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This paper introduces an efficient and simple method for mesh point distribution for solving optimal control
problems using direct methods. The method is based on density (or monitor) functions, which have been used
extensively for mesh refinement in other areas such as partial differential equations and finite element methods.
Subsequently, the problem of mesh refinement is converted to a problem of finding an appropriate density function.
Itis shown that an appropriate choice of density function may help increase the accuracy of the solution and improve

numerical robustness.

Introduction

HE accuracy and efficiency of mesh refinement algorithms used

for solving numerical optimal control problems have motivated
a recent research activity in this area. Several mesh refinement
methods are proposed in [1], demonstrating the advantage of such
algorithms. Reference [2] introduced a mesh refinement method in
which integer programming is used to minimize the maximum
integration error during mesh refinement iterations. Reference [3]
proposed a multiresolution trajectory optimization algorithm that
refines a nonuniform mesh using local dyadic subdivisions after each
iteration. A common strategy behind these mesh refinement methods
is the redistribution of the mesh points based on the local integration/
interpolation error.

When the solution of the optimal control problem exhibits
discontinuities in the control or its higher order derivatives, a locally
dense mesh is typically necessary to achieve better resolution, and
obtain more accurate estimation of the location of the discontinuity.
Mesh generation based on the local integration/interpolation error
does not use any special treatment of the discontinuities, especially
those appearing in higher order derivatives of the control or the state
variables. For better accuracy, it is necessary to estimate the location
of such irregularities (namely, discontinuities in the control history
and/or its higher order derivatives) and subsequently incorporate this
information into the mesh refinement process. A mesh refinement
method following this philosophy has been proposed in [4]. This
method divides the time interval at the points with maximum
absolute value of the first derivative of the control, but it does not
capture higher order discontinuities in the control time history.

Mesh generation and adaptation is a common topic in many areas
of engineering and applied mathematics. The notion of mesh density
function for mesh generation and refinement has been used in the
finite element method field [5,6]. The concept of density functions is
also similar to monitor functions used for the numerical solution of
partial differential equations [7]. However, despite their popularity in
other fields, mesh density/monitor functions have rarely been used
for discretizing optimal control problems. The only exception
appears to be [8], as far as the authors know. Additional studies are
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needed to understand how the density/monitor functions can be
used in numerical optimal control and how they can influence the
accuracy and robustness of numerical optimal control algorithms.
Furthermore, the choice of “good” density/monitor functions for
mesh discretization of optimal control problems seems to be open.

In this paper we attempt to provide a partial answer to the previous
questions. We introduce a method to distribute the mesh points
efficiently using density/monitor functions. Although different
monitor functions can be used for mesh generation, an appropriate
choice of a monitor function can generate a better quality mesh, and
can improve the accuracy of the solution along with the speed of
convergence. Hence, the problem of mesh generation can be treated
as a problem of finding an appropriate density/monitor function. Two
possible choices of density functions are used in the numerical
examples, based on the discrete control/state histories from the
previous iteration during the mesh refinement process. The proposed
method avoids the numerical integration step and the use of ODE
solvers for the system dynamics as was done in [8]. Yet, it generates a
mesh with a suitable level of adaptive discretization that provides
sharp resolution around the places where the control switches or
the trajectory meets/leaves state constraints, thus resulting in better
accuracy of the overall final solution. Numerical examples are
presented to demonstrate the advantage of the proposed method, and
comparisons are provided against the industry-standard sparse
optimal control software (SOCS).

Problem Statement and Nonlinear
Programming Formulation

We consider an optimal control problem minimizing the following
Bolza cost functional:

J :@(x(to),to,x(tf),p.tf)+/tf L(x(),u(t),p,)dt (1)

fo

where ¢ € [ty, t/] € R is the time, x: [t), t/] — R" is the vector of
state variables, u: [ty, t;] — R" is the vector of control variables, and
P=I[pi.Ps,....p] €R! the vector of additional optimization
parameters. The Mayer term  ®: R" x [1y, ;] x R" x R/x
%9, t;] = R, and the Lagrangian term £: R” x R™ x R x [y, ;] —
R are given functions of suitable smoothness properties. Our
objective is to minimize the cost (1) subject to the dynamic
constraints

X(Z) = f(x(t), M([),p7 [)7 1o <t< tf (2)
the boundary conditions
W(x(to), to, x(tp). ty, p) =0 3)

and the path constraints
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C(x(), u(t),p. 1) <0, ty<t=<ts 4
where  W: R” x [tg, 1] x R" x [ty, ;] x R' > R" and where
C: R" x R™ x R x [ty 1] — RNe.

