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Abstract

In this paper we generalize previous results on attitude representations using Cayley transforms� First� we show
that proper orthogonal matrices� that naturally represent rotations� can be generated by a form of �conformal
analytic mappings in the space of matrices� Using a natural parallelism between the elements of the complex plane
and the real matrices� we generate higher order Cayley transforms and discuss some of their properties� These
higher order Cayley transforms are shown to parameterize proper orthogonal matrices into higher order �Rodrigues
parameters�

� Introduction

The question of the proper choice of coordinates for de�
scribing rotations has a very long and exciting history� Start�
ing with the work of Euler and Hamilton a series of di�er�
ent parameterizations were introduced by several researchers
during the past hundred years� We will not delve into these
results here since they can be found in any good textbook
on attitude representations���� We just mention the work of
Stuelpnagel in this area�� as well as the recent survey article
by Shuster� in the special issue in Ref� ��

In this paper we take a slightly more abstract point of
view than the previous references� Our main objective is to
�unify some of the existing results in the area of attitude
representations� It is hoped that this global view will add to
the current understanding of attitude representations� Our
motivation stems mainly from the recent results on second
order Rodrigues parameters���� In particular� in Ref� � it
was shown that these �Modi�ed� Rodrigues parameters can
be generated by a second order Cayley transform� the same
way the classical Cayley�Rodrigues parameters are generated
by the Cayley transform���� Viewing the Cayley transform
as a bilinear transformation which maps the space of skew�
symmetric matrices onto the space of proper orthogonal ma�
trices �and vice versa� one is naturally led to the notion of
conformal mappings �a generalization of the bilinear trans�
formation� from the imaginary axis onto the unit circle �and
vice versa�� We seek to generalize these conformal map�
pings to matrix spaces� Drawing on the insightful statements
by Halmos�	 we show that such an intuitive generalization
is indeed possible� We are therefore able to generate the
Euler parameters� the Rodrigues parameters and the Modi�
�ed Rodrigues parameters as special cases of such conformal
mappings� Higher order Rodrigues parameters can be easily
constructed using this approach� although their relevance to
applications is still to be determined� We explicitly develop
the third and fourth order �Rodrigues parameters in order
to illustrate potential advantages as well as di�culties� The
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question of kinematics of these higher order �Rodrigues pa�
rameters is brie�y discussed in the last section of the paper�
A more in�depth discussion of the kinematics is left for fu�
ture investigation� The presentation and derivations of the
results are kept as formal as possible�

The �rst part of the paper reviews the standard Cayley
transform and it generalizes this transform to higher orders�
There is no restriction on the dimension of the matrices in�
volved� i�e�� the results hold for n�n matrices� In the second
part of the paper we apply these results to the case of interest
to attitude dynamicists� i�e�� the case n � ��

Some notation and terminology is necessary in order to
keep the discussion clear and terse� We use the standard
mathematical notation SO�n� to denote the space of proper
orthogonal matrices of dimension n � n� The space of or�
thogonal matrices is denoted by O�n� and it is the set of all
�invertible� matrices such that ATA � AAT � I� Clearly�
if A � O�n� then det�A� � ��� The quali�er �proper then
refers to those orthogonal matrices with positive determi�
nant� that is� SO�n� � fA � IRn�n � AAT � I� det�A� �
��g� These matrices represent rotations� while the or�
thogonal matrices with determinant �� involve� in general�
re�ections��� The space SO�n� �as well as O�n�� forms a
group� We will see later on that one can de�ne a di�erential
equation for elements of SO�n�� The solutions of this di�er�
ential equation form trajectories �one�parameter subgroups�
on SO�n� and this di�erentiable structure makes SO�n� ac�
tually a Lie group �i�e� a group with a di�erentiable manifold
structure�� The space of n�n skew�symmetric matrices will
be denoted by so�n� That is� so�n� � fA � IRn�n � A �
�AT g� The space so�n� is actually the tangent vector space
to SO�n� at the identity��� Finally� following the standard
mathematical language� we use the symbols C� IR� � � iIR
and S� to denote the complex numbers� the real numbers�
the imaginary numbers� and the numbers with absolute value
one �i�e�� the numbers on the unit circle�� respectively� The
symbol sp��� denotes the spectrum of a matrix� i�e�� the set
of its eigenvalues�

� The Cayley Transform

Cayley�s transformation parameterizes a proper orthogo�
nal matrix C as a function of a skew�symmetric matrix Q�
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It is� therefore� a map � � so�n� � SO�n�� The classical
Cayley transform� is given by

