. (19), the closed-loop sys-
tem takes the form

—k(n)(1+v)v (24a)
—n(n)z (24b)

where v = |w|? and » as in Eq. (17). From Eq. (22) we
have that z decays monotonically for all initial condi-
tions, whereas v increases in the region D; and decreases
in Dy. The result is that the trajectories of Egs. (24)
tend to D2 and then to the origin, as required.

) =

z =

Before proving Theorem 6.1 we need to establish the
following two lemmas.

Lemma 6.1 The region D2 is invariant for the system
in Eqs. (24).

Proof. The boundary of the set D> is given by the two
lines n = 1 (cf. Fig. 3). On the boundary of D, the
feedback gains are k() = 0 and p(n) = pe/2. The
vector field on the boundary of Dy is therefore

b o= 0 (25a)

- “7 P (25b)

z =

which points into the interior of D3. Therefore trajec-
tories in Dy cannot escape this region and thus it is
invariant for the closed-loop system in Eqs. (24). [ |

This lemma establishes that for initial conditions in
D, the trajectories of the closed-loop system remain in
Dy for all times. Equivalently, if at some time t' > 0
the trajectory enters D, it stays in Dy for all ¢+ > ¢'.
Figure 3 shows the vector field on the boundary of D-.



Lemma 6.2 Consider the system in Fqs. (24). For all
initial conditions (z,v) € D1 the trajectories enter the
regton Dz in finite time.

Proof. As long as (z,v) € D1, from Eq. (20a) p is
bounded as 0 < p(n) < pc/2. This implies that z is
bounded. Actually, |z(t)] < |z(0)] for all ¢ > 0. Note
that z does not change sign for all ¢ > 0. Without loss
of generality, assume that z(0) > 0 (the case z(0) < 0
being similar). If (z(0),v(0)) € Dy then, by definition
n(0) > 1. The derivative of 5 in D1 is then

. z zZ .

=

—p(m)n + &(n)(1 + o)y
< —pmn <0 (26)

since k(n) < 0 and v > 0; hence 7 is bounded in D;.
Let ¢l D1 denote the closure of Py in ]R2, that is,

cdDy = 'D1U{(Z,’U)€]R><]R+:|17|:1}
U{(z,v) e R x R4 : v =0} (27)

Then it is an easy exercise to show that 5 # 0 for all
(z,v) € I D1\{(0,0)}. Hence there exists ¢ > 0 such
that # < —e in D1 and consequently, # monotonically
decreases. Thus, every trajectory starting in D; will
leave this set and enter Ds in finite time. [ ]

Notice that the set {(z,v) € IRx IR} : v =0 and z #
0} is an unstable manifold for the closed-loop system.
Figure 3 shows the vector field on the boundary of
Di. The following corollary follows directly from Lem-
mas 6.1 and 6.2.

Corollary 6.1 Consider the system in Eqs. (24). For
all initial conditions (2(0),v(0)) € IR x (IR4\{0}), n is
bounded for all t > 0.

We are now ready to give the proof of Theorem 6.1.

Proof.
that

[Theorem 6.1] From Eqgs. (24a) and (22) we have

0> —k(14v)v (28)
where k. > 0. The solution of the differential equation

&= —ke(l+ o)z, ¢(0) =120 >0 (29)

is given by
1
)= ——— 30
e (30)

where ¢o = (2o + 1)/z0. Clearly, z(¢) # 0 for all ¢ > 0
and lim;_.o #(¢) = 0. Therefore v(-) is bounded below
by the solutions of the differential equation (29) subject
to initial condition zo = v(0). Hence, |w(t)| # 0 for all
t > 0 and w(-) approaches the origin asymptotically.

