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The navigation of a small unmanned aerial vehicle is challenging due to a large influence of wind to its kinematics.

When the kinematic model is reduced to two dimensions, it has the form of the Dubins kinematic vehicle model.

Consequently, this paper addresses the problem ofminimizing the expected time required to drive aDubins vehicle to

a prescribed target set in the presence of a stochastically varyingwind. First, two analytically-derived control laws are

presented. One control law does not consider the presence of the wind, whereas the other assumes that the wind is

constant and known a priori. In the latter case it is assumed that the prevailing wind is equal to its mean value; no

information about the variations of the wind speed and direction is available. Next, by employing numerical

techniques from stochastic optimal control, feedback control strategies are computed. These anticipate the stochastic

variation of the wind and drive the vehicle to its target set while minimizing the expected time of arrival. The analysis

andnumerical simulations show that the analytically-deriveddeterministic optimal control for this problemcaptures,

inmany cases, the salient features of the optimal feedback control for the stochasticwindmodel, providing support for

the use of the former in the presence of light winds.On the other hand, the controllers anticipating the stochasticwind

variation lead tomore robust andmore predictable trajectories than the ones obtained using feedback controllers for

deterministic wind models.

Nomenclature

dWx;y = increments ofWiener process in, respectively, the x and
y direction

dWθ = increments of Wiener process in the θ direction
r = distance to target, m
T = time-to-go function until the target set is reached, s
u = control input, radm∕s
v = Dubins vehicle speed, m∕s
vw = speed of wind in second wind model, m∕s
(x, y) = Cartesian coordinates of the position vector of the

Dubins vehicle, m
γ = difference in the Dubins vehicle heading angle and

wind direction, rad
δ = target set radius, m
θ = heading angle of the Dubins vehicle, rad
ρmin = Dubins vehicle minimum turning radius, m
σW = noise intensity for first wind model, m
σθ = noise intensity for second wind model, rad

φ = viewing angle to target, rad

I. Introduction

T HIS paper deals with the problem of guiding an aerial vehicle
with a turning rate constraint to a prescribed terminal position in

the presence of a stochastic wind in minimum expected time. It is
assumed that the motion of the vehicle is described by a Dubins-like
kinematic model [1–3], that is, it travels only forward with constant
speed, and so that the rate of change of its forward velocity vector
direction is bounded by a prescribed upper bound. This kinematic
model is referred to as the Dubins vehicle (DV). In the absence of the
wind, the vehicle traverses paths of minimal length and bounded
curvature, known in the literature as theDubins paths or optimal paths
of the Markov–Dubins (MD) problem [1,4].
The importance of designing trajectory tracking control schemes

and path planning algorithms that account for the effects of the local
wind in Unmanned Aerial Vehicle (UAV) and Micro Air Vehicle
(MAV) applications has been recognized by many researchers. In
particular, in [5–8] path tracking/following controllers are presented
for UAVs/MAVs in the presence of disturbances induced by thewind
based on nonlinear control tools. The problem of characterizing
minimum-time paths of a DV in the presence of a constant wind was
first posed in [9]. Numerical schemes for the computation of the
Dubins-like paths proposed in [9] have been presented in [10,11].
The complete characterization of the optimal solution of the same
problem, that is, a mapping that returns the minimum-time control
input given the state vector of theDV, is given in [11,12]. A numerical
algorithm that computes the minimum-time paths of the DV in the
presence of a deterministic time-varying, yet spatially invariant, wind
is presented in [13].
The analysis presented in the majority of the variations and

extensions of the MD problem in the literature is based on a
deterministic optimal control framework. (The reader interested in a
thorough literature review on variations/extensions of the MD
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problem may refer to [14] and references therein.) The effect of the
wind, however, is intrinsically stochastic, and approaching this
problem from a stochastic point of view is more appropriate. Some
recent attempts to address optimal control problems related to theMD
problem within a stochastic optimal control framework can be found
in [15,16]. Anderson andMilutinović [15,16], in particular, deal with
the problem of a DV tracking a target with an uncertain future
trajectory using numerical techniques from stochastic optimal
control of continuous-time processes [17].
In this work, an optimal feedback control that minimizes the

expected time required to navigate the DV to its prescribed target set
in the presence of a stochastic wind is developed. Two stochastic
wind models are investigated. In the first model the x and y
components of the wind are modeled as independent zero-mean
Wiener processes with a given intensity level. In the second model,
the wind is modeled as having a constant magnitude, but its direction
is unknown and is allowed to vary stochastically according to a zero-
mean Wiener process. For both wind models, optimal feedback
control laws are computed numerically using a Markov chain
approximation scheme. In addition, for each control based on
the stochastic wind models, feedback control laws based on
deterministic wind models are developed and compared against their
stochastic model-based counterparts in the presence of stochasticity
to determine the regions of validity of the former. The analysis and
numerical simulations demonstrate, not surprisingly perhaps, that
control laws based on stochastic wind models outperform, on the
average, control laws for the deterministic windmodels implemented
in a stochastic wind. On the other hand, the control laws for the
deterministic wind model can successfully capture the salient
features of the structure of the corresponding stochastic optimal
control solution.
The contributions of the paper can be summarized as follows. First,