To solve this problem through nonlinear programming, the states
and controls are discretized on a mesh {7;}¥, for some positive
integer N, with 7y =1, and t; <t;;; for 0 <i < N — 1. Let X be
the decision variable vector, including those determined by the
discretization scheme. The corresponding discretization of the
continuous time optimal control problem (1-4) can then be written as

mxinJ (X) )]
subject to
IFCX)| =& (6)
Y| <&, ™
and
C(X) =& ®)
where the absolute value |-| and the inequalities are enforced

elementwise, J, F and C are appropriate discretizations of the cost
function, dynamics constraint and path constraint of the original
problem, respectively, Wis the boundary condition, and ¢, € RV",
¢, € RV and ¢ € RW+D-Ne represent defect vectors, whose
elements are small positive real numbers. In particular, for the
discretization of the differential constraint (2), the function J in (5)
and F in (6) are obtained using a class of R-K methods ensuring
consistency, such that the solution of the discrete problem converges
to that of the continuous time problem [1]. For more details the reader
may refer to [1,2,9,10].

Density Functions and Mesh Point Distribution
Density Function and Mesh Generation
A mesh density function, or simply a density function, is a
nonnegative function f: [a,b] —> R +, a,beR that satisfies
J? f(H)dt =1, and is zero (at most) at countably many points.
Since any nonnegative function f: [a,b] — R, that has only
countably many zeros can be normalized as

AL
f= W &)

to obtain a mesh density function, from now on we may assume,
without loss of generality, that any function f applied to mesh
refinement has been already normalized. The corresponding
cumulative distribution function F: [a, b] — [0, 1] is defined by

F( 2 f P dr (10)

The value of F(f) corresponds to the area under the graph of f
between a and ¢. Clearly, F(a) = 0 and F(b) = 1. In the sequel, and
without loss of generality, we will assume that [a, b] is the unit
interval. Consider a mesh {z,})' , containing a total of N + 1 points
with 7y = 0 and 7y = 1. Given a density function f, let F be the
cumulative distribution function determined by f as in (10). For
i=0,1,...,N—1, with the ith point at #;, the position of the
(i + 1)th point can be decided by

1
F(ti+1)_F(ti):N (11)

A mesh can then be generated based on the density function f, such
that the distribution of grid points conforms to an equidistribution of
F. Alternatively, the mesh is dense where the value of f(r) is large.

The previous mesh point allocation strategy usually requires
solving a nonlinear algebraic equation repeatedly N — 1 times,
which can be a quite time-consuming task when N is large. An
alternative technique for achieving equidistribution requires the
integration of a system of ODEs, including the transformed dynamics
and the inverse of the density function [8]. The integration of
dynamics requires intensive computations, especially when the
dimension of the problem is large. Besides, integration is also
sensitive to the accuracy of the boundary conditions (if not fixed) and
the accuracy of the control history obtained from the previous
iteration.

To avoid the process of repeatedly solving nonlinear equations or
integrating the system dynamics, an interpolation method is used in
this work to compute the points {¢;})!, by taking advantage of the
monotonicity of F. Specifically, given any density function f, selecta
grid {tj};vz"o € [0, 1], which contains N; points. During the mesh
refinement iterations, {t_,-};vio could be chosen as the mesh used in the
previous iteration. Now y=F (tj) can be easily calculated by
Y= fg’ f(zr)dr. For any y €0, 1], define the inverse mapping
F~'(y) ={t| i f(v) dtr = y}. From the properties of f, and hence F,
the inverse F~! is well defined and also continuous, with
t;=F'(y;). The set of pairs {(y;, tj)}j-\/:fo is then a discrete
representation of the function F~!. Note that the first and the last grid
points are at ¢, = 0 and 5 = 1, respectively. For the allocation of the
other grid points, the location ¢; of the ith mesh point can be obtained
by interpolating {(y;, ;) }7;1 using a spline function at the position
yi=(@{—1)/(N—1)for2 <i <N — 1. Using this method, as long
as the selected partition is dense enough, the location of all mesh
points can be calculated very fast and with high accuracy. Note that
the mesh point distribution is unique once the density function is
given, but the converse is not true.