C � ��Q� � �I �Q��I �Q��� � �I �Q����I �Q� ���

Since Q is skew�symmetric all its eigenvalues are pure imag�
inary� Thus� all the eigenvalues of the matrix I � Q are
nonzero and the inverse in Eq� ��� exists� The Cayley trans�
form is therefore well�de�ned for all skew�symmetric matri�
ces� The inverse transformation is identical and is given by

Q � ����C� � ��C� � �I � C��I � C���

� �I � C����I � C� ���

The inverse transformation is not de�ned when C has an
eigenvalue at ��� because in this case det�I �C� � �� Since
C is orthogonal� all its eigenvalues lie on the unit circle S� �
f�x�� x�� � IR� � x�� � x�� � �g� Therefore sp�C� � S��
and the transformation in Eq� ��� requires that �� �� sp�C��
One can easily show� that C � SO�n� if Q � so�n� and
thus� the Cayley transformation is injective �one�to�one� and
surjective �onto� between the set of skew�symmetric matrices
and the set of proper orthogonal matrices with no eigenvalue
at ���

� Cayley Transforms as Conformal
Mappings

The three most important subsets of the complex numbers
are the real numbers IR� the imaginary numbers �� and the
numbers with absolute value one �i�e�� the numbers on the
unit circle S���� Trivially� these sets are subsets of the com�
plex plane C� There is a very elegant analog between these
three subsets of the complex plane and the n�n matrices�	�
i�e�� the elements of IRn�n� This analog can be easily un�
derstood and appreciated as follows� An elementary result
in matrix algebra states that every n � n matrix with real
elements can be decomposed into the sum of a symmetric
and a skew�symmetric matrix� For example� any A � IRn�n

can be written as A � �A � AT ��� � �A � AT ���� The
�rst matrix in this equation is symmetric and the second
matrix is skew�symmetric� Symmetric matrices always have
real eigenvalues and skew�symmetric matrices have always
imaginary eigenvalues� Recall now that a complex number
can always be decomposed into the sum of a real and an
imaginary part� This parallelism between complex numbers
and matrices allows one to treat the symmetric matrices as
the �real numbers and the skew�symmetric matrices as the
�imaginary numbers in the set of IRn�n matrices�	� In ad�
dition� recall that an orthogonal matrix in IRn�n has all its
eigenvalues on the unit circle� Drawing the previous paral�
lelism even further we can therefore treat the orthogonal ma�
trices as the �elements on the unit circle in the space IRn�n�
Similar statements can be made for the case of n � n ma�
trices with complex entries �elements of Cn�n�� where now
hermitian� skew�hermitian and unitary matrices have to be
used instead of symmetric� skew�symmetric and orthogonal
matrices� respectively�

We intend to use this heuristic correspondence between
complex numbers and n � n matrices in order to motivate
and generalize the Cayley transform to higher order� Before
we proceed� we brie�y review some elements from complex
function theory������ First� recall that a �complex� function
is analytic in an open set if it has a derivative at each point
in that set� In particular� f is analytic at a point z	 if it is an�
alytic in a neighborhood of z	� Moreover� analytic functions
have �uniformly� convergent power series expansions���

A transformation w � f�z� where w� z � C is said to be
conformal�� at a point z	 if f is analytic there and f ��z	� �� ��
A conformal mapping is actually conformal at each point in
a neighborhood of z	� since the analyticity of f at z	 implies
analyticity in a neighborhood of z	� Moreover� since f � is
continuous at z	� it follows that there is also a neighborhood
of z	 with f ��z� �� � for all z in this neighborhood��� It is a
trivial consequence of the above de�nition that the compo�
sition of conformal mappings is also a conformal mapping�

A signi�cant special class of conformal mappings in the
complex plane is the class of linear fractional transformations
�also called bilinear transformations� de�ned by

w �
az � b

cz � d
� �ad� bc �� �� ���

An important property of the linear fractional transfor�
mations is that they always transform circles and lines into
circles and lines��� In particular� in this paper we are in�
terested in conformal transformations of the form in Eq� ���
which map the unit circle on the imaginary axis and vice
versa� One such transformation is given by w � f�z�� where

f�z� �
�� z

� � z
�	�

It is an easy exercise to show that if z � � then jwj � ��
that is� w � S� and thus� w is on the unit circle� Conversely�
if w � S� then the inverse transformation z � f���w� given
by

f���w� �
��w

� �w
���

implies that the real part of z is zero and thus� z � ��
The inverse transformation in Eq� ��� is de�ned every�

where except at w � ��� The point w � �� is mapped to
in�nity �see Fig� ��� In fact� the map in Eq� �	� introduces
a one�to�one transformation f � � � S�nf��g�

−1 1
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S 1

1 - z

1 + z
w = 

1 - w

1 + w
z  = 

Fig� � Bilinear transformation�

Let us now introduce the conformal mapping gn � S� � S�

de�ned by
gn�w� � wn� n � �� �� � � � ���

The function gn is a mapping from the unit circle onto the
unit circle� This transformation is only locally injective�
Therefore the inverse of gn exists only locally� Given � �
ei� � S� the solution of the equation � � wn� �n � �� �� � � ��
yields that

w � ei
���k���n� k � �� �� �� � � � � n� � ���

Equation ��� shows that� in general� the equation � � wn

has more than one solution� This result will turn out to be
bene�cial in Section � when we discuss the application of
higher order Cayley�transforms to attitude representations�
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because these roots can be used to avoid the inherent sin�
gularities of three�dimensional parameterizations of SO����

For k � � in Eq� ��� we get that w � ei
��n�� We will call
this the principal nth root of ��

The composition of the maps f and gn is the function
hn � � � S� de�ned by hn � gn 	 f � that is

hn�z� �
�
�� z

� � z

�n
���

which maps the imaginary axis onto the unit circle� Similarly
to gn� this map is only locally invertible� A local inverse is
obtained� for example� by setting k � � in Eq� ���� in which

case we have that z � ��ei���n�

��ei���n�
� � �recall that � � hn�z� �

ei���

� Higher Order Cayley Transforms

One of the most celebrated results in matrix algebra is
the Cayley�Hamilton theorem� This theorem states that a
matrix satis�es its own characteristic polynomial� An impor�
tant consequence of this theorem is that� given any matrix
A � IRn�n and an analytic function F �z� inside a disk of ra�
dius r in the complex plane� one can unambiguously de�ne
the matrix�valued function F �A� if the eigenvalues of A lie
inside the disk of radius r� In other words� if F is given by
F �z� �

P�

i	
�iz

i �jzj 
 r� then F �A� �
P�

i	
�iA

i and
the previous series converges assuming that j�j j 
 r� where
�j � sp�A� for j � �� �� � � � � n� Therefore� the matrix F �A� is
well�de�ned� Moreover� the eigenvalues of the matrix F �A�
are F ��j� �j � �� �� � � � � n� �Refs� �	�����

Consider now the conformal mapping f from Eq� �	�
which maps the imaginary axis on the unit circle� This
function is analytic everywhere� According to the previous
discussion� the matrix

f�Q� � �I �Q��I �Q��� � �I �Q����I �Q� ���

is well�de�ned for Q � so�n� and� actually� C � f�Q� �
SO�n�� Comparison between the previous equation and
Eq� ��� reveals that the Cayley transform can be viewed as a
special case of a conformal mapping in the space of matrices�

We have seen that there is a natural correspondence be�
tween � and so�n�� as well as between S� and SO�n�� �We
caution the the mathematically inclined reader to take these
statements in the context of the discussion in Section ��
We do not claim that this correspondence carries any more
weight than providing one qualitative motivation for the gen�
eralization of certain complex analytic results to analogous
results in the space of matrices�� Following Eq� ��� we can
also de�ne a series of transformations hn � so�n� � SO�n�
by

hn�Q� � �I �Q�n�I �Q��n � �I �Q��n�I �Q�n ����

where Q is a skew�symmetric matrix� It should be clear by
now that C � hn�Q� is a proper orthogonal matrix� i�e��
C � SO�n�� We shall refer to the family of maps hn�Q� in
Eq� ���� as Higher Order Cayley Transforms� The conse�
quences of such a generalization in attitude representations
will become apparent in the next section�

For now� let us concentrate on the inverse map h��
n �

SO�n� � so�n�� Since hn � gn 	 f one obtains h��
n �

f�� 	g��
n � The function f�� is given by Eq� ��� which� when

applied to a proper orthogonal matrix Q with no eigenvalue

at ��� gives the inverse of the classical �or �rst order� Cay�
ley transform as in Eq� ���� The map g��

n � SO�n�� SO�n�
on the other hand requires the nth root of an orthogonal
matrix� First� we show that g��

n is well�de�ned in the sense
that the nth root of a �proper� orthogonal matrix with no
eigenvalue at �� is also a �proper� orthogonal matrix with
no eigenvalue at ��� This will also prove that the composi�
tion of maps g��

n and f�� is well�de�ned since the range of
g��
n is in the domain of f���

To this end� consider an orthogonal matrix C � SO�n�
such that � �� �� for all � � sp�C�� Since the matrix C is
normal it can be decomposed as C � U�U� for some unitary
matrix U� where � � blockdiag������� � � � ��
n��������� if
n is odd� � � blockdiag������� � � � ��n��� if n is even� and