this paper offers, up to the authors’ best knowledge, for the first time,
the solution of the optimal path generation of an aerial vehicle with
the Dubins-like kinematics in the presence of stochastic wind.
This is important for small UAV path-planning and coordination
applications. Second, it shows the relationship of the optimal control
solution, which anticipates the stochastic wind, with its deterministic
counterpart, and it compares the two. This allows one to draw insights
as to what level a stochastic wind-based solution is beneficial
compared to its less informed deterministic counterpart and when it
makes sense (from apractical point of view) to use the former over the
latter. The question of the use of a feedback control law anticipating
stochastic processes versus a control law based on deterministic
model assumptions is a question of a more general interest and one
that is a recurrent theme in the community, especially in terms of
applications. This paper offers a rare example where a head-to-head
comparison is possible. In general, the computation of a deterministic
optimal feedback control is not an easy task, as it requires the solution
of a Hamilton–Jacobi–Bellman (HJB) partial differential equation.
However, the DV problem in this paper serendipitously allows for a
complete solution, via a synthesis of open-loop strategies, without
resorting to the HJB equation.
The rest of the paper is organized as follows. Section II formulates

the optimal control problem. Section III presents feedback control
laws based on minimal deterministic and stochastic wind model
assumptions. These control laws are extended in Sec. IV for the case
when the wind has a known speed but stochastically varying
direction. Simulation results for the controllers based on the two
types of deterministic and stochastic wind models are presented in
Sec. V. Finally, Sec. VI concludes the paper with a summary of
remarks.

II. Problem Formulation

Here the problem of controlling the turning rate of a fixed-speed
DV to reach a stationary target in the presence of wind is formulated.
The target is fixed at the origin, whereas the Cartesian components of
the DV position are x�t� and y�t� (see Fig. 1).
TheDVmoves in the direction of its heading angle θ at fixed speed

v relative to the wind and obeys the equations

dx�t� � v cos�θ�dt� dwx�t; x; y� (1)

dy�t� � v sin�θ�dt� dwy�t; x; y� (2)

dθ�t� � u

ρmin

dt; juj ≤ 1 (3)

where ρmin > 0 is the minimum turning radius constraint (in the
absence of wind) and u is the control variable, u ∈ �−1; 1�. The
motion of the DV is affected by the spatially and/or temporally
varying wind, w�t; x; y� � �wx�t; x; y�; wy�t; x; y��⊤, whose incre-
ments have been incorporated into themodels Eqs. (1) and (2). In this
problem formulation, the model for the wind is unknown. Therefore,
it is assumed that the wind is described by a stochastic process.
Subsequently, a stochastic control problem for reaching a target set
T � f�x; y�∶ x2 � y2 ≤ δ2g, which is a ball of radius δ > 0 around
the target, is formulated.
To minimize the time required to reach the target set one defines a

cost-to-go function:

J�x� � min
juj≤1

E

�Z
T

0

dt

�
; x :� �x�0�; y�0�; θ�0��⊤ (4)

and assumes that upon reaching the target set T at time T, all motion
ceases. In Eq. (4) the expected time to reach the target set is
minimized over the turning rate u, juj ≤ 1, which is the control
variable. Control problems with a cost-to-go function of the form (4)
are sometimes referred to as “control until a target set is reached” [17]
or stochastic shortest-path problems [18].
Two stochastic process wind models that are characterized by the

amount of information known about thewind are considered. In each
case, it is assumed that the wind is a continuous-time stochastic
process with respect to the DV position. In other words, there is no
explicit relation between a realization of the wind and the DV
position, that is, wx�t; x; y� � wx�t�, and wy�t; x; y� � wy�t�,
although implicitly this relation may exist.
First, a feedback control when a model describing the wind is not

given is developed.Drawing from the field of estimation, the simplest

Fig. 1 DiagramofDVat position �x�t�;y�t��⊤ moving at heading angle θ
to converge on a target setT of radius δ in minimum time in the presence

of wind w.
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model to describe an unknown two-dimensional signal suggests that
the wind should be modeled as Brownian motion [19]. It is further
assumed that the Cartesian components of the wind evolve
independently. Then from Eqs. (1–3), the kinematics of the DVin the
presence of this wind, denoted model Eq. (W1), is

dx�t� � v cos�θ�dt� σWdWx; dy�t� � v sin�θ�dt� σWdWy;

dθ�t� � u

ρmin

dt; juj ≤ 1 (W1)

where dWx and dWy are mutually independent increments of a zero-
mean Wiener process, and where the level of noise intensity σW
quantifies the uncertainty in the evolution of the wind. Note that this
kinematic model also arises when examining the problem of tracking
a target with unknown future trajectory [15,16]. In the limiting case
where σW � 0, the problem is reduced to the casewithout thewind.A
feedback control that assumes σW � 0, therefore, would ignore the
presence of the wind, whereas a feedback control that assumes
σW > 0 will account for the stochastic wind variation. Along these
lines, Sec. III develops feedback control laws that drive the DV to the
target in minimum time in both the deterministic case (σW � 0) and
the stochastic case (σW > 0). Note that in the deterministic case the
cost-to-go function is the same as Eq. (4) but without the expectation
operator.
Next,motivated by problems involving awind that varies slowly in

time and/or space, a second wind model Eq. (W2) is considered. The
second wind model considers a wind that flows in the direction θw at
constant speed vw < v, but where the evolution of the direction of this
wind is unknown. Then from Eqs. (1–3), the model of the relative
motion of the DVand the target in the wind Eq. (W2) is

dx�t� � v cos�θ�dt� vw cos�θw�dt

dy�t� � v sin�θ�dt� vw sin�θw�dt dθ�t� � u

ρmin

dt;

juj ≤ 1 dθw�t� � σθdWθ; (W2)

where dWθ is an increment of a Wiener process, and where σθ is its
corresponding intensity. When σθ � 0 one obtains a model of
constant wind in the direction θw. Section IV describes optimal
feedback controls for the deterministic case (σθ � 0) and the
stochastic case (σθ > 0).
The proposed control schemes for the deterministic wind, which

are based on analytic arguments, will give significant insights for the
subsequent analysis and will illustrate some interesting patterns of
the solution of the stochastic optimal control problem. It will be
shown later on that the control strategies for each deterministic wind
model, when applied to theDVin the presence of the stochastic wind,
will capture the salient features of the solution of the stochastic
optimal control problem.