We now show that lim;_..(z(t),v(t)) = 0. If
(z(0),v(0)) € D, then according to Lemma 6.1 we
have that (z(¢),v(t)) € Dy for all ¢t > 0 and D is
an invariant set for the closed-loop system. Consider
now the positive definite, radially unbounded function

VIR x IRy — IR4 given by

Viz,v)= %1)2 + %z2,

V(z,v) € D2 (31)

The derivative of V along the trajectories of (24) is

V=—x(n)(1+ v)v2 — u(n)z2 <0, VY(z,v)€ Dz (32)
therefore, the trajectories are bounded in D,. More-
over, V = 0 if and only if &(n)(1 + v)o® + pu(n)2® = 0.
Using the definitions of k() and g(n) in D and recall-
ing that v > 0, one establishes that the last equality is
not satisfied in Dy unless z = v = 0. By LaSalle’s the-
orem, lim; . (2(t),v(t)) = 0, for all initial conditions
in Dz. To finish the proof, recall from Lemma 6.2 that
if (2(0),v(0)) € Dy then |z| is bounded by |z(0)| and
there exist a time ¢ > 0 such that (z(¢'),v(¢')) € D-.
This implies that for all ¥ > ¢ > 0 the trajectories
in D; are bounded, and are confined inside the strip
|z(t)] < |2(0)]. However, according to the previous dis-
cussion, the trajectory with initial condition (z(¢'), v(¢'))
satisfies im;_. o (2(t), v(t)) = 0. Therefore, it has been
shown that for all (2(0),v(0)) € IR x (IR4\{0}) the tra-
jectories remain bounded and have the property that
lim;_.o(2(t),v(t)) = 0. By the definition of v, this im-
plies that
tlim (z(t),w(t)) =0 (33)
In order to show that w is bounded, write the ratio
z/W = nw. From Eq. (19) one obtains

lw] < kelw| =+ pelnl|w] (34)

From Corollary 6.1, for all initial
conditions (z(0), w(0)) € IR x (C\{0}) 5 is bounded.
Since w is also bounded, from Eq. (34) it follows that
w 1s bounded.

From Eq. (13a) it follows immediately that w is also
bounded. Moreover, since

i =—pu(n)n+ &)1+ o) (35)

and p(n), k(n), v and 5 are all bounded, we have that 7
is bounded.

The derivative of w is given by

b= —k(mw — ()W —ii(n)n w—1u(m)nw —ip(n)nw
(36)

Using Egs. (21) one has

. 4K, p .
= — SR 37
&(m) - 1+p2(1—172)2m7 (37a)
_ 2pe P

—_— 7] 37b
b 1—|—p2(1—172)21717 (37b)
Since 7 is bounded, &(n) and f(n) are both bounded.
Finally, the boundedness of w follows directly from
Eq. (36) and the fact all the terms in the right hand
side of this equation are bounded. |

The vector field and the corresponding trajectories of
the closed-loop system with the control law in Eq. (19)
is shown in Fig. 4 (compare with Fig. 2).

Remark 6.1 Theorem 6.1 shows that for all initial con-
ditions w(0) # 0 the control law in Eq. (19) drives the
system trajectories to the origin. This control law can-
not be used if w(0) = 0 (and z # 0). Linearization of the



Fig. 4 Phase portrait of system in Eqgs. (24).

system represented by Eq. (12) about w = 0, however,
shows that this system is controllable and choosing, for
example, a constant control w = w. € €, one can move
away from the z-axis into the D; region; once in Dj,
use of the control in Eq. (19) drives the system to the
origin.

Remark 6.2 Another choice of a feedback control for
Eq. (13) is the sublinear control in terms of w,

v i p— (38)

YT TR T M

which renders the closed-loop system

v = —Kv (39a)
;P = —uz (39b)

globally exponentially stable. The previous methodol-
ogy can be applied mutatis mutandis to this control law,
as well. Moreover, several other similar modifications
can be introduced to the control law in Eq. (14). It
should be evident that the results in this section can be
applied to these control laws with only minor modifica-
tions.