Figure 1 shows the mesh point distribution obtained by two
specific density functions over the unit interval. The density function
in the upper left of the figure is the linear function f(f) =t. The
resulting mesh is shown in the upper right of the figure. The lower left
plot shows the density function f(r) = e 507 +201-2 | o=502+801-32
with its mesh shown in the lower right of the figure. In both cases, the
mesh contains a total of 20 grid points.

Selection of Density Function

By definition, a mesh density function needs only to be
nonnegative (and integrable). This generality provides a great deal of
flexibility for achieving desired mesh point distributions and for
designing different mesh refinement schemes. The particular choice
of the density function can have a major impact on the numerical
performance of the overall algorithm.

Certain density functions can be used to regulate the integration
error. For example, if the density function is chosen as a piecewise
constant function whose value on each subinterval equals the
corresponding principal local truncation error function (PLTE) as in
[1], then the mesh point distribution process will be the static mesh
refinement Strategy 1 introduced in the same reference. This strategy
tries to approximately equidistribute the PLTE, and as a result, the
mesh points would be denser where the PLTE was large in the
previous iteration.

Another strategy for designing a good density function is to
provide better approximation to the state and/or control histories to
improve the accuracy of the solution. This approach places more
emphasis on the geometric properties of the graph of the function to
be approximated. The arc length monitor function in [§8], for
example, equidistributes the grid points along the graph of the state.
As another example, the curvature-based density function proposed
in [11] provides the best piecewise linear interpolative approxi-
mation of the function of interest in the L, space. As it will be shown
later in the paper, this density function is capable of capturing higher
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Fig. 1 Density functions and corresponding distribution of grid points.

order discontinuities of the function to be approximated with
sufficient accuracy.

For more general mesh refinement schemes, it may be desirable to
add new points only within certain specific time spans of the control
and state histories, namely at those regions where the control or state
histories exhibit discontinuities or smoothness irregularities (e.g.,
very fast rate of change and/or discontinuities in higher order
derivatives) while keeping other points fixed. This objective can also
be easily achieved by defining multiple density functions on disjoint
intervals; then the number of points assigned to each interval is
proportional to the integral of the corresponding density function.
The points are then distributed using the preceding method. More
details about this procedure are given in [11].

Although the density function uniquely determines the mesh once
the total number of grid points is given, it does not provide any
information what the size of the final mesh should be. In the density
function-based mesh refinement algorithm (DENMRA) proposed
later in the paper, the discretization error estimation method in [2] is
used to determine the size of the mesh in order to ensure that the new
mesh provides a better discretization compared with the one from the
previous iteration.

Density Function-Based Mesh Refinement Algorithm

The use of a density function is one of the key components in
DENMRA. General optimal control problems involve ordinary
differential equations in terms of the state variables, which describe
how the control changes the vector field of the states. For such
problems, since the states are continuous, irregularities in the
smoothness in the states usually correspond to fast (or discontinuous)
changes in the control. Hence, typically, the control history is used in
DENMRA for computing the density function to capture smoothness
irregularities in both the state and the control histories, although
this is not restrictive. The state histories can be used as well, if
needed.

When solving a general optimal control problem that minimizes
the cost function J using m control inputs, DENMRA goes through
the following four major steps:

1) Set j = 1. Choose a positive integer N; and generate the initial
(coarse) uniform mesh 7; = {t,-}zlf;l, where t; = (i — 1)/(N; — 1),
Generate an initial guess for the state and control variables, and solve
the discretized problem that minimizes J;

2) Calculate the density function f using the discretized control
{(t;, ui)}?il of the previous solution, where u; € R™;

3) Determine the mesh size increment AN, by discretization error
estimation which is introduced in [2]. Let N;,; = N; + AN, and
generate the new mesh 7', | = {ti}f’:ﬁ‘ based on f. Set j = j + 1;

4) Generate the initial guess based on the previous solution for
mesh T, solve the problem, and go to step 2, unless some stopping
rule is met.