III. Feedback Laws with No Wind Information

In this section, feedback control laws are developed that drive the
DV to its target in the presence of the unknownwindEq. (W1). First, a
method for designing a feedback control for the deterministic
problem, which completely ignores the presence of a wind, is briefly
discussed. Next, an optimal feedback control will be computed for
the case where the Cartesian components of the wind vary
stochastically. In all cases, the target set is a ball of radius with
δ � 0.1, and the velocity of the vehicle is constant v � 1.

A. Deterministic Case

First, a control law that is completely independent of any
information about the distribution of the wind is proposed. In other
words, a feedback control law is designed under the assumption that
the wind is modeled by Eq. (W1) with σW � 0. Therefore, this
control law is “blind” to the presence and the statistics of the actual
wind. This approach will give two navigation laws that are similar to
the pure pursuit strategy from missile guidance [20], which is a

control strategy that forces the velocity vector of the controlled object
(the DV in this case) to point toward its destination at every instant of
time.
Note that in the presence of a wind and with the application of a

feedback law that imitates the pure pursuit strategy, theDVwill not be
able to instantaneously change its motion to point its velocity vector
toward the target. This happens for two reasons. The first reason is
because the rate at which the DV can rotate its velocity vector is
bounded by the turning rate constraint Eq. (3). The second reason has
to do with the fact that, by hypothesis, the pure pursuit law does not
account for the wind, and, consequently, even if the DV were able to
rotate its forward velocity vector arbitrarily fast, it would be this
forward velocity vector that points toward the target rather than the
inertial velocity.
Let φ be the angle between the vehicle’s forward velocity vector

and the line of sight (LOS) to the target, given by φ �
θ − atan2�y; x� � π andmapped to lie inφ ∈ �−π; π� (see Fig. 1). The
proposed (suboptimal) pure pursuit-like navigation law takes the
following state-feedback form:

u�φ� �

8<
:

−1 if φ ∈ �0; π�;
0 if φ � 0;
�1 if φ ∈ �−π; 0�

(5)

One important observation is that the control law Eq. (5) does not

depend on the distance r�t� �
����������������������������������
�x�t��2 � �y�t��2

p
of theDV from the

target but only on the angleφ. The state feedback control law given in
Eq. (5) will be referred to as the geometric pure pursuit (GPP) law.
Note that the GPP law drives the DV to the line S0 :�
f�r;φ�∶ φ � 0g, which is a “switching surface.” In the absence of
wind, once the DV reaches S0, it travels along S0 until it reaches the
target (so that r � 0 at the final time T) with the application of the
control input u � 0. Therefore, the GPP law is a bangoff control law
with one switching at most, that is, a control law that is necessarily a
control sequence f�1; 0g.
It is important to highlight that theGPP law turns out to be the time-

optimal control law of the MD problem for the majority (but not all)
of the initial configurations �x�0�; y�0�; θ�0��⊤ (see Fig. 2) when there
is nowind [21,22]. However, there are still initial configurations from
which theDVdriven by the navigation lawEq. (5) either cannot reach
the target set at all or can reach the target only suboptimally. The
previous two cases are observed, for example,when theDVis close to
the target with a relatively large jφj.
In particular, it can be shown [21,22] that if the DV starts, at time

t � 0, from any point that belongs to one of the two regions, C� and
C−, defined by (see Fig. 2)

C− � f�r;φ�∶ r ≤ 2ρmin sin�−φ�;φ < 0g (6)

C� � f�r;φ�∶ r ≤ 2ρmin sin�φ�;φ > 0g (7)

then the target cannot be reached by means of the GPP law in the
absence of a stochastic wind. (Scenarios where the stochastic wind
helps the DV to reach its target even by means of a GPP law will be
shown later on.) Therefore, to complete the design of a feedback
control law for any possible state of the DV, one needs to consider the
optimal solution of the MD problem in the case when the terminal
heading is free [21,22]. It turns out that the boundaries of C� and C−,
denoted, respectively, by S− and S� (the choice of the subscript
notation will become apparent shortly later), correspond to two new
switching surfaces along which the DV travels all the way to the
target. In particular, when the DV starts in the interior of C�,
(respectively, C−), then the minimum-time control action is u � �1,
(respectively, u � −1), which may appear to be counterintuitive,
because its effect is to increase jφj rather than to decrease it. The
control input remains constant until the DV reaches the “switching
surface” S−, (respectively, S�), where the control switches to
u � −1, (respectively, u � �1), and subsequently, the DV travels
along S−, (respectively, S�) all the way to the target driven by
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u � −1, (respectively, u � �1). The net effect is that when the DV
starts inside the region C� the DV must first distance itself from the
target, so that its minimum turning radius ρmin is sufficient to turn
toward the target. Note that in this case the control law is bang–bang
with one switching at most, that is, a control sequence f�1;∓1g. The
situation is illustrated in Fig. 2 for ρmin � 1.
The GPP law given in Eq. (5), therefore, needs to be updated

appropriately to account for the previous remarks. In particular, the
new feedback control law is given by

u�r;φ� �

8<
:

−1 if �r;ϕ� ∈ Σ−;
0 if �r;ϕ� ∈ Σ0;
�1 if �r;ϕ� ∈ Σ�

(8)

where

Σ− :� f�r;φ�∶ φ ∈ �0; π�g ∩ �int C��c ∪ int C−

Σ� :� f�r;φ�∶ φ ∈ �−π; 0�g ∩ �int C−�c ∪ int C�

Σ0 :� f�r;φ�∶ φ � 0g

The state feedback law Eq. (8) will be, henceforth, referred to as the
optimal pure pursuit (OPP) law, because, at every instant of time, it
steers the DV to the target based on the optimal strategy that
corresponds to its current position. Note that in the absence of wind
the OPP law is the optimal control law of the MD problem with free
final heading [21,22]. One important remark about the OPP law is
that the control variable u may attain the value zero, which is in the
interior of its admissible set �−1; 1�. Thus, the control u � 0 is
singular, and the part of the optimal trajectory it generates is referred
to as the singular arc of the optimal solution. As explained in detail in
[14] singular arcs may be part of the optimal solution of the MD
problem in the absence of wind, only when the so-called switching

function of the constrained optimal control problem, along with its
first-time derivative, vanish simultaneously (for a nontrivial-time
interval). Note that although u � �1 corresponds to turning left/
right, the control u � 0 corresponds to straight paths.
Figure 3 illustrates the level sets of the minimum time-to-go

function, which can be computed analytically by using standard
optimal control techniques and geometric tools, as shown in [14].

B. Stochastic Case

In this section, an optimal feedback control law for the stochastic
kinematic model Eq. (W1) and cost function Eq. (4) is developed.
The optimal control is computed using the Markov chain
approximation method [17], which ensures that when discretizing a
state space for value iteration in stochastic optimal control problems,
the chosen spatial and temporal step sizes accurately scale in the same
way as in the original stochastic process. The method constructs a
discrete-time and discrete-state approximation to the cost function in
the form of a controlled Markov chain that is “locally-consistent”
with the process under control.
Because the method involves discretization of the state space, one

first reduces the number of dimensions in the model Eq. (W1).
Applying Itô’s differentiation rule to the DV-target distance r�t� and
the viewing angle φ�t�, where φ ∈ �−π; π� as before (see Fig. 1), it
can be shown that the relativeDV-target system coordinates obey (see
the Appendix)

dr�t� �
�
−v cos�φ� � σ2W

2r

�
dt� σWdWk (9)

dφ�t� �
�
v

r
sin�φ� � u

ρmin

�
dt� σW

r
dW⊥ (10)

where juj ≤ 1, and where dWk and dW⊥ are mutually independent
increments of unit intensity Wiener processes aligned with the
direction ofDVmotion. Note the presence of a positive bias σ2W∕2r in
the relation for r�t�, which is a consequence of the random process
included in the analysis. In the proposed parametrization only
distances r ≥ δ outside the target set are considered, and Eqs. (9) and
(10) are well defined.
In theAppendix the equations for value iterations on the cost-to-go

function using the Markov chain approximation method are derived.
From this, the optimal angular velocity of theDVmay be obtained for
any relative distance r ≥ δ and viewing angle φ. The structure of the
optimal control law Eq. (W1) is seen in Fig. 4a for σW � 0.1 and
discretization steps Δr � 0.02 and Δϕ � 0.025. As in the
deterministic model (σW � 0) case (Fig. 2), the value iteration
stationary control law is composed of bang–bang regions instructing
the DV to turn left or right and singular arcs. With smaller noise, the
optimal control is comprised of four regions: two directing the target
to turn left and others instructing a turn to the right. The reader should
note the similarity between Fig. 4a and the OPP control illustrated in
Fig. 2. In particular, the structure of the regions C− and C� have
changed somewhat as a consequence of the stochastic variation of the

Fig. 2 Time-optimal partition of the state space and feedback control
law in the absence of wind. Red indicates control sequences for an initial
state in each time-optimal partition. (For the color coding of figures

please see the electronic version of the paper).

Fig. 3 Level sets of theminimumtime-to-go function of theMDproblem
with free terminal heading.
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wind. In Fig. 4b, a higher noise intensity of σW � 0.5 causes the
control to return to GPP control Eq. (5). In other words, the variance
of the process is so large that it becomes exceedingly difficult to
predict the relative DV-target state, and the optimal control for the
stochastic model matches a simpler, analytically-derived control for
the deterministic model that, as described in the preceding section, is
not optimal for some initial conditions close to the target. This
suggests that, for our problem, a deterministic control may suffice for
the optimal feedback control when thevariance of the stochasticwind
is sufficiently large.
This control strategy remains optimal for even larger σW, but due to

the bias in r�t� (see Eq. (9)) this control policy may not be successful
in guiding theDV to the target in a reasonable amount of time for high
values of σW . Although a solution to the backward Kolmogorov
equation [19] indicates that the DV will eventually hit the target with
probability one as t→ ∞, the expected value of the hitting time
becomes exceedingly large with increasing σW . Similarly, one can

also consider the probability that the DV, initially located at (r, φ),
will hit the target set by a specified time τ as a function of the noise
intensity σW. Figure 5 shows this distribution as computed for
�r;φ� � �1; 0� and τ � 10 s using 1000 simulations for each σW .