6.2 Proposed Control Law for Complete Sys-
tem

The control law in Eq. (19) was shown to achieve
lim;_.(z(t), w(t)) = 0. Moreover, it is a bounded con-
troller with bounded derivative. This allows one to im-
plement this control through the dynamics in Eq. (12a).
To this end, define the error

e =w— wq (40)

where wqy is the desired angular velocity profile given in
Eq. (19). Consider the following feedback control

w=wqg— alw+ &(n)Ww + iu(n)nw) (41)

where @ > 0 and where wq is given in Eq. (36), along
with Egs. (37). The value of 7 is now given by

n=—p(mn+e(n)(1+v)p+Iim(e/w)—(1 —|—v)17Re(e(W§

42
With the control law in Eq. (41) the closed-loop system
takes the form

e = —ae (43a)
v = —k(n)(1+v)v+ (14 v)Re(eW) (43b)
i o= —p(n)z+Im(ew) (43¢)

Notice that for e = 0 the system reduces to the one in
Eqgs. (24).

For a large enough, Eq. (43a) is essentially a bound-
ary layer subsystem to the slow system given by
Eqgs. (43b)-(43c). Singular perturbation theory*' guar-
antees that as soon as the error becomes small enough,
the (z,v) trajectories of the system will follow the ones
of Egs. (24).

Next we show that the control law in Eq. (41) is well-
defined, in the sense that it remains bounded for all
t > 0. We show that with o large enough w(t) # 0 for
all t > 0, i.e., w(t) tends to zero only asymptotically for
all initial conditions inside an a priori given compact
set.

Proposition 6.1 Consider the system in Eqs. (43) and
the compact set

No={(w,w,2) €W |el[(1+0)/0]2 <8} (44)

where W = € x (C\{0}) x IR, and let p. > k. > 0
and o > (ke + B)/2. Then for all initial conditions in
N3, |w| is bounded below by an exponentially decaying
function.

Proof. Equation (43b) can be re-written as
d _
WP = (1 [wP) (s w]* = Re(ew))  (45)

Note that from Eq. (43a) |e(t)] < |e(0)|e™ " and using
Eq. (44),

[w(0)]*

1
2

—(8ct+B)t/2
W) ‘ 120 (46)

(1) Sﬁ‘(

Consider now the differential equation

Gl WPl

= —(ke + B)(1 +

The solution of this equation is given by

(1) — 1 ORI
w(t)| = cocret iz —] 2 € (48)
where ¢g = (|W(0)]> + 1)/|w(0)]*. Comparison of
Eqgs. (46) and (48) implies that
(0l < Bl Veo (49)

where |W| obeys Eq. (47) with |W(0)| = |w(0)].



Notice now that since Re(ew) < |e||w|, and using
Eq. (49), one has from Eq. (45) that

d, 2
vl

vV

—(1+ W) (k)| W] + le][w])

—(L+ W) (s(n) W] + Blw]|wl])  (50)

vV

and since —k. < k(7)) < &, finally,

d .

E|W|2 > —(1+|w)(ke|w|* + BlW|lw])  (51)
By comparing Eqs. (47) and (51) and since |w(0)| =
|#W(0)|, one obtains

d 2
- > -
dt|W(0)| — dt

Lo (52)

Therefore there exist some t* > 0 such that |w(¢)] >
|W(t)| for all 0 < t < ¢*. We claim that, actually,
|w(t)| > |W(t)| for all ¢ > 0, and thus |w| is bounded
below by the exponentially decaying function |W|.

Assume that at some point t' > 0 we have that

|V&}71(t')| = |W(t')| and L|w(t")] < L|W(t')|; see Fig. 5.
en
A
W]
A |
W] :
t’ t
Fig. 5 Time history of |w| and |w|.
d ! ! ! !
ZIWEP = = W) ) (e w (@) + 8lw(t)])
= —(L+ W) (e + B) ()]
d .
= Ly (53)

which leads to a contradiction. Therefore |w(t)| >
|W(t)| and thus w(t) # 0 for all ¢ > 0. ]

In Ref. 10 the control law in Eq. (14) was also im-
plemented using the same methodology. That is, the
control for the complete system was given by Eq. (41),
where kK = k¢, t = ptc and K = g = 0. The value of the
gain « increases with §, which in turns increases as |W|
decreases. That is, when the initial condition is close to
w = 0 then a faster transient for w is required. This
faster transient is achieved by taking o large enough. A
potential problem in the implementation of the control
in Eq. (41) is now evident. If e does not decay “fast
enough” so that w — wy sufficiently fast, then there is

the danger that w will move towards the z-axis before
the control law in Eq. (14) becomes effective. This is
one more reason which motivated the choice of the con-
trol law in Eq. (19). Namely, it is beneficial for w to
move away from the z-axis. This can reduce the value
of the gain « significantly.

