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Goddard Problem with Constrained Time of Flight

Panagiotis Tsiotras* and Henry J. Kelleyt
Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

The problem of the vertical flight of a rocket in a resisting medium with a constraint of isoperimetric type is
studied. Only the case of maximum altitude for given flight time has been analyzed, but the methodology applies
to other types of constraints as well, e.g., the minimum-time problem, due to Mayer reciprocity. Analysis shows
that a one-parameter family of singular extremals is generated according to the value of time of flight. Three
cases of switching structure have been found, varying with the specified duration of flight, with the most
interesting case featuring appearance of a second full-thrust subarc at the departure from the singular subarc,
owing to a low value of the upper bound on the thrust.

Introduction

T HE problem of maximizing the altitude of a rocket in
vertical flight, for a given amount of propellant, has been

extensively analyzed by many writers since the early days of
rocketry. The classical theory of the calculus of variations was
employed first and, later, optimal control theory. For strict
assumptions on the drag law and the thrust, solutions were
found, even in a closed analytical form. The pioneering work
was by Goddard1 and later by Hamel,2 the latter being the first
to point out the existence of a solution by means of the
calculus of variations, based on the fact that the mass of the
rocket enters linearly in the equation of motion. However, it
was not until 1951 that Tsien and Evans,3 using HamePs
results, treated the problem in detail and carried out computa-
tions of the trajectories for two particular cases, namely, one
with linear drag dependence on velocity and the other with
quadratic drag dependence on velocity.

Leitmann4'7 later extended their results and derived neces-
sary conditions for the solution. He carried out a similar study
for the problem in which the case of the rocket is consumed
along with the fuel, changing the area factor in the drag
reduction—an assumption used also by Goddard—treating it
as a problem of Mayer with two differential equations. Using
a totally different approach, Miele8 proved the sufficiency of
the extremal solution established by his predecessors, i.e., that
the optimal burning program involves a rapid boost at the
beginning of the flight, usually followed by a period of contin-
uous burning (sustain phase) and ending with a zero-thrust
period. Faulkner9 and Leitmann10 had earlier indicated that
for certain types of end conditions, this optimal program may
have to be modified to contain a similar second boost at the
end of the sustain phase. Miele was the first to extend the
previous results to the case in which a time constraint is
imposed and the first to suggest the possibility of a more
complex sequence of subarcs, also for the case of a general
drag model.11"13 In another early paper, Miele14 also gave
some examples of one-parameter families of singular ex-
tremals arising in connection with a related problem, the
climbing flight of a jet-propelled aircraft.

In 1964 Ewing and Hazeltine15 objected to the vagueness
that plagued previous solutions based on the calculus of varia-
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tions and treated the problem in rigorous, mathematical de-
tail. Later on, Munick16 and Lee and Markus17 gave the proof
of four lemmas that govern the composition of subarcs for an
optimal trajectory.

More recently, Ardema18 obtained closed-form solutions
for the vertical rocket flight, using a singular perturbations
approach. He showed that singular perturbation methods can
be a powerful tool in deriving approximate solutions to opti-
mal control problems that are nonlinear and singular, but the
success of those methods is limited by the fact that for such
problems it is highly desirable (and sometimes even necessary)
to transform the state variables into a system in which the
control appears only in the fast equation.

However, although the problem of the vertical rocket flight,
in one version or the other, has interested many writers, solu-
tions have been obtained only under the convenient assump-
tion that the thrust has no upper bound or, equivalently, that
the upper bound of the thrust is of a sufficiently high magni-
tude. Furthermore, with the exception of the very brief work
by Miele,19'20 attention was confined to the free-final-time
case, assuming that the results extend gracefully to the fixed-
final-time case. In such a case, and for sufficiently high upper
bound on the thrust, an optimal solution can be obtained that
includes, at the most, three subarcs: an initial full-thrust sub-
arc followed by a subarc of variable control effort, or singular
subarc, and finally a coasting subarc until maximum altitude
has been reached. However, that may not be the case when a
constraint of isoperimetric type is added to the problem. Con-
sider, for instance, the problem of extremizing the rise in
altitude for a given time or alternatively the problem of ex-
tremizing the time of flight for given altitude increase. In the
present work, the first case is studied, recognizing the re-
ciprocity of the two cases. Analysis shows that a one-parame-
ter family of singular extremals is generated according to the
value of time of flight. It is shown that the optimal control in
this case can have a more complex switching structure, mainly
due to the possibility of appearance of a second full-thrust
subarc following the singular period of burning. The solution
is applied to this special case, using the modeling of Zlatskiy
and Kiforenko,21 and numerical results are given.