IV. Feedback Laws for Wind at an Angle

Next, the second model Eq. (W2) in which the wind is now
assumed to take on a direction θw with known speed 0 < vw < 1,
where vw is constant by hypothesis, is assumed, and the feedback
control laws for steering the DV in the presence of this wind are
discussed.

A. Deterministic Case

First, the casewhen σθ � 0 and 0 < vw < 1 is considered.Note that
the fact that σθ � 0 implies that the direction of the wind becomes
constant, and consequently, the wind w � �wx;wy�⊤, where wx :�
vw cos θw and wy :� vw sin θw is a constant vector. Therefore, in
this section, it is assumed that the constant windw is known a priori.
The equations of motion of the DV become

dx � v cos�θ�dt�wxdt; dy � v sin�θ�dt�wydt;

dθ � u

ρmin

dt; juj ≤ 1 (11)

First, a feedback law that is similar in spirit to the GPP law given in
Eq. (5), which exploits the fact that the wind is known a priori, is
designed. In particular, the proposed control law tries to rotate the
velocity vector of the DV to point at the target. It is easy to show that
the control law Eq. (5) becomes

u�φ� �
( −1 if ψ�φ� ∈ �0; π�;

0 if ψ�φ� � 0;
�1 if ψ�φ� ∈ �−π; 0�

(12)

and

ψ�φ� :� atan2� _y; _x� − θ� φ (13)

where ψ is the angle between the inertial velocity of the DVand the
LOS as is illustrated in Fig. 1 (the angle χ in this figure is equal to
atan2� _y; _x�). As it is shown in [20], the navigation lawEq. (12) is dual
to the so-called parallel navigation law from missile guidance. The
control law Eq. (12) is, henceforth, referred to as the geometric
parallel navigation (GPN) law.
As mentioned in Sec. III.A, the GPP law that forces the forward

velocity of the vehicle to point toward the target may not always be
well defined, especially in the vicinity of the target. The same type of

a) Stochastic optimal control policy for σW = 0.1. For comparison,
the switching curves from the deterministic model-based OPP
control in Fig. 2 are outlined

b) Stochastic optimal control policy for σW = 0.5 yields the GPP
control (5) for deterministic winds

Fig. 4 DV optimal turning rate control policy u�r;φ� for model
Eq. (W1).

Fig. 5 Probability of hitting the target set in the time interval 0 < τ ≤ 10
for an initial condition a distance 1 m from the target and facing toward
the target (�r;φ� � �1;0�).
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argument applies to the GPN law modulo the replacement of the
forward velocity with the inertial velocity. Next, a control law that
steers the DV to the target using the optimal control that corresponds
to the current position of the DV and assuming a constant (e.g.,
average) wind is presented. This control law is referred to as the
optimal parallel navigation (OPN) law. Note that similar to the GPN
law, the OPN law does not consider the variations of both the speed
and the direction of the wind. By combining the type of arguments
used in [21,22], which deal with the standard MD problem with free
terminal heading, along with the analysis presented in [11,12], one
can easily show that the candidate optimal control of theMDproblem
in the presence of a constant wind corresponds to the four control
sequences presented in Sec. III.A, namely, f�1; 0g and f�1;∓1g.
The main difference between the solutions of the MD problem in the
absence of a wind, which was briefly presented in Sec. III.A, and the

MD problem in the presence of a constant wind, is the switching
conditions and, consequently, the switching times of their common
control sequences.
Figure 6 illustrates the structure of the OPN law in the (r, φ) plane

in the presence of a constant tailwind, that is, θw � θ�0�, and a
constant headwind, that is, θw � π � θ�0�, respectively. One
observes that the GPN law coincides with the OPN law for the
majority of the boundary conditions especially for the case of a
tailwind, whereas in the presence of the headwind the points in the (r,
φ) plane, where the optimal strategy is bang–bang, correspond to a
significantly large set. An interesting observation is that the new
switching surfaces of the OPN law are associated with those of
the OPP law by means of a particular coordinate transformation
∶ �x; y; θ� ↦ �x 0; y 0; θ�, as described in [12]. In particular, a
configuration with coordinates �x; y; θ� that belongs to the switching
surface S�, S0, or S− of the OPP law corresponds to a point with
coordinates �x 0; y 0; θ� that belongs, respectively, to the switching
surface S�, S0, and S− of the OPN law, where

x 0 � x�wxTDV�x; y; θ� (14)

y 0 � y�wyTDV�x; y; θ� (15)

where TDV�x; y; θ� is the minimum time required to drive the DV
from �x; y; θ� to the origin with free final heading θ. It is easy to show
that for a state �x; y; θ� ∈ S��S−�, it holds that TDV�x; y; θ� �
−2ρminφ�x; y; θ�∕v�2ρminφ�x; y; θ�∕v�. In addition, if the state

�x; y; θ� ∈ S0, then TDV�x; y; θ� �
����������������
x2 � y2

p
∕v.