�j � diag�ei�j � e�i�j �� The diagonal elements of the matrix
� are the eigenvalues of C� The principal kth root of the
matrix C is then given by W � U���kU� where W k � C

and ���k � blockdiag��
��k
� ��

��k
� � � � � ��

��k


n�����
���� if n is

odd� ���k � blockdiag��
��k
� ��

��k
� � � � � ��

��k

n��
� if n is even�

and �
��k
j � diag�ei
�j�k�� e�i
�j�k��� Since ei�j �� �� for all

j � �� ���� n �n � �� the angles �j �� ���� deg and thus also

�j�k �� ���� deg for k � �� �� ��� and thus ei
�j�k� �� ���
Notice that in order to keep W proper we always choose the
positive root of the eigenvalue ���

� Attitude Representations

In this section we concentrate on the rami�cations of
the previously developed results to attitude representations�
Our motivation for investigating Cayley transforms in the
�rst place� stems from the fact that proper orthogonal ma�
trices represent rotations� In particular� SO��� is the con�
�guration space of all three�dimensional rotations� In other
words� every element of SO��� represents a physical rotation
between two reference frames in IR� and conversely� every ro�
tation can be represented by an element in SO����

As a reference frame� viz� a body� rotates freely in the
three�dimensional space� the corresponding rotation matrix
C traces a curve in SO��� such that C�t� � SO��� for all t �
�� The di�erential equation characterizing this trajectory on
SO��� is given by

�C � ���C ����

where� given a vector � � ���� ��� ��� � IR�� the matrix ���
is de�ned by

��� �

�
� �� ���

��� � ��

�� ��� �

�
����

In the sequel we apply the results of the previous section
in order to parameterize the rotation group� In particular�
the series of conformal mappings from Eq� ���� provides a
family of parameters on SO���� Before undertaking this task
we investigate another important conformal mapping�

��� The Exponential Map and the Euler Parame�
ters

Linear fractional transformations are not the only class of
conformal mappings from the imaginary axis onto the unit
circle� The exponential map� de�ned by

w � exp�z� � ez ����

�A unitary matrix satis�es UU� � U�U � I� where U� denotes
the complex conjugate transpose of the matrix U �
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also maps � �actually the strip �i 	 
 z 
 i 	� onto S��
Clearly� if z � i� then jwj � �� The inverse transformation
is

z � logw � i �� � �n	�� n � �������� � � � ��	�

and is de�ned only locally�

We can therefore de�ne the exponential map from the
space of skew�symmetric matrices to the space of proper or�
thogonal matrices� This exponential map is de�ned� as usual�
by

C � eQ �

�X
n	

�

n�
Qn ����

and the series converges for every Q� One can easily show
that C thus de�ned is indeed proper orthogonal� For the
three�dimensional case� the matrix Q � so��� can be pa�
rameterized by Q � �
�� As before� given a vector 
 �
�
�� 
�� 
��

T � IR� we use the notation �
� to denote the
skew�symmetric matrix in Eq� ����� Euler�s formula� yields

e��� � I � sin�
�
�

�
� ��� cos ��

�
��

��
����

where � � k
k� Normalizing the vector 
 we get a unit
vector

�e �



k
k ����

Euler�s theorem� states that any rotation can be represented
by a �nite rotation �principal rotation� about a single axis
�principal axis�� That is� the principal axis and the prin�
cipal angle su�ce to determine the rotation matrix� From
a mathematical perspective this amounts to parameterizing
elements in SO��� by the principal axis and the principal
angle�

By letting the principal axis be along the direction of
the unit vector �e and by letting the principal angle be � as
above� Eq� ���� shows how this parameterization is achieved�
Clearly�

C��� �e� � e���e� ����

Moreover� introducing the Euler parameter vector q �
�q	� q�� q�� q��

T

q	 � cos
�

�
� qi � �ei sin

�

�
� i � �� �� � ����

and substituting in Eq� ���� one obtains the well�known
formula for the rotation matrix in terms of the Euler
parameters�

C�q� � �q�	 �  qT  q�I � � q qT � �q	� q� ����

where  q � �q�� q�� q��
T � IR� is the vector part of the Euler

parameters�

Therefore� the Euler parameter representation� as well as
the Euler axis!angle representation are obtained by gener�
alizing the conformal mapping in Eq� ���� to the space of
matrices� Notice from Eq� ���� that C�q� � C��q� and
both q and �q can be used to describe the same physical
orientation� This fact can be used to construct alternative�
or �shadow� sets of kinematic parameters obtained via the
Cayley transforms�

��� Rodrigues Parameters

Since the Euler parameters satisfy the additional con�
straint q�	 � q�� � q�� � q�� � �� one is naturally led to consider
the elimination of this constraint� thus reducing the number
of coordinates from four to three� The Rodrigues parameters
achieve this by de�ning

�j �
qj
q	
� j � �� �� � ����

The three parameters ��� ��� �� then provide a three�
dimensional parameterization of SO���� The inverse trans�
formation of Eq� ���� is given by

q	 �
�

�� � ����
�
�

� qj �
�j

�� � ����
�
�

� j � �� �� � ����

where ��� � �T � � ��� � ��� � ���� The Rodrigues parame�
ters are related to the principal axis and angle through the
equation

� � tan
�

�
�e ����

The rotation matrix in terms of the Rodrigues parameters
can be easily computed using Eq� ���� and Eq� �����

C��� �
�

� � ���

�
��� ����I � ���T � ����

�
��	�

It is remarkable the fact that the previous parameterization
of SO��� can also be achieved by means of the Cayley trans�
formation in Eq� ���� If we introduce the skew�symmetric
matrix R � ����� the transformation

C � �I �R��I �R��� � �I �R����I �R� ����

produces exactly the matrix in Eq� ��	�� Therefore the classi�
cal Cayley�Rodrigues parameters representation is obtained
by generalizing the conformal mapping in Eq� �	� to the
space of matrices�

��� Modi�ed Rodrigues Parameters

The normalization in Eq� ���� is not the only possi�
ble one� A more judicious normalization for eliminating
the Euler parameter constraint is through stereographic
projection����������� � Using this approach� the new variables

j ��
qj

� � q	
� j � �� �� � ����

provide another set of parameters on SO���� These param�
eters are referred to in the literature as the Modi�ed Ro�
drigues parameters� and have distinct advantages over the
classical Rodrigues parameters� In particular� while the Ro�
drigues parameters do not allow eigenaxis rotations of more
than ��� deg� the Modi�ed Rodrigues parameters allow for
eigenaxis rotations of upto ��� deg��������� � This can be
immediately deduced by the corresponding relationship be�
tween  and the principal axis and angle

 � tan
�

	
�e ����

which is well�behaved for � 
 � � �	� Since both q and �q
describe the same physical orientation �recall the discussion
at the end of Section ����� a second set of parameters de�ned
by

sj �� � qj
� � q	

� j � �� �� � ����

���



referred to as the �shadow set��� can be used to describe the
same physical orientation� These parameters are also given
by

s � � �

tan���	�
�e ����

The transformation between  and s is given by��

s � � 

��
����

where �� � T � �� � �� � �� � tan����	�� The rotation
matrix associated with the Modi�ed Rodrigues Parameters
is given by������

C�� � I � 	
��� ���

�� � ����
�� �

�

�� � ����
��� ����

In Ref� � it was shown that these parameters can also be
de�ned by a Cayley transformation of second order� That
is� if S � ��� then the transformation

C � �I � S���I � S��� � �I � S����I � S�� ����

produces exactly the matrix in Eq� ����� Notice that the in�
verse of the transformation ���� is not unique and it requires
the square root of an orthogonal matrix� Given C � SO���
we need to �nd a matrix W such that C � W �� Once a
matrix W is calculated� the skew�symmetric matrix S con�
taining the Modi�ed Rodrigues parameters is computed from

S � �I �W ��I �W ��� � �I �W ����I �W � ����

Reference � outlines this approach� To every orthogonal ma�
trix corresponds a principal angle and a principal direction
according to Eq� ����� From Eqs� ���� and C � W � one
therefore has that

W � e
������e� ��	�

and W has half the principal angle of C� It should be ap�
parent now how the Modi�ed Rodrigues parameters double
the domain of validity of the parameterization by taking the
square of the classical Cayley transform�

This observation motivates the search of higher dimen�
sional Cayley transforms for attitude representations� Such
transformations are expected to increase the domain of va�
lidity even further� This is the topic of the next section�

��� Higher Order Rodrigues Parameters

According to the discussion in the previous section one ex�
pects that higher order Cayley transformations will increase
the domain of validity of the corresponding parameters� The
main task of this section is to derive these higher order pa�
rameters and �nd their connections to the Rodrigues param�
eters� the Modi�ed parameters and the Euler parameters�
To this end� consider �rst the fourth order Cayley transform
de�ned by