Problem Formulation
The following assumptions are made to simplify the physics

of the problem. The rocket-powered aircraft is ideally re-
garded as a particle of variable mass flying over a flat, station-
ary Earth with Newtonian central gravitational field of inverse
square law. The authors considered a single-stage rocket with
constant exhaust velocity, stabilized so that its axis is always
parallel to the flight path. Moreover, the air density is expo-
nential with altitude, allowing the drag to take the form
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Usually the restrictions on the function DQ(v) involve the
continuity of its first and second derivatives. The assumption
that the drag can be written in the form of Eq. (1) is perhaps
the most important one because without essential restrictions
on the drag there may not even exist an optimal solution.
However, one can show15 that using a drag law of the previous
form, an optimal control exists, which is a very significant
result since only necessary conditions will be used to test the
optimality of the solution.

The vertical path of the rocket obeys the following system
of nondimensionalized equations:

(2)m

Tm = - —c
Those three equations correspond to force equilibrium and

kinematics along the direction of flight. In those equations, h
is the radius distance from the Earth's center, v the velocity of
the vehicle, m the mass of the vehicle, rthe thrust, D(v,h) the
aerodynamic drag, and c the effective exhaust velocity of the
gas flow. The previous system of equations has been suitably
nondimensionalized using the following quantities:

Here, Re denotes the radius of the Earth, G the gravitational
constant, and m0 the launching mass of the vehicle. Conse-
quently, the forces are nondimensionalized by the initial
weight. The aerodynamic drag assumes the following form:

,h^ = CDbv I v I exp[]8(l -h)] (3)

where the factor bv \v I exp[/3(l - h)] is numerically equal to
the product of the velocity head and the characteristic area of
the aircraft, b and /3 are constants, and CD is the zero-lift drag
coefficient.

The initial conditions are specified for the three states as h0,
v0, and mQ. The final value of the mass is also given as m/. The
problem is to determine the optimum trajectory of a rocket in
vertical flight, from an assigned initial position on the surface
of the Earth to the final position where the altitude reaches its
maximum value, time of flight being predetermined; i.e., one
wants to maximize the altitude at the terminal time:

3 = h(tf) (4)

subject to the prescribed boundary conditions, the dynamic
equality constraints given by Eq. (1) and the isoperimetric
constraint on time:

(5)

Thus, the problem is formulated as a problem of Mayer, i.e.,
no additional differential equation or integral for the cost 6 is
required.22 The guidance of the rocket is achieved by means of
the magnitude of the thrust, which is considered a control
variable allowed to have jumps, and which is bounded accord-
ing to the inequality

0 < T < (6)

Problem Analysis
In the following analysis of the problem, it is tacitly as-

sumed that the experiment has no meaning for //</, where

- mf)——
* max

is the time that fuel runs out, using full-thrust power. There-
fore, only problems of maximizing the altitude for times
greater or equal to 1 are considered.

Define the state vector x = col(hfv,m), and the costate vec-
tor X = col(X/,, Xv, Xm). Thea the Hamiltonian takes the form

ir,X,r) = X/I/z + Xvv + Xmw (7)

The costate vector satisfies the following differential equation:

dJC
(8)

and its components are given analytically by

arc \vdD
X/z = - —— = — —— 2\vh J

dh m dh

. _ ax _ xv dD
Xv — ~~ "7— — — ~~T~ — XAdv m dv

• (9)

The transversity condition requires that for the unspecified
states at the terminal time, the following relations are to be
satisfied by their associated costates:

X* (//)=!