Figure 7 illustrates the correspondence of the switching surfaces of
the OPN law with those of the OPP law for a tailwind
(θw � θ�0� � 0) and a headwind (θw � π � θ�0� � π) via the
previous coordinate transformation. Note that the switching surface
S0 of both the OPG and the OPP laws are the same, but the surfaces
S� are different.
Figure 8 illustrates the level sets of the minimum time-to-go

function in the presence of a constant wind, whose computation
entails the solution of a decoupled systemof transcendental equations
as shown in [11,12]. In particular, Figs. 8a and 8b illustrate the level
sets of theminimum time-to-go function in the presence of a constant
tailwind and a constant headwind, respectively.a) Tailwind

b) Headwind

Fig. 6 Time-optimal partition of the control input space and state
feedback control law of theMDproblemwith free terminal heading in the
presence of a constant wind.

Fig. 7 Correspondence between the switching surfaces of the OPP and
the OPG laws via a transformation for a tailwind (blue curves) and a
headwind (red curves).
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B. Stochastic Case

It is now assumed that the direction of the wind θw is no longer
constant but is rather described by the stochastic process Eq. (W2)
with σθ > 0. A similar derivation to that used for model Eq. (W1)
yields for Eq. (W2):

dr�t� � −�v cos�φ� � vw cos�φ� γ��dt;

dφ�t� �
�
v

r
sin�φ� � vw

r
sin�φ� γ� � u

ρmin

�
dt;

dγ�t� � u

ρmin

dt − σθdWθ (16)

where the state γ�t� :� θ�t� − θw�t� is introduced to define the
difference between the DV heading angle and the direction of the
wind θw. In the numerical example, the following data are used:
vw � 0.5, and σθ � 0.1. The discretization steps were chosen as
Δr � 0.1,Δϕ � 0.08, andΔγ � 0.12. As before, value iterations on
the optimal cost-to-go function were performed as described in the
Appendix. Two “slices” of this control, corresponding to the cases
where the DV travels in the direction of the wind (tailwind, where
γ � 0), and where it faces the wind (headwind, γ � π) are shown in
Figs. 9a and 9b, respectively. In each fixed-γ policy, the optimal

control resembles that shown in Fig. 6, although the location and
shape of the switching curves S� have changed due to the stochastic
variation in the wind. In Fig. 9a, only small vestiges of the switching
curves are seen, whereas in Fig. 9b the shape of these curves has
changed. Figure 10 shows the expected value of the time required to
hit the target in the case of a headwind and tailwind.

V. Performance Comparison

In the preceding sections, it is seen that the control laws for both
deterministic wind models closely resemble their respective optimal
feedback control laws for the stochastic wind models. In particular,
the control policies for the deterministic and stochastic wind models
are identical when far from the target, but differences are seen when r
is close to δ. To see the effect of these differences, this section
provides a comparison of performance of the proposed feedback
control laws against the stochastic windmodels Eqs. (W1) and (W2).

a) Tailwind (γ = 0)

b) Headwind (γ = π)

Fig. 9 DV optimal turning rate control policy u�r;φ;γ� for stochastic
model Eq. (W2) with σθ � 0.1.

a) Tailwind (γ = 0)

b) Headwind (γ = π)

Fig. 8 Level sets of theminimumtime-to-go function of theMDproblem
with free terminal heading in the presence of a constant wind (σθ � 0).
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As an example, Fig. 11 shows a collection of simulated DV
trajectories under the controls for the deterministic (red) and
stochastic (blue or green)windmodels,where the left and right panels
correspond to models Eqs. (W1) and (W2), respectively. In this
figure, the control anticipating the wind stochasticity assumes that
there is a non-zero probability that the stochastic wind may push it
beyond its minimum turning radius ρmin and into the target, and,
hence, the control directs it to perform a left turn. Some realizations
(75.6%, shown in green) under this control reach the target, but the
remainder (blue) must circle around (see insert). The control for the
deterministic wind model directs the red DVs to first distance
themselves prior to approaching the target. Consequently, the regions
in the (r, φ) state space corresponding to the trajectories in this
example lead to a smaller expected time to hit the target for the

stochastic model-based control, as seen in Fig. 12. However, there is
also a chance that the stochastic model-based control is unsuccessful
in hitting the target on its first pass, and the DV must circle around
again. In other words, the stochastic model-based control “risks” a
turn toward the target for small r and small φ. Although the expected
value of the hitting time decreases under the control anticipating the
stochastic winds, the standard deviation of these times may
simultaneously increase, as seen in Fig. 12.
In the right panel of Fig. 11, a similar result is seen for the case of

wind at an angle (indicated by a vw arrow). In this case, a small
number of the realizations for theDVs under the deterministicmodel-
based control are affected by the changing wind and must take
a longer route to reach the target, whereas the DVs under the
stochastic model-based control anticipate the changing wind
direction. Similarly, Fig. 13 shows the mean time-to-go function
under model Eq. (W2) using both the control for the deterministic
model shown in Fig. 6 and the control law for the stochastic wind
model in Fig. 9. As before, the expected time-to-go function is larger
for the deterministic model-based control in regions where the
control laws differ. However, unlike model Eq. (W1), the standard
deviation under the stochastic model-based control was consistently
smaller, because the control accounts for the stochastic wind without
instructing for a potentially “risky” approach to the target.

