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In this paper, we present two sequential multiresolution trajectory optimization algorithms for solving problems

withmoving targets and dynamically changing environments. For such problems, high accuracy is desirable only in

the immediate future, yet the ultimate mission objectives should be accommodated as well. An intelligent trajectory

generation algorithm is proposed, enabled by the introduction of the idea of multigrid temporal resolution to solve

the associated trajectory optimization problem on a nonuniform grid across time. The grid is adapted to the

immediate future and to potential discontinuities in the state and control variables.

Introduction

C ONSIDER the problem of finding the optimal control that will
steer a vehicle from point A to some target point B under certain

path constraints with minimum cost. If the target point B is far off,
then there is no real advantage tofinding the optimal trajectory online
with high precision from the starting point until the end. As we
continue to move from point A toward the target point B, we can get
more accurate information about the surrounding environment (path
constraints), which may be different from what was assumed at the
beginning when the trajectory was optimized. Moreover, the path
constraints and the terminal constraints may also change as the
vehicle progresses toward point B. For example, the target point B
may not be stationary.

A common line of attack for solving such problems in real time [1–
4] is to break the problem into two phases: an offline phase and an
online phase. The offline phase consists of solving the optimal
control problem for various reference trajectories and storing these
reference trajectories onboard for later online use. These reference
trajectories are used to compute the actual trajectory online via a
neighboring optimal feedback control strategy [5–8], typically based
on the linearized dynamics. This approach requires extensive
ground-based analysis and onboard storage capabilities [9].
Moreover, perturbations around the reference trajectories might
not be small, and therefore applying the linearized equationsmay not
be appropriate.

Another way of handling this problem is to use a receding-horizon
approach [10–12]. In a receding-horizon approach, a trajectory that
optimizes the cost function over a period of time, called the planning
horizon, is designed first. The trajectory is implemented over the
shorter execution time, and the optimization is performed again
starting from the state that is reached at the end of the execution time.
However, if the planning horizon length does not reach target B, the
trajectory found using this approach might not be optimal. Hence,
onewould like to solve the nonlinear trajectory optimization problem
online for the whole time interval, but with high accuracy only near
the current time.

Recently, somework has been done in this direction byKumar and
Seywald [9] and Ross et al. [13]. Kumar and Seywald [9] proposed a
dense-sparse discretization technique in which the trajectory is
discretized by placing ND dense nodes close to the current time and
NS sparse nodes for the rest of the trajectory. The state values at some
future node are accepted as optimal and are prescribed as the initial
conditions for the rest of the trajectory. The remainder of the
trajectory is again discretized using a dense-sparse discretization
technique, and the whole process is repeated again. The algorithm
can be stopped using any ad hoc scheme. For example, it can be
terminatedwhen the density of the dense nodes is less than or equal to
the density of the sparse nodes. Ross et al. [13] proposed a similar
scheme by solving the discretized nonlinear programming (NLP)
problem on a grid with a certain number of nodes and then
propagating the solution from the prescribed initial condition by
integrating the dynamics of the system for a specified interval of time.
The values of the integrated states at the end of the integration
interval are taken as the initial condition for solving theNLP problem
for the rest of the trajectory, again on a grid with a fixed number of
nodes. The whole process is repeated until the terminal conditions
are met.

In this paper, we present two algorithms, based on the recently
proposedmultiresolution trajectory optimization algorithm (MTOA)
developed by the authors [14,15], which autonomously discretize the
trajectory with more nodes (finer grid) near the current time (not
necessarily uniformly placed) and use fewer nodes (coarser grid) for
the rest of the trajectory, the latter to capture the overall trend.
Furthermore, if the states or controls are irregular in the vicinity of the
current time, the algorithmwill automatically further refine the mesh
in this region to capture the irregularities in the solution more
accurately. The generated grid is fully adaptive and can embrace any
form, depending on the solution.

The paper is organized as follows.Wefirst formulate the trajectory
optimization problem and discretize the continuous-optimal-control
problem into an NLP problem. Next, we introduce two sequential
trajectory optimization schemes for solving problems with moving
targets and/or a dynamically changing environment. In due course of
the paper, several challenging and practical examples are studied to
demonstrate the efficacy of the proposed algorithms.

NLP Problem Formulation on Dyadic Grids

We wish to determine the state x��� and the control u��� that
minimize the Bolza cost functional:

J� e�x��f�; �f� �
Z
�f

�0

L�x���;u���; ��d� (1)

where
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e: RNx � R� ! R; � 2 ��0; �f�; x: ��0; �f� ! RNx

u: ��0; �f� ! RNu ; L: RNx � RNu � ��0; �f � ! R

subject to the state dynamics

_x��� � f�x���;u���; �� (2)

and the state and control constraints

C �x���;u���; �� 	 0 (3)

where C: RNx � RNu � ��0; �f� ! RNc , the initial condition

x ��0� � x0 (4)

and the terminal constraint

e f�x��f�; �f� � 0 (5)

where ef: R
Nx � R� ! RNe . The initial time �0 is assumed to be

given and thefinal time �f can befixed or free. Note that the functions
C�x;u; �� and ef�x; �� are assumed to be given at time �0, but may
change as the vehicle moves from x0 to x��f�. This change is not
known a priori, and so it cannot be modeled via the explicit time
dependence of C�x;u; �� and ef�x; �� in Eqs. (3) and (5).