0 0.2 0.4 0.6 0.8 1
t

The details of these steps are given next.

Initial Guess

For simplicity, DENMRA may start from a constant initial guess
for all control and state variables, but (as is typical with nonlinear
optimization problems) any good initial guess based on prior
experience with the problem or good engineering judgment can
improve convergence.

Optimization

After the cost function and the dynamic, state, control and path
constraints have been discretized on the given grid, DENMRA calls a
nonlinear programming solver. In this implementation, we have used
the optimization software SNOPT [12] for solving the corresponding
nonlinear programming problem stemming from the discretized
optimal control problem.

Density Function Computation

In DENMRA, when the density function based on the local
curvature as described in [11] is used, the discrete control
{(t,-,ui)}fg, from the previous iteration is used to estimate the
curvature of the graph of the control history. The calculation of
the density function corresponding to the control u is therefore
computed as follows:

1) Let u; ; be the kth component of the discrete control value u; at
t;, ;. be the first order derivative of the kth component of control at
time#; = (¢, + t;)/2, and ii; ; be the second order derivative at time

1} = (i, + t;)/2. Then, for k =1, ..., m, the values {12,-{,{}?2171 and

{ii;;};; can be approximated by i; ; ~ (u;y1x — i)/ (tiy1 — ;)

and ii,-‘,(N@ git,-+,_k — i)/t — 1), respectively. Interpg)vlatze

{(#},1;;)};, " using aspline function at 7/ and obtain {(¢/, i} ) };Z, .
2) Let

i .
= = heeNm2 o 02)

The curvature function k,(#) for the kth control component is
constructed using interpolation and/or extrapolation at the points
{(#, K,-.k)}?:?z using a spline function. Then p; (1) = ¢k (1.

3) The overall (nonnormalized) density function f is obtained by
merging the density functions for all controls. For instance,

10 = (2 n0) (1%
k=1

and
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f(0) = maxp(1) (14)

are two possible methods to generate the overall density function.

Note that when the control histories are identically zero on some
subinterval Z, C [0, 1], then f does not satisfy all the properties of a
density function. For this reason, during implementation in
DENMRA, f is modified as follows:

_Jf@. f=ze
fs(t) - {8, f(l) <& (15)

where ¢ is a small positive real number. With this modification, f, isa
strictly positive function such that the preceding mesh generation can
be applied. In practice, this means that a few grid points are kept even
on the parts of the control history that are straight lines or segments
with very small curvature. This is always a good strategy since the
control history on Z; may change in subsequent iterations, and it is
thus advisable to keep some points in the interior of the interval Z ; in
order to capture possible changes of the control histories.

Mesh Generation

DENMRA typically starts with a coarse uniform mesh in order to
capture the basic structure of the control history. In subsequent
iterations, the user can either let DENMRA decide the mesh size
based on the integration error, or adjust the final mesh size and the
number of iterations according to the desired or imposed speed and
accuracy requirements, depending on the problem at hand. In the
former case, at each mesh refinement iteration, cubic splines are
used to approximate the state and control histories, and the local
discretization error of the previous mesh is estimated. After the
density function is computed based on the result of the previous
iteration, a temporary new mesh size N ; is found by gradually
increasing N ; from N, until the maximum local discretization error of
the new mesh generated using the density function with N ; points is
smaller than that of the previous mesh. Let N, be a limit on the final
mesh size, then the actual mesh size increment after the jth iteration
is determined by AN, = min{Nj — Nj, AN,y ), Where AN, =
Npax — N;. IfAN; = N_,- — N;, then the last temporary mesh is used
for the next iteration. Otherwise, a new mesh is generated with
N; + ANy, points.

Stopping Rule

DENMRA stops either when the maximum number of mesh
refinement iterations is reached, or when the optimality of the
problem cannot be further improved and the local integration error is
smaller than the specified tolerance.