XvG0 = 0 (10)

The time does not appear explicitly in the equation of motion;
therefore the Hamiltonian is a first integral, remaining con-
stant throughout the trajectory:

(0 < t < tf) (11)
where C\ is a constant to be determined, satisfying the condi-
tions

when

when

when

= t fre

(12)

and £free is the final time corresponding to the unconstrained
time problem, i.e., when Eq. (5) is absent. Notice that for the
minimum-time problem C\ = + 1, and for the maximum-time
problem C\ = - 1.

Using Eqs. (2) and (9), and noting that the control T ap-
pears linearly in the equations of motion, one obtains for the
Hamiltonian the following form:

3C - Q = jc0 +
where JC0 and 3Ci are given by

= 0

m

X y _ X m

777 C

(13)

(14)

(15)

where JC0 is the portion of the Hamiltonian independent of the
control variable, minus Q, and JCt is the portion of the
Hamiltonian multiplied linearly by the control variable. The
JCi portion is called the switching function, and it determines
the extremal control history.

Control Logic
It is known that the maximum of 3C with respect to all

controls in the admissible set "W = [0, rmax], is a necessary
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condition for optimal control.23 This maximum principle can
be stated as follows:

= argmax3C(r) (0 < t < tf) JC(r*) - 0 (16)

From Eqs. (6) and (16) three possibilities exist for an extremal
control, depending on the sign of the switching function:

T*=Tmax when 3d>0

0 < T* < rmax when 3d = 0 (17)

r* = 0 when 3d<0

Isolated points in time t*9 where the switching function van-
ishes, having measure zero, are of no consequence in the
composition of an optimal trajectory. However, the second
case of Eq. (17) allows the possibility of an interval of singular
control, i.e., an interval of control effort with 3C(7) station-
ary. Along such an interval of singular control (singular arc),
a positive d exists, so that the switching function vanishes for
each Mn t* - d < t < t* + d. Hence, the following relation-
ships are fulfilled simultaneously on a singular arc:

rrn __ nn _
UVJ — O\*l — = 0 (18)

Evaluation of Singular Control
Along a singular extremal, the graph of the Hamiltonian vs

the control is a horizontal line, and the maximum principle
gives no information about the possible optimal control be-
cause all admissible controls qualify. However, from Eq. (18)
the switching function vanishes identically along the singular
path, and a singular control that maintains JCi = 0 along
solutions of the canonical equations, Eqs. (2) and (9), can be
determined by taking successive time derivatives of the switch-
ing function. It can be shown24 that the control Twill always
appear explicitly in an even derivative of the switching func-
tion, i.e., the following equation must be satisfied:

dVdJC\ _
-Q (19)

where q is the smallest integer for which Tenters explicitly into
the left side of the previous equation. The value of q also
denotes the order of the singular arc. Using Eq. (2) and Eq.
(9), and enforcing 3d = tfd = 0, the first derivative of 3d
takes the following form:

m (20)

Note that this expression is independent of T, and therefore
the value of the singular control, say T0, is evaluated from the
second derivative of 3d» which, it can be shown, has the form

(21)

(22)

JCi = A + ToB = 0

resulting in the singular control

Here q = 1 and the singular arc is of first order. The equations
for A and B are given as follows:

-4 = / = i
3B=

(23)

(24)

where Qit i = 1,2,3,4 are given by

D D 3D

&D d2D/D ,
= v - + /1

= - ——64 ~ ~ dh

and /?/, / = 1,2,3 are given by

_ 1 d2D
f<2~ — ~T~7m ov2

1 3D
*<3 ~ —— ——me ov

For the drag model of Eq. (3) the partial derivatives required
for the evaluation of the above equations are given as follows:

dv

82D
—— = 2sgn(v)Cz>& - h)]

d2D
dhdv = -2CDb\v\0exv[p(l-h)]

where sgn denotes the signum function defined by

sgn(v) =
if
if
if

v > 0
v =0
v < 0

It is interesting to note in passing that the singular control is in
state feedback form.