C � �I � T ���I � T ��� ����

for some skew�symmetric matrix T � ��� �� We know that
the matrix C is �proper� orthogonal�

Let � � ���� ��� ���
T � IR� be the vector of these pa�

rameters� Our purpose is to establish connections between
the �attitude parameters � and the other classical attitude
parameters such as the Euler parameters of the Modi�ed
Rodrigues parameters�

Recall from the results of Section � that if F is analytic
function� then the eigenvalues of the matrix F �A� are given
by F ��j� where �j are the eigenvalues of A� It is an easy

exercise to show that the eigenvalues of the skew�symmetric

matrix T are given by f���i �� �� � ��� � ��� �
�
� g� Similarly�

the eigenvalues of the matrix S are given by f���i ��� �

�� � ���
�
� g� Let �� denote an eigenvalue of T and �� an

eigenvalue of S� Comparing Eqs� ���� and ���� one sees that
the matrices S and T are related by

�I � S��I � S��� � �I � T ���I � T ��� ����

This suggests that �� and �� are related by

�� ��
� � ��

�
�
� � ��
� � ��

��
����

or

� � �� �
�� � ���

�

� � ���
����

Solving for �� and substituting the expressions for �� and
�� in the previous equation one obtains that

�i ��� � �� � ���
�
� � ��i ���� � ��� � ��� �

�
�

�� ��� � � �� � ���
����

Upon squaring this expression one obtains

�� � �� � �� � 	
��� � � �� � ���

��� ��� � � �� � ��� �
�

�	��

This equation suggests that  and � are related by

j � � ��j
�� �� �

� j � �� �� � �	��

where �� � � ��� � ��� � � �� � Arbitrarily� and without loss of
generality� we choose the solution with the plus sign� Sub�
stitution in S and computing C from Eq� ���� veri�es the
expression in Eq� �	���

The relation between � and q is obtained by observing
that

��j
�� �� �

�
qj

� � q	
� j � �� �� � �	��

After some calculations one obtains that

�

�� �� �
�
�p� �

p
� � q	p

� � q	
�	��

Using now Eq� �	�� one �nally obtains that

�j �
qj

� � q	 �
p

��� � q	�
� j � �� �� � �		�

Conversely� starting from

� � q	 � �

�
�� ���

� � ���

��

�	��

and using Eq� �	�� one obtains that the Euler parameters
are given in terms of the � parameters from

qj � 	�j
��� ����

�� � �� ���
� j � �� �� � �	��

and

q	 � �

�
�� ���

� � �� �

��

� � �
��� ��� � � ����

�� � �����
�	��

where �� � � ������� Letting W � �I � T ��I � T ��� and since
C � W � one obtains that

W � e
������e� �	��

���



where � is the principal angle of C� Moreover� using the
de�nition of the Euler parameters from Eq� ���� one obtains
the following result for the � parameters

� �
sin�����

� � cos������ � cos���	�
�e �	��

where �e is the unit vector along the principal axis� Keeping
the plus sign� Eq� �	�� can be further reduced to the simple
formula

�� � tan
�

�
�e� ��		 � � � 		� ����

From Eq� ���� it is apparent that � is proportional to the
principal rotation axis� like the classical and the Modi�ed
Rodrigues parameters� where now the proportionality factor
is f��� � tan������ Equation ���� is reassuring� since it
proves that the � parameters indeed behave as �higher order
Rodrigues parameters which can be used to �linearize the
domain of validity of the kinematic parameterization� By
this� we mean that Eq� ���� behaves almost linearly as a
function of the principal angle � �especially in the region
�	 
 � 
 	�" see also Fig� ��
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Fig� � Comparison of original and �shadow � parameters�

If we choose the minus sign in Eq� �	�� we obtain that

�� � � �

tan�����
�e� �� � � � �	� ����

Moreover� reversing the signs of the Euler parameters in
Eq� �		�� one obtains that the � parameters have a unique
set of �shadow parameters like the Modi�ed Rodrigues
parameters��� These parameters are obtained by setting

� s �
� sin�����

�� cos������ � sin���	�
�e ����

It can be easily veri�ed that the corresponding �shadow
parameters reduce to

� s� �
tan������ �

tan����� � �
�e ���	 � � � �	� ����

and

� s� �
� � tan�����

�� tan�����
�e ���	 � � � �	� ��	�

As the original � parameters approach ��� the associated
�shadow parameters � s approach zero and vice versa� The

general transformation between the original and the �shad�
ow set is given by

� s � � �

�
�� �� �

��� � � �� � �� ����

�
����

where �� � �����
�
� � Equations �������������� and ��	� can be

used in order to compute the four distinct roots of Eq� �����
Note also that Eqs� �������������� and ��	� can be also writ�
ten in the form