In most situations it is not necessary to chose « from
Proposition 6.1. Actually, as the numerical simulations
in the next section show, for most practical examples it
suffices to choose o to be “sufficiently larger” than the
gains gt and k.. From Eq. (42) it is also clear that o
should be at least as large as x./2, in order for e/W to
remain bounded.

Remark 6.3 The rigid body problem subject to two
control inputs is only but one example of an underac-
tuated mechanical system. Systems of this form can be
found in the class of systems subject to nonholonomic,
i.e., non-integrable constraints®?. Time-invariant con-
trol laws for these systems are necessarily nonsmooth
and recently proposed control laws®**™®® include singu-
larities of the same form as in Eq. (14). It is there-
fore conceptually straightforward to extend the results
of this paper to this more general case.

7 Numerical Example

To illustrate the previous theoretical analysis, we
have simulated the differential equations (12) with the
two control laws in Eqgs. (14) and (19). The gains are
chosen as k. = 0.5 and g, = 2. The value of the pa-
rameter p = 2. The initial conditions were taken as
w(0) = 0.3 —10.25 and z(0) = 2.5. The results are
shown in Figs. 6 and 7. Figure 6 shows the correspond-
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Fig. 6 Closed-loop trajectories for the two methods
(kinematics only).

ing closed-loop trajectories, and Fig. 7 shows the magni-
tude of the angular velocity (control input for the kine-
matics) |w|. Solid lines correspond to the new control
law in Eq. (19) and the dashed lines correspond to the
previous control law given in Eq. (14). As it is evident
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Fig. 7 Control effort for the two methods (kinematics
only).

from these figures, there is a substantial decrease in con-
trol effort by using the control law in Eq. (19), especially
during the initial portion of the trajectory where z is
large and |w| is small.

This control law was later implemented through the
dynamics in Eq. (12a). A rest-to-rest maneuver was con-
sidered, thus w(0) = 0. Simulations for several values of
a are shown in Figs. 8-9. The trajectories in the (z,v)
space are very similar to the ones when w is the control
input. In fact, for « = 10 the trajectories for the com-
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Fig. 8 Closed-loop trajectories for the complete system.

plete system are essentially identical to the ones with
control law in Eq. (19). Figure 9 shows that increas-
ing o may increase the control effort, mainly because of
the high-gain boundary layer part of the controller. At
any rate, the corresponding control effort for the control
law in Ref. 10 is several orders of magnitude higher (not
shown here). Moreover, for small o such as & = 1 and
o = 4, the control effort for the controller in Ref. 10
is not bounded. In these cases the slow transients of

Time

Fig. 9 Control effort for the complete system.

e allowed w to drift towards the z-axis before the con-
trol law in Eq. (14) is activated. On the other hand,
the controller in Eq. (19) forces the system trajectories
away from the z-axis, thus providing enough time for
the dynamic controller to “catch up.”

8 Conclusions

A nonsmooth control law has been constructed which
stabilizes the kinematics of an underactuated rigid
spacecraft. It is shown that the proposed control law
is well defined and uses considerably less control ef-
fort than a previously derived control law. The main
idea is to divide the state space into two regions, one
which includes initial conditions resulting in high con-
trol expenditure and one which includes initial condi-
tions resulting in acceptable control input signals. The
proposed control law then forces all the closed-loop sys-
tem trajectories to leave the undesirable region of high
control effort and subsequently use the original control
law. Numerical examples indicate a significant control
effort reduction using the new control scheme. Because
of the limited control torque on-board a spacecraft, for
practical situations this may be the difference between
feasibility and infeasibility of a particular reorientation
maneuver.
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