Singular Surface
The study of problems in which singular solutions appear is

significantly simplified if it is possible to determine a surface
that represents the following conditions:

0

(25)

in the state space of the original state variables. If such an
expression

S(jc,0 = 0 (26)

can be obtained, then the singular control in Eq. (22) is a
function only of state variables. This is a very significant
result, especially for applications, since in that case, the opti-
mal singular control can be expressed in state feedback form,
by taking successive time derivatives of Eq. (26). The surface
S(x,t) is then called the singular control surface, since the
state-variable trajectory corresponding to the singular control
TQ must lie on this surface. For this reason, it should be noted
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that only those regions of S(x,t) corresponding to T^W are
considered. Note that S(x,t) is also the singular control
switching boundary,25'26 since any point of the state space that
does not lie on S(x,t) must feature a bang-bang control.

Obviously, Eq. (25) defines a hyper surface R(x,\,t) = 0, in
the In + 1 dimensional space of states, costates, and, possi-
bly, time. If a singular surface exists, it will lie on the projec-
tion of R(x,\,t) in the n -dimensional state subspace. Thus, in
principle, it is possible to express the costate variables as a
function of the states on the singular portion of the optimal
path and find S(x,t), by projecting R(x,\,t) in the n -dimen-
sional state subspace. Nevertheless, in practice, one may not
be able to solve for the costates. There are cases, however, that
it may be possible to determine a relation A = \(x,t) without
knowing the general expression of \(x,t), the success of the
method depending on the number of state equations and the
ability to find a number of functional independent first inte-
grals from Eq. (25). The methodology, often referred to as the
synthesis problem, proves to be rather simple to apply for the
problem under study.

Along the singular surface, the expressions given by Eqs.
(14), (15), and (20) vanish. Solving Eq. (20) for \h and replac-
ing it in Eq. (14) one obtains

\v(dD D\ (D A]
v — — + — - — + h~2 } \vlm\dv c) \m )\ =Ci (27)

or equivalently

E(v,h,m) = v — + - }-D-mh-*-^m=0 (28)\dv c/ Xv

From Eq. (9) and Eq. (20) also, a simple relationship can be
found for the propagation of Xv along the singular arc. If one
solves for \h from Eq. (9) and substitutes in Eq. (20), one
obtains

. _ D_
Xv

 = — Xv me (29)

which, integrated along with Eq. (2), will generate the optimal
Xv history on the singular surface. The values of the costates X^
and Xm then can be found by direct substitution of Xv into Eq.
(9). Integration of Eq. (29) along the singular subarc will give

Xv(f) = C2expM'—*! tsl < / < ts2 (30)

where tsi and ts2 are the times of entry to and exit from the
singular subarc, and

Xv&l) = C2 (31>

which is the initial condition for Eq. (30). Replacing Eq. (30)
into Eq. (28), we get

E(v,h,m) = v( — + - ) -£>- mh~2

\dv c)

.SeJf'Ji „,],„,
<?2 Ut^mC J

(32)

which is the equation of the singular surface. Note that Eq.
(28), or alternatively Eq. (32), generates a one parameter
family of singular surfaces according to the value of the con-
stant Ci/C2. This kind of parameterization will be very useful
later, at the implementation of the numerical solution.

In the special case of constant gravity—an approximation
that has been made in previous works—the costate equations
can be integrated in closed form19 and eliminate the mass from
Eq. (28), simplifying considerably the analysis of the problem,
since the singular surface takes the very simple form of a single

curve in the two-dimensional space of v,h. However, such a
simplification is not possible in general, and the plot of the
singular surface has to be computed in the entire v,htm state
space. A depiction of Eq. (28) for Q = 0 is given in Fig. 1.

Note that for the particular case of free final time, when
Ci = 0, Eq. (28) matches the results obtained by Munick,16

Tsien and Evans,3 and others. One also notices from Eq. (28)
that for the case when Xv = 0 we must also have C\ = 0 or else
a singular surface does not exist. However, this remark should
not pose difficulties, since at such a case from Eq. (29) Xv is
zero everywhere. Then, the costate vector X vanishes as well,
which contradicts the maximum principle.17'23 This also indi-
cates why an optimal candidate cannot include a terminal
singular subarc, see Eq. (10).