Numerical Examples

In this section we report the results from two numerical examples
that illustrate the good properties of the proposed mesh generation
method. The first example is the double integrator minimum energy
problem [13]. Since this problem has an analytical solution, it can be
used to check the accuracy and optimality of the proposed method.
This problem also includes a state constraint, which is used to
demonstrate that the proposed methods is able to handle higher order
state irregularities stemming from such state constraints. The second
example deals with a “hypersensitive” optimal control problem [14]
and it is used to test the robustness of the method when dealing with
problems requiring highly concentrated grid points during certain
phases of the solution. For comparison, the same two problems are
also solved using SOCS [15], which is a widely used software for
solving trajectory optimization problems. Both algorithms start with
trapezoidal integration, and switch to higher order Hermite—Simpson
integration later on to meet the desired accuracy/optimality. A
feasibility tolerance of 107! is used for both algorithms.

Minimum Energy for Double Integrator
The double integrator problem is given by

v=u, v0)=—v)=1, i=v, x(0)=x(1)=0 (16)

and the goal is to find u(#), where 0 < ¢ < 1, to minimize

1 1
Jz—/ w2 dt (17)
0

with the state constraint x(#) < £, where £ is a positive real number.
The optimal control u*(f) for this problem can be obtained as
follows [13]:

1
u* (1) = -2, 0<t=<l, forﬁzz (18)
" —8(1 —3¢) + 24(1 — 40)t, 0<r=<i,
u*(t) =
—8(1-30) +24(1—-40)(1—1), L<t=<1,
1 1
for -~ <€<- 1
or e<l<y (19)
-Z(1-%)., 0=<r=<3L |
ut(f) =140, M<r<1-3¢L, for £ <= (20)
—2(1-Lt), 1-3t<r<1,

3¢ 3 )

Comparison in Terms of Accuracy and Optimality

The curvature based-density function is used for mesh refinement
in DENMRA for this problem. This density function is given by
p.(1) = k()'/3, t € [0, 1], where « is the curvature of the graph of the
control function. As shown in [11], this density function provides the
best piecewise linear interpolative approximation. The same problem
was also solved using the commercial numerical optimal control
code SOCS, which implements the mesh refinement strategy of [2].
Both algorithms were tested on the same computer, and cold-started
using the same linear initial guess.

Table 1 summarizes the results from DENMRA and SOCS for the
double integrator problem. In the table, N is the size of the final mesh,
|J —J*| is the optimality error, and |ju; — u*(;)| = max;|u; —
u*(1;)| is the norm of the error between the discretized control {u;}Y_,
and the exact solution #*. Our numerical experiments showed that
SOCS could not achieve highly accurate solution for this problem
even if the local integration error tolerance has been set to 10~'%, The
optimality error of the SOCS solution was around 10~* ~ 107% with a
maximum control error around 1072 ~ 10~3. DENMRA exhibited
an optimality error at the order 10~7 ~ 103, and a maximum control
error at the order of 107 ~ 107°.

The mesh refinement histories of the two algorithms for the case
with £ = 0.05 are shown in Figs. 2 and 3. In these figures, the vertical
dotted lines indicate the points of discontinuities in the analytical
solution (at# = 0.15 and ¢ = 0.85). As can be seen from Fig. 3, when
DENMRA is used to solve this problem, the grid points get denser
around the two points with discontinuities in the control derivative

Table 1 Comparison of precision and optimality

14 Algorithm N [J—J*| llet; — u* ()l 0o
0.04 SOCS 99 7.5x 1073 42 %1073
0.04 DENMRA-p, 40 8.9x 1077 44 %107
0.08 SOCS 99 6.9x10°° 1.4x 1073
008 DENMRA-p, 40 19x10®  48x10°°
0.12 SOCS 50 9.6 x107° 3.9x 1073
0.12 DENMRA-p, 40 1.2x107° 1.0 x 1073
0.16 SOCS 50 7.2x107° 1.8 x 1072
0.16 DENMRA-p, 40 2.7x107% 5.8 x 107
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Fig. 2 Mesh refinement, SOCS, £ = 0.05.
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Fig. 3 Mesh refinement, DENMRA, £ = 0.05.

after each iteration, thus providing a better resolution. The mesh
refinement scheme in SOCS is based on the integration error, and
allocates more points on the two intervals (0, 0.15) and (0.85, 1),
where the absolute value of #* is large, but beyond this, the
discontinuities in control did not receive any additional special
treatment. As a result of this mesh refinement procedure, SOCS
always keeps the points from the previous mesh, and hence tends to
generate a larger mesh size. By solving this problem with different
values of £, it was confirmed that, for this problem, the mesh
generated by DENMRA provides better resolution around the points
of discontinuities.