VI. Conclusions

In this paper, the problem of guiding a vehicle with Dubins-type
kinematics to a prescribed target set with free final heading in the
presence of a stochastic wind in minimum expected time has been
addressed. Two approaches to this problem have been proposed. The
first one, which was based on analytic techniques, was to employ
feedback control laws, based on a deterministic model, that are
similar to the well-studied pure pursuit and the parallel navigation
laws from the field of missile guidance. The proposed feedback
control laws are time optimal in the absence ofwind or in the presence
of a wind that is constant and known a priori.
The second approach was to tackle the problem computationally

by employing numerical tools from stochastic optimal control theory.
Because these control laws are based explicitly on the stochasticwind
models, they anticipate thewind stochasticity, and the time necessary
to steer the Dubins vehicle (DV) to the target set in the presence
of a stochastic wind is, on average, lower than that under the control
for the corresponding deterministic model. However, although
the feedback control laws for the deterministic model become
suboptimal in the presence of a stochastic wind, it turns out that they
still manage to steer the DV to its target set with an acceptable
miss target error. On the other hand, a stochastic framework leads to
higher expected precision in terms of target miss distance and more
predictable trajectories.
The fact that the deterministic model-based controls perform so

well for this problem even in the presence of an unknown stochastic
wind is mainly owing to the fact that they are in a feedback form, thus
providing a certain degree of robustness against uncertainties.
Having that in mind, it may not be surprising that the presented
deterministic model-based control laws can work in the presence of

Fig. 10 Level sets of the minimum time-to-go function of the MD
problem with free terminal heading in the presence of a wind with
stochastically varying direction and constant speed vw.

Fig. 11 DV trajectories for 500 realizations under windmodel Eq. (W1)
(left) andEq. (W2) (right). See text for colors. The initial DVpositions are
□, and the target is ×.

Fig. 12 Left: difference E�TOPP� −E�Tstoch� in mean hitting time from OPP control (8) and stochastic optimal control u�r;φ�, and σW � 0.1 . Right:
difference in standard deviation std�TOPP� − std�Tstoch�.
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small stochastic disturbances, although non-optimally. This may not
be the case for other problems in practice where one is only able to
generate reliable deterministic open-loop trajectories. Surprisingly
perhaps, the computation of optimal feedback controls based on
stochasticmodels generally is no more difficult (or even easier) than
for their deterministic counterparts as the latter can be consistently
discretized and cast as a controlled Markov decision process, as
shown in this paper. On the other hand, the closed-form feedback
laws based on the deterministic model presented in this paper may be
more appealing than their stochastic model-based counterparts,
owing to their ease of implementation.
Thus, the similarity between control policies under different levels

of wind stochasticity seems to support the use of the feedback
controls for deterministic wind models in lieu of stochastic model-
based feedback controls when the stochastic effects are small, or can
be used as “seeds” that may expedite the computation of the solution
to the stochastic optimal control problem, or aid in the verification of
numerical results. Moreover, because the role of noise in designing
feedback control policies is not fully understood, a side-by-side
comparison of the feedback laws for deterministic and stochastic
models in other problems may provide useful insights toward a more
general theory.
Futurework will include the extension of the techniques presented

herein to problems with a more realistic model of thewind, including
wind models that depend explicitly on the position of the DV.
Another possible extension is to characterize control laws for
stochastic wind models that minimize a cost function taking into
consideration both the expected value and the variance of the time-to-
go function.

Acknowledgments

This work was supported by the National Science Foundation
Graduate Research Fellowship Program under Award ID 0809125.

The authors wish to thank the reviewers for their comments and
thoughtful insight.

Appendix A: Models and Discretization

A1. Derivation of Relative Stochastic Kinematic
Model (9) and (10) for Model (W1)

Given a stochastic differential equation for the state x ∈ Rn in the
form

dx�t� � b�x�dt� a�x�dW�t�

the Itô Lemma states that the total differential of a scalar, time-
independent function f�x� is

d�f�x���t� � �b�x�dt� a�x�dW�t��⊤∇xf�x�

� 1

2
�a�x�dW�t��⊤∇2

xf�x��a�x�dW�t��

where, if dW�t� is of dimension k, we also have by definition that
dW⊤dW � Ik×kdt. Applying this rule to model (W1), we may obtain

the total differential for r�t� �
����������������������������������
�x�t��2 � �y�t��2

p
as

dr�t� � x
r
dx�t� � y

r
dy�t� � 1

2

�
1

r
−
x2

r3

�
�dx�t��2

� 1

2

�
1

r
−
y2

r3

�
�dy�t��2 − xy

r3
�dx�t���dy�t��

�
�
−v cos�φ� � σ2W

2r

�
dt − σW cos�θ − φ�dWx

− σW sin�θ − φ�dWy (A1)

a) Tailwind (γ = 0)

b) Headwind (γ = π)

Fig. 13 Comparison of distributions of time required to hit the target under both OPP control (Fig. 6) and the stochastic optimal control (Fig. 9) in the
presence of the stochastic wind Eq. (W2). Left: difference in mean hitting time E�Tdeter� −E�Tstoch�. Right: difference in standard deviation
std�Tdeter� − std�Tstoch�.
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where we have used the fact that x∕r � − cos�θ − φ� and

y∕r � − sin�θ − φ�. Similarly, because tan−1�y∕x� � θ − φ� π,
the total differential for φ is

dφ�t� � u

ρmin

dt� y

r2
dx�t� − x

r2
dy�t� − xy

r4
�dx�t��2 � xy

r4
�dy�t��2

�
�
v

r
sin φ� u

ρmin

�
dt� σW

r
sin�θ − φ�dWx

−
σW
r

cos�θ − φ�dWy (A2)

Because the components of the original two-dimensional Brownian
motion model are scaled with the same parameter σW, the noise is
invariant under a rotation of the coordinate frame [19]. Defining
dWk�t� and dW⊥�t� as the increments dWx and dWywhenviewed in a

coordinate frame aligned with the direction of DVmotion, we obtain
models (9) and (10).