Optimality of Singular Subarc
The appearance of singular subarcs in Goddard's problem

was confirmed by the research of Tsien and Evans,3 Hamel,2
Leitmann,4-7 and others. However, owing to the particular
character of singular controls, the classical necessary condi-
tions, i.e., the Weierstrass condition and its counterpart, the
Pontryagin maximum principle, or the Legendre-Clebsch con-
dition, fail to give any information about the maximal or
minimal nature of the singular candidate. Moreover, the more
stringent Jacobi condition applies only to nonsingular candi-
dates. It was not until 1964 that a new necessary condition for
screening singular extremals became available by Kelley.27 Kel-
ley's result was generalized by Robbins28'29 and Kelley et al.24

to give what is now known as the generalized Legendre-Cleb-
sch condition or the Kelley-Contensou test.

This condition can be stated as follows:

(33)

where q is the order of the singularity of the arc, as in Eq. (19).
For the problem under study, the latter relation using Eq. (22)
reduces to the inequality

B > 0 (34)

where B is given by Eq. (24).
Even so, treatments of Jacobi-like conditions and the suffi-

ciency question are fragmentary at present.

Numerical Solution and Results
The aerodynamic data and vehicle's parameters, with the

exception of the value of rmax, were taken from the work of
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Fig. 1 Singular surface E(v,m,h} = 0.
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Zlatskiy and Kiforenko.21 Their nondimensionalized values
are listed as follows:

CD = 0.05

b = 6200

= 500

(35)

These correspond roughly to the Soviet SA-2 surface-to-air
missile, NATO code-named GUIDELINE.30 The nondimen-
sionalized initial and final values of the state variables are
given as follows:

(36)

The previous equations for the states, along with the Eq. (10)
for the costates, form the boundary conditions for the differ-
ential system of Euler equations.

The optimal climbing program must determine the best
thrust or velocity history, so the vehicle will move most effi-
ciently along a path and achieve maximal final altitude. The
two main deterrents to achieving altitude are the forces of
gravity and the aerodynamic drag. Gravity losses are propor-
tional to time of flight, whereas drag losses are proportional to
some power of the velocity. Thus, diminishment of gravity
losses requires a short flight time, i.e., high velocity, which in
its turn tends to increase the drag losses. As a result, arcs of
intermediate thrust, i.e., singular arcs, denote the requirement
to establish an optimum compromise between gravity and
drag losses, at every instant in time. Since both the gravity and
the drag forces diminish with increasing altitude, one should
expect that such arcs will not appear at flight in vacuum or at
very high altitudes. Previous results show that this is indeed
the case.3 A companion paper31 examines the effect of drag-
law variations on the solution of the problem.

Three cases of the switching structure may arise according
to the specified value of the final time (see Table 1): 1) full
thrust, singular thrust, and zero thrust; 2) full thrust, singular
thrust, full thrust, and zero thrust; and 3) full thrust and zero
thrust.

The free-terminal-time problem corresponds to the classical
first case of switching structure listed earlier, which also yields
the absolute maximum final altitude compared to every other

value of flight time. This is not a surprising result, since it
corresponds to unconstrained final altitude (Table 2).

The switching structure remains unchanged when the final
time is increased, with the singular subarc occupying a greater
portion of the solution of the whole optimal trajectory, as a
result of the requirement to reach the final altitude later.
Hence, the rocket consumes its fuel at a slower rate as well.

However, the history of the thrust is considerably different
for the case of shortened flight, and the appearance of a
second full-thrust subarc, following the variable-thrust sub-
arc, becomes inevitable for sufficiently small values of final
time. The reason for this is the fact that for small values of the
flight time the singular thrust tends to violate its upper bound.
Such a situation is not allowed, from Eq. (6), and therefore
the trajectory must depart from singular control, and a bang-
bang control must be used. If one allows the control to satu-
rate above, in following the singular subarc, then only a
zero-thrust subarc is possible to satisfy the McDanell and
Powers necessary condition for joining optimal singular and
nonsingular subarcs.32 In such a case, the mass will not meet
its terminal boundary condition (i.e., there is still fuel to be
burned). The only appropriate choice is evidently a second
full-thrust subarc to make use of the remaining propellant.
Departure from the singular surface, however, must occur at
a point in time so that the switching function becomes zero at
the time when fuel is exhausted. Switching then takes place to
a coast that extends to the final time.