Comparison in Terms of Resolution

By “resolution” here we mean not only the ability of an algorithm
to capture the discontinuities in the control history or its higher order
derivatives using a locally denser grid, but also the ability to
distinguish adjacent points of discontinuity.

1) When £ > 1/6, the optimal control u*(t) is either constant or
smooth, and both DENMRA and SOCS converge to the theoretical
solution.

2) When £ < 1/6, the optimal control u* () contains two corners.
It is challenging to distinguish these corners when ¢ tends to zero or
1/6: in the former case, the corners are very close to the endpoints of
the mesh, and the fast change of control between the corner and the
corresponding end point makes it difficult to obtain an accurate
solution; in the second case, the two points of discontinuity tend to
merge, which makes them difficult to distinguish.

The resolution test results are listed in Table 2. The resolution is
denoted by Ar. Both algorithms were able to gradually decrease £

until ||u; — u*(t;)||o < 1072 without inducing any algorithm failure.
When ¢ — 0, Atr=3{, where Ar is the distance between the
discontinuities and the nearby endpoints of the mesh. When
{ — 1/6, At =1 — 6{, which is the distance between the two points
of discontinuity. In both cases, a smaller A means a better resolution.
For all test cases, DENMRA terminates with 40 points, SOCS starts
from 50 points, and the final mesh sizes have 83 points when
£ =0.025, and 50 points when £ = 0.153. As shown in Table 2,
DENMRA provides sharper resolution than SOCS while preserving
the accuracy of the solution.

Hypersensitive Problem
This problem minimizes the cost function

J= / T2 + 12(0)) dr @1
0

subject to the differential constraint

x=—x>+u (22)

and endpoint state constraints x(0) = 1, x(¢,) = 1.5. For large values
of ¢, the solution of this hypersensitive problem has a three-segment
structure with two boundary layers [14], namely, a “takeoff, cruise
and landing” structure. The “cruise” phase is determined by the cost
function and the system dynamics, while the “takeoff”” and “landing”
phases are determined by the boundary conditions, cost function,
system dynamics, and the requirement to reach the cruise phase.

As pointed out in [14], the key to solving hypersensitive problems
using direct methods is to use a denser grid during the boundary
layers (takeoff and landing phases) in which the state changes fast; a
nonuniform mesh is imperative for the solution of this problem with
large values of ;. The hypersensitive problem with large 7 is suitable
for testing the robustness of mesh refinement algorithms, because the
length of the cruise phase increases with respect to ¢, which makes it
more difficult to allocate enough grid points to the two boundary
layers. We solved this problem for various values of ¢, using both
SOCS and DENMRA. Observing that the boundary layer is
characterized by a large absolute value of the derivative of control, we
used the density function f(r) = |it(r)|? to capture these boundary
layers during mesh generation in DENMRA.

SOCS was started from a mesh containing 150 points, and the
maximum number of mesh refinements was set at 15. DENMRA
started from a uniform mesh containing 25 points, with a maximum
number of 15 mesh refinement iterations and a maximum mesh size
of N.x = 100. The problem was solved on the same computer as in
the previous example. The results are summarized in Fig. 4.

In our numerical experiments when p, is used for mesh generation
and refinement, DENMRA failed to allocate enough points at both
ends of the mesh, and did not converge for large values of ;. In
contrast, the use of the density finction f(r) = |i(z)[* captures a
larger region of the two boundary layers. Figure 4 shows the result of
DENMRA using the previous density function for ¢, = 1 x 10°. As
can be seen from this figure, the majority of the grid points are
successfully allocated inside the two boundary layers.