A2. Derivation of Value Iteration Equations

The following derivation of the equations for value iteration is
specific to thewindmodel (W2). The discretization details for model
(W1) may be found in [15]. Denote by Lu the differential operator
associated with the stochastic process (16), which, for the sake of
brevity, one writes in terms of the mean drift b�x; u� ∈ R3, the
diffusion a�x� ∈ R3×3, and the state vector x � �r;φ; γ�⊤, as follows:

dx � b�x; u�dt� a�x�dW�t�

with the associated differential operator

Lu �
X3
i�1

bi�x; u�
∂
∂xi
� 1

2

X3
i;j�1

aij�x�
∂2

∂xi∂xj

The state x is in the domain X � fxjδ ≤ r < rmax;
−π ≤ φ ≤ π;−π ≤ γ ≤ πg, which is semiperiodic because
�r; π; γ�⊤ � �r;−π; γ�⊤, and �r;φ;−π�⊤ � �r;φ; π�⊤. It follows that
the domain boundary is composed of two disjoint segments, that is,
∂X � fx∶ r � δg ∪ fx∶ r � rmaxg.
It can be shown [17] that a sufficiently smooth J�x� given by

Eq. (4) satisfies

LuJ�x� � 1 � 0 (A3)

so that the stochastic HJB equation for the minimum cost V�x� over
all control sequences is

inf
juj≤1
�LuV�x� � 1� � 0 (A4)

This partial differential equation (PDE) has mixed boundary
conditions on ∂X. At r � rmax; one can use reflecting boundary
conditions �∇V�x��⊤ n̂ � 0 with the boundary normals n̂. For the
part of boundary r � δ that belongs to the target set T , one has to use
an absorbing boundary condition with V�x� � g�x� ≡ 0.
A discrete-time Markov chain fξn; n < ∞g with controlled

transition probabilities from the state x to the state y ∈ X denoted by
p�yjx; u� is introduced. A continuous-time approximation ξ�t� to the
original process x�t� is created by way of a state- and control-
dependent interpolation interval Δtu � Δt�x; u� � tn�1 − tn via
ξ�t� � ξn, where t ∈ �tn; tn�1� [17]. The transition probabilities
p�yjx; u� then appear as coefficients in the finite-difference
approximations of the operatorLu inmodel (A3). Using the so-called
upwind approximations for derivatives, the finite-difference
discretizations for J�·� with step sizes Δr, Δφ, and Δγ are

Jh�r;φ; γ� � Δtu �
X
i�1;2
fp�r − �−1�iΔr;φ; γjr;φ; γ; u�Jh

× �r − �−1�iΔr;φ; γ�
� p�r;φ − �−1�iΔφ; γjr;φ; γ; u�Jh�r;φ − �−1�iΔφ; γ�
� p�r;φ; γ − �−1�iΔγ; jr;φ; γ; u�Jh�r;φ; γ − �−1�iΔγ�g (A5)

where the coefficients multiplying Jh�·� are the respective transition
probabilities, given by

p�r�Δr;φ;γjr;φ;γ;u�

�Δtu
max�0;�∓v cos�φ�∓vw cos�φ� γ���

Δr
;

p�r;φ�Δφ;γjr;φ;γ;u�

�Δtu
max�0;���v∕r�sin�φ���vw∕r�sin�φ� γ��u∕ρmin��

Δφ
;

p�r;φ;γ�Δγjr;φ;γ;u��Δtu
�
max�0;��u∕ρmin��

Δγ
� σ2θ
2�Δγ�2

�
(A6)

where “max” is a result of the upwind approximation, andwhereΔtu,
given by

Δtu�x� �
�
j − v cos�φ� − vw cos�φ� γ�j

Δr

� j�v∕r� sin�φ� γ� � �vw∕r� sin�φ� γ� � u∕ρminj
Δφ

� ju∕ρminj
Δγ

� σ2θ
�Δγ�2

�−1

ensures that all probabilities sum to unity.
The Markov chain defined by these transition probabilities

satisfies the requirement of “local consistency” in the sense that the
drift and covariance of the Markov process ξ�t� are consistent with
the drift and covariance of the original process, and the cost-to-go
function Vh�·� for ξ�t�, therefore, suitably approximates that
associated with the original process. The dynamic programming
equation for the Markov chain used for value iteration is given as
follows [17]:

Vh�x� � min
juj≤1

�
Δtu�x; u� �

X
y

p�yjx; u�Vh�y�
�

(A7)

for all x ∈ X \ ∂X. For the reflective part of the boundary r � rmax

(see [17, pp. 143]) is used instead of Eq. (A7):

Vh�x� �
X
y

p�yjx�Vh�y� (A8)

where p�yjx� � 1 for y � �rmax − Δr;φ; γ�⊤ and x � �rmax;φ; γ�⊤;
otherwise, p�yjx� � 0. Finally, for those states x ∈ T in the target
set, it is imposed that

Vh�x� � 0 (A9)

Equations (A7–A9) are used in the method of value iteration until the
cost converges. From this, given the wind speed vw, one obtains the
optimal angular velocity of the DV for any relative distance r,
viewing angle φ, and relative wind direction γ.
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