The second full-thrust subarc reveals the necessity of burn-
ing the fuel at an increasing rate for the case of small values of
final time. In fact, the first and second full-thrust subarcs
occupy an increasing portion of the whole trajectory as the
final time decreases, while the portion allotted for the interme-
diate variable-thrust subarc decreases (Table 3).

Thus, the third case arises when the two full-thrust subarcs
join, and the singular subarc is totally absent from the corn-

Table 2 Variation of final altitude and final velocity
with final time

Final time Final altitude Final velocity
0.058
0.080
0.100
0.120
0.130
0.140
0.150
1.170
0.198
0.220
0.250
0.280
0.320
0.350

.00405

.00683

.00877

.01028

.01090

.01142

.01173

.01249

.01283

.01265

.01173

.01004

.00659

.00330

0.14324
0.10788
0.08612
0.06596
0.05621
0.04789
0.03579
0.02367
0.00000

-0.01772
-0.04340
-0.06932
-0.10224
-0.11215

Table 1 Variation of switching points with final time Table 3 Variation of subarc duration with final time

Final time
0.058
0.080
0.100
0.120
0.130
0.140
0.150
0.170
0.198
0.220
0.250
0.280
0.320
0.350

Full thrust
subarc
0.99378
0.71428
0.57142
0.47619
0.33827
0.25679
0.19787
0.16153
0.11822
0.09784
0.07760
0.06350
0.05031
0.04313

Singular thrust
subarc

——
——
——
——

0.36742
0.39305
0.40441
0.38898
0.36541
0.35164
0.33553
0.32227
0.30788
0.29855

full singular full
0.058
0.080
0.100
0.120
0.130
0.140
0.150
0.170
0.198
0.220
0.250
0.280
0.320
0.350

0.99378
0.71428
0.57142
0.47619
0.33827
0.25679
0.19787
0.16153
0.11822
0.09784
0.07760
0.06350
0.05031
0.04313

__
——
——
——

0.02915
0.13626
0.20654
0.22745
0.24719
0.25380
0.25793
0.25877
0.25757
0.25542

__
——
——
——

0.07372
0.03072
——
——
——
——
——
——
——
——
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posite. A limiting case of this switching structure is the case
when no coasting subarc is present, and the trajectory is
composed totally of a full-thrust arc. This is the case when
'/ = >•

It should be noted, however, that the possibility of appear-
ance of any of the aforementioned cases in an optimal solution
does not depend merely on the final time but on the value of
the upper bound of the thrust as well. It is possible, for
instance, that a second full-thrust may be required, even for
the free-final-time case, if the thrust is bounded above by a
small value, whereas, on the other hand, with a very high
upper bound on the thrust (Tmax-~<x>) the optimal trajectory is
composed according to the classical sequence: full, singular,
and coast. In fact, for the limiting case, when rmax = oo, this
last combination is the only possible one,3'4 with an impulsive
boost instead of the full-thrust subarc.

Notice that the terminal velocity is positive for // < ffree and
is negative for tf>tfree. Obviously, v = 0 for tf = tfTee. This is
hardly surprising; from Eq. (10) and Eqs. (13-14) for the
coasting subarc (T = 0) the following relationship must hold
at the terminal time:

= vow (37)

and, using Eq. (12), the proof is complete.
Note that since the boundary conditions, Eqs. (10) and (36),