Both SOCS and DENMRA were challenged by solving this
hypersensitive problem for ¢, as large as possible. To estimate the
maximum solvable value of #,, each algorithm was used to solve the

Table 2 Comparison of resolution

Algorithm 14 1D At =T lu; — u* () s
SOCS 0.025 DI1* 0.075 8.2x10™* 8.5x 1073
SOCS 0.153 D2b 0.082 2.8x107° 8.5x 1073
DENMRA-p, 0.014 D1 0.042 7.3x107° 1.7 x 10
DENMRA-p, 0.1662 D2 0.0028 1.9x 107 9.0x 1074

*The smallest £ keeping ||u; — u*(t;)||c < 1072 without algorithm failure
"The largest £ keeping ||u; — u*(#;)||c < 102 while separating the discontinuities
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Fig. 4 DENMRA solution, L= 100, 000.

hypersensitive problem for an increasing sequence of 7, values
starting from 7, = 100. Numerical results showed that the optimal
value is J* & 6.724. If the problem was successfully solved with the
final objective value J <7, then ¢, was updated as ¢, = ¢, + At,,
where Az, = 10V if 10V < ¢, < 10N, for some positive integer N,
and the problem was solved again with the new ¢,. This process was
repeated until / > 7. The results are shown in Table 3. As shown in
the table, DENMRA exhibited good robustness by solving the
hypersensitive problem for large values of 7, which is attributed to
its ability to redistribute the grid points to the boundary layers even
with the presence of very long cruise phases. As a matter of fact,
DENMRA was able to provide a solution up to a maximum value of
tp=2x 109, whereas SOCS provided a solution up to a maximum
value of t; = 30,000.

The optimality of SOCS and DENMRA is shown in Table 4. It was
found that the optimality of the results obtained by DENMRA
deteriorates when ¢, is very large, while the optimality of the SOCS
solution is consistent within the range of 7, values it can solve. The
mesh refinement histories of two algorithms are similar, except for
the fact that the mesh generated by SOCS contains an order of
magnitude more grid points.

In [8] a density (monitor) function of the form ¢(x, u) = (@ +
S Bigi(x,u))'/? where g;(x,u) is the ith component of the
system dynamics, and « and §; are constants to be adjusted, was used
to initialize SOCS for solving the hypersensitive problem. This “arc
length”” monitor function was also tested for mesh refinement. It was
found that when DENMRA uses this arc length monitor function, the
maximum solvable ¢ value is 10,000. A density function providing
an equidistribution along the arc length of the graph of the system

Table 3 Hypersensitive problem,

robustness test

Algorithm ty Nreer

SOCS 30,000 15
DENMRA-f 2x10° 15

Ny J

475 6.7241
100 6.8211

Table 4 Hypersensitive problem, optimality test

Algorithm ty Nier Ny J

SOCS 2 x 10? 11 1020  6.7241
SOCS 2% 103 14 1201 6.7241
SOCS 2 x 10* 15 1014 6.7241
DENMRA-f 2 x 107 13 100 6.7240
DENMRA-f 2% 103 13 100 6.7240
DENMRA-f 2 x 10* 15 100 6.7239

state is therefore not the best choice for mesh refinement for this
specific problem.

Conclusions

A new mesh refinement method is proposed, which is based on a
mesh density function that determines the mesh point distribution.
By using an appropriate density function, the proposed DENMRA
generates a nonuniform mesh by suitably allocating the grid points
over the whole time interval, putting emphasis on the points of
discontinuity of the control variables or on the nonsmoothness of the
state variables. The grid point allocation process is completely
automatic. Two density functions are also introduced, one based on
the local curvature of the graph of the intermediate solution and the
other based on the first derivative of the control variable. The density
function can also be chosen as the integration error, leading to the
mesh refinement scheme proposed in [1]. Numerical results in the
paper have shown that DENMRA automatically maintains an
appropriate local level of discretization over the whole control and
state time histories for different problems. The grid generation is very
simple and easy to implement, while still maintaining high numerical
accuracy for the overall solution. The numerical examples also
demonstrated the importance of choosing an appropriate density
function that captures the smoothness irregularities in the
intermediate solution for best accuracy, optimality and robustness,
especially when solving challenging problems.

Another attractive advantage of DENMRA is that it can be used to
distribute a fixed number of grid points so as to maximize the
accuracy of the final solution. In terms of real-time (or close to real-
time) applications, this may be of greater interest, since the number
of decision variables and constraints of the resulting nonlinear
optimization problem is related to the number of grid points used. If
the computational resources impose limitations on the number of
constraints that can be handled during each iteration, it makes sense
to limit the size of the optimization problem by keeping the number
of grid points fixed. This can be easily achieved using the proposed
algorithm.
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