� � tan
�
�

�
� k

	

	

�
�e� k � �� �� �� � ����

respectively� The �shadow parameter set � s is shown side�
by�side with the original � parameters in Fig� �� The �shad�
ow set is plotted in grey color� Figure � also shows that �
parameters are indeed very linear for small rotations within
���� deg�

As with the Modi�ed Rodrigues parameters �and other
stereographic parameters���� these �shadow parameters
represent the same physical orientation as the original set
and abide by the same di�erential kinematic equation� They
could be used to avoid the problems of approaching the
���� deg principal rotation� By switching to the �shad�
ow trajectory� all numerical problems would be avoided�
Having� however� a principal rotation range of ���� deg is
really more than needed� Limiting the principal rotations to
be within ���� deg would su�ce and be much more attrac�
tive� As the magnitude of � approaches tan�	��� then one
would simply switch the � to their �shadow set� Having
k�k � tan�	��� corresponds to q	 � �� From Eq� �		� one
can then see that at this point� the two sets of parameters
are related by � � � � s� The combined set of original and
�shadow � parameters would provide a set of attitude coor�
dinates which are �very linear with respect to the principal
rotation angle� more so even than the Modi�ed Rodrigues
parameters� We note in passing that the previous approach
can be easily extended to any Cayley transform of order �k�
since Eqs� ���� and ���� can be used iteratively�

For the third order Cayley transform we have that

C � �I � P ���I � P ��� � �I � P ����I � P �� ����

where P � ��p� and p � �p�� p�� p��
T � IR� the correspond�

ing parameters� If �� and �p denote the respective eigen�
values of the skew�symmetric matrices R and P then� using
Eqs� ���� and ����� they must be related by

�� ��
� � ��

�

�
�� �p
� � �p

��

����

Upon expanding the previous equality and solving for �� one
obtains

�� �
�p�� � ��p�

� � ���p
����

The previous equation suggests that �j and pj are related
by

�j � �pj ��� p�� � p�� � p���

�� ��p�� � p�� � p���
� j � �� �� � ����

In order to get the relation of p to the Euler parameter
vector one can set

pj ��� p�� � p�� � p���

�� ��p�� � p�� � p���
�

qj
q	

����

���



and solve for �p� � p�� � p�� � p��� After some algebraic calcu�
lations� it is not di�cult to show that� in fact�

��p� � ���

��� ��p���
�

�

q�	
����

Solution of the previous equation for �p� requires the solution
of a cubic equation� Once �p� is known however� it can be
substituted into Eq� ���� to get the desired result� Actually�
from Eqs� ���� and ���� we have that

q	 �
�� ��p�

�� � �p��
�
�

� qj � �pj��� �p��

�� � �p��
�
�

� j � �� �� � ����

Letting W � �I � P ��I � P ��� then since C � W � one
obtains that

W � e
������e� ��	�

where � is the principal angle of C� A straightforward� but
tedious calculation shows that the parameters p are related
to the principal axis and angle through

p � tan
�

�
�e� ���	 � � � �	� ����

Similarly to Eqs� �������	�� multiple solutions using the
�shadow set can also be derived� and are left to the in�
terested reader�

� Kinematics

The kinematic equations in terms of the � parameters can
be computed as follows� From Eqs� ���� and ���� we have
that

�C �
d

dt
��I � T ����I � T ��� � �I � T ��

d

dt
��I � T ����

� ��� �I � T ���I � T ��� ����

or that

d

dt
��I � T ���� C�T �

d

dt
��I � T ��� � ��� �I � T �� ����

where we have used the fact
that dA���dt � �A���dA�dt�A�� for any square matrix A�

Using also the fact that dAn�dt �
Pn��

j	
Aj�dA�dt�An�j��

and performing the di�erentiations in the left�hand�side of
Eq� ����� one obtains a set of nine linear equations in terms
of ���� ���� and ���� Similarly� the right�hand�side of Eq� ���� is
linear in terms of ��� ��� ��� Choosing three �independent�
equations out of these nine� we get a linear system of the
form

V ��� �� � U���� ����

Solving for �� we �nally get that the kinematic equations for
the � orientation parameters are given by

d�

dt
� V �����U���� � G���� ����

where the matrix G�� � is given by

G�� � �
�

���� ����

�
���� ������T � 	��� �� ���� �

���� ���� � ����I
	

����

These kinematic equations are not as simple as the corre�
sponding kinematic equations for the Rodrigues or the Mod�
i�ed Rodrigues parameters�������� The limiting behavior of

these equations as �� � �� will be investigated next� We
will show that Eq� ���� is actually well�de�ned and the ap�
parent singularity at �� � ��� equivalently at � � ��	� is
removable�

To this end� denote by k � k� the Frobenious norm of a
real matrix A� i�e�� kAk�� � trace�ATA�� For the kinematic
equations in Eq� ���� then� after some laborious but straight�
forward calculations� one obtains

kG�� �k�� � trace�G�� �TG����

�
�

�	��� �� ��
trace

�
	�� � ����������T

� 	��� ������� ��� � � �� ����T ����

� ��� ���� � �� ���I � ����� ������� ��
	

From the de�nition of the matrix �� � we have that �� �� �
��T � ���I� Substituting in Eq� ���� and noticing that
trace���T � � �� �� Eq� ���� reduces to

kG�� �k�� �
��� �����

�	 �� � �� ���
�

�� � �����

�	
����

thus�

lim
�����

kG�� �k� �
�

	
�� ����

The last equation implies that the behavior of the � parame�
ters is well�conditioned at � � ��	� In addition� because of
the near�linear behavior between � and the magnitude of � �
for small principal angles� Eq� ���� is expected to behave in a
more �linear�like fashion than either the Cayley�Rodrigues
or the Modi�ed Rodrigues parameters�

Similarly� for the third order Cayley parameters� one can
derive the following kinematic equations

dp

dt
�

�

���� �p��

�
���� �p��ppT � ���� �p���p�

� ���� ��p��I
	
� ��	�

These equations can be derived starting from Eqs� ���� and
���� and using similar arguments as before� A similar anal�
ysis as before shows that the limiting behavior of this sys�
tem as �p � �p� is well�de�ned and no singularity is en�
countered during integration� This is also veri�ed through
numerical simulations in the next section� In fact� for all
the parameters � p and � the singularity of the kinematics
is entirely due to the same mechanism� as for the classical
Cayley�Rodrigues parameters �� Namely� the kinematic dif�
ferential equations themselves are well de�ned and continu�
ous functions �as opposed to the Eulerian angle case� but the
quadratic and higher order polynomial nonlinearities induce
the possibility of �nite escape times�

� Numerical Example

In order to demonstrate the potential bene�ts of the
previous kinematic parameters we present the results of
the following simulations� We integrated Eqs� ���� and
��	� as well as the corresponding kinematic equations in
terms of the Cayley�Rodrigues ��� and the Modi�ed Ro�
drigues parameters �� starting from the zero orientation
and subject to the constant angular velocity vector � �
������ ��	������ �rad�sec�� This corresponds to a linearly
increasing value of the principal angle �� The results of the
simulations are shown in Fig� �� This �gure actually shows

��	
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only the �rst components of the kinematic parameter vec�
tors� as the other two components exhibit similar behavior�

As it is evident from this �gure� the classical and the Mod�
i�ed Rodrigues parameters encounter the singularity earlier
that the � and the p parameters� Also the p parameters
become singular earlier than the � parameters� We note�
however� that since discontinuities in the parameter descrip�
tion are typically acceptable in applications� the Modi�ed
Rodrigues parameters can be made to avoid the singularity
altogether by simply switching to their �shadow set� The
same also holds for the � parameters via Eq� ���� or the p
parameters� Figure 	 shows the simulation where the param�
eters  and � are allowed to switch to their respective �shad�
ow sets� Although the points of switching are arbitrary and
can be chosen according to the particular application� a rea�
sonable choice is to switch when the parameters and the
corresponding �shadow set have opposite signs� This en�
sures continuity of the magnitude� From Eqs� ���� and ����
this occurs when � � k 	� k � ������ � � �� This is the sit�
uation depicted in Fig� 	� The � parameters are shown in
solid line� and the  parameters are shown in dashed line�
Since the classical Rodrigues parameters do not have an as�
sociated �shadow set �better� the shadow set coincides with
the original parameters�� only the  and � parameters are

plotted in Fig� 	�

� Conclusions

We have extended the classical Cayley transform which
maps skew�symmetric matrices to proper orthogonal matri�
ces to higher orders� The approach is based on the obser�
vation that Cayley transforms can be viewed as generalized
conformal �bilinear� mappings in the space of matrices� The
Euler parameters� the Rodrigues parameters and the Modi�
�ed Rodrigues parameters follow as special cases of this ap�
proach� In addition� we have generated a family of higher
order �Rodrigues parameters which could be used as pa�
rameters for the rotation group� It still remains� however� to
determine the applicability of these higher order parameters
in realistic attitude problems�
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