are split, i.e., some of the states and costates are known at the
initial time, while others are known at the final time, the
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problem is a so-called two-point-boundary-value problem
(TPBVP). The computational difficulties normally associated
with the solution of the stated TPBVP, in connection with the
instability of the system of state and costate equations, is
aggravated by the inclusion of a singular subarc in the com-
posite optimal path. Numerical solution of TPBVP normally
involves the adjustment of the missing initial costates so that
along with the specified initial conditions the terminal condi-
tions are met, usually after a trial and error scheme. Thus, it
is possible to establish a unique correspondence between the
field of extremals and the initial values of the costate functions
A(/o). However, this kind of parameterization does not cover
trajectories that contain singular sections. For composite tra-
jectories consisting of singular and nonsingular subarcs, one
has to determine the initial costate vector from A(f0)€ A0 where
the unknown manifold A0 consists of those values of A(/0) that
will satisfy Eq. (25) simultaneously on the singular subarc.
Different points of the manifold A0 correspond to different
initial times for the singular control subarc. In such cases, it is
more appropriate to use the moments of time for entering to
a singular arc ts\ and, departing from it, ts2, as parameters of
the extremal. This enables us to replace the search of the
unknowns X/,(/o)» AV(*O)» Xm(/0), associated with the relation
JC = Ci, by the determination of the optimum values of tsi and
ts2, to eliminate \(tsi) in favor of x(tsi)t using Eq. (25). To seek
the unknowns h(ts\), v(ts\), and m(ts\) associated with Eq. (25)
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or—equivalently—with relation, Eq. (26), appears more en-
couraging than to determine the point X(t0) on the unknown
manifold AQ. This method is especially effective when a priori
information is available on the optimum control at the start of
the trajectory. The methodology is somewhat analogous to the
one used in Zlatskiy and Kiforenko33:

Given an initial guess for the ratio

xvv ~ ~ (38)

one may integrate forward the state Eq. (2) with the assigned
initial boundary values of the states until Eq. (27) is satisfied.
Solving the system of Eqs. (14) and (15), one finds the values
of the other two costates at the entry of the singular arc given
by

D

m = Ay
C

(39)

(40)

These relations assume that the constant Q has been used as
a scaling factor of the costates, due to the homogeneity of
Eqs. (9) and (13-15). The values of the costates at the initial
time can then be found by backward integration of the state-
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Euler system, Eq. (2), and Eq. (9) using these values of \'v, \'h,
and\m.

Once on the singular arc, one can integrate forward using
the singular thrust from Eq. (22). Integration is continued
along the singular arc, checking that the inequality constraint
0 < TQ < rmax is not violated.

Exit from the singular arc is made at the time when the mass
criterion is satisfied. In the case when the singular thrust
saturates on its upper bound, the time for the departure is
taken so that, at the end of the second full-thrust, both condi-
tions

3Ci = 0 and mf = 0.6 (41)

are satisfied.
A final coasting arc follows until Xv = 0. Once the final

conditions on the state variables have been satisfied, the final
value of the costate variable X/, is used to scale the values of all
the components of the costate manifold throughout the trajec-
tory. This ensures the satisfaction of the transversality condi-
tion \h(tf) = 1. Notice that the whole procedure involves two
successive scalings of the costates, i.e., first using Q, and the
final scaling using X(/y).

A direct relation between the constant Q and the final time
//is evident. Every value of C\ corresponds to a unique value
of the final time. The graph of Q vs tf appears in Fig. 2.

The numerical solution was obtained using the two-point-
boundary-value problem solver, BNDSCO.34 However, con-
vergence of the solution algorithm is experienced only if the
initial guesses for the trajectory are reasonably good. The
previously described method gave very accurate first guesses
for BNDSCO. With these initial guesses, BNDSCO converged
within one or two iterations. With a converged solution in
hand, one can generate the whole family of trajectories by
parametrically varying the final time in small steps. The results
are shown in Figs. 3-7.

Conclusions
The problem of maximizing the final altitude of a vertically

ascending rocket has been analyzed for the case of bounded
thrust and quadratic drag law. The case of a constant drag
coefficient has been examined, and solutions were obtained
for several values of the duration of the flight. The analysis of
the problem showed that a one-parameter family of singular
extremals is generated, according to the prescribed value of
the final time. Moreover, it has been shown that the final
value of the time affects the switching structure of the prob-
lem, with the most interesting case the appearance of a second
full-thrust subarc after the singular subarc, as a result of the
boundness of the available thrust. For the vertical flight prob-
lem, this is a new result as far as the authors know.

The Kelley necessary condition for singular arcs and the
McDanell and Powers condition for joining singular and non-
singular subards were checked and were found to be satisfied.
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