All discretizations of the state dynamics, constraints, and
performance index in Eqs. (1–5) will be performed on (nonuniform)
grids induced by dyadic grids [14]. A uniform dyadic grid over the
unit interval is a collection of points of the form

V j � ftj;k 2 �0; 1�: tj;k � k=2j; 0 	 k 	 2jg; Jmin 	 j 	 Jmax

(6)

where j denotes the resolution level, k is the spatial location, and Jmin

and Jmax are positive integers. The set of grid points belonging to
Vj�1 n Vj is denoted by Wj.

For simplicity, we henceforth denote xj;k � x�tj;k� and
uj;k � u�tj;k�. We convert the optimal control problem (1–5) into
an NLP problem using Runge–Kutta (RK) discretizations [14,15].
To this end, let a nonuniform grid of the form

G � ftji;ki : tji;ki 2 �0; 1�; 0 	 ki 	 2ji

Jmin 	 ji 	 Jmax for i� 0; . . . ; N

tji;ki < tji�1;ki�1 for i� 0; . . . ; N 
 1g
(7)

To express the trajectory optimization problem (1–5) on the unit
interval t 2 �0; 1� in terms of the new independent variable t, we use
the following transformation:

t� � 
 �0
�f 
 �0

(8)

Then a q-stage RK method for discretizing the state dynamics is
given by

x ji�1;ki�1 � xji;ki � hji;ki��
Xq
‘�1

�‘f‘ji;ki (9)

where f‘ji;ki � f�y‘ji;ki ;u
‘
ji;ki
; t‘ji;ki �, and y‘ji;ki , u

‘
ji;ki

, and t‘ji;ki are the

intermediate state, control, and time variables on the interval
�tji;ki ; tji�1 ;ki�1 �, given by

y ‘ji;ki � xji;ki � hji;ki��
Xq
m�1

�‘;mfmji;ki (10)

where hji;ki � tji�1;ki�1 
 tji;ki , t‘ji;ki � tji;ki � hji;ki�
‘, and u‘ji;ki �

u�t‘ji;ki� for 1 	 ‘ 	 q, and q is referred to as the stage. In these

expressions, �‘, �‘, and �‘;m are known constants with
0 	 �1 	 �2 	 � � � 	 1. The scheme is explicit if �‘;m � 0 for m �
‘ and is implicit otherwise. The cost functional is discretized by

introducing a new state and then using a RK discretization, as
mentioned previously. Then the subsequent NLP problem [14,15] is

to find the variables X, U, ~U, and �f that minimize

J� e�xjNt ;kNt ; �f� ���
XNt
1
i�0

�
hji;ki

Xq
‘�1

�‘L‘ji;ki

�
(11)

subject to the following constraints:

�i � 0; i� 1; . . . ; Nt 
 1 (12)

x j0 ;k0
� x0 (13)

e f�xjNt ;kNt ; �f� � 0 (14)

C �X; ~X;U; ~U;G; ~G� 	 0 (15)

where

�i � xji�1 ;ki�1 
 xji;ki 
 hji;ki��
Xq
‘�1

�‘f‘ji;ki ; i� 0; . . . ; Nt 
 1

(16)

L‘ji;ki � L�y
‘
ji;ki
;u‘ji;ki ; t

‘
ji;ki
�; i� 0; . . . ; Nt 
 1

X� fxj0;k0 ; . . . ;xjNt ;kNt g; U� fuj0 ;k0 ; . . . ;ujNt ;kNt g
~G� ft‘ji;ki 2 �0; 1�: t

‘
ji;ki

=2 G; 0 	 i < Nt; 1 	 ‘ 	 qg
~X� fy‘ji;ki : t

‘
ji;ki
2 ~Gg; ~U� fu‘ji;ki : t

‘
ji;ki
2 ~Gg

(17)

Remark 1. For problems with pure control constraints, we use RK
discretizations that satisfy the conditions in [16] or [17]. If the
optimal control problem has state or mixed state/control constraints,
then we use Euler, trapezoidal, or Hermite–Simpson discretization.
The restriction to the aforementioned schemes stems from the fact
that the convergence of these schemes for the optimal control
problem has been demonstrated in the literature [16–20] (also see the
relevant discussion in [14]).

We are now ready to present the proposed sequential trajectory
optimization schemes.

Sequential Trajectory Optimization

Consider a set of dyadic gridsVj andWj , and supposeg: �0; 1� !
R is specified on a grid G [given by Eq. (7)]:

U � fgj;k: tj;k 2 Gg (18)

where gj;k � g�tj;k�. Let Ip�t; T G�t�� denote the pth-order
essentially nonoscillatory (ENO) interpolation of

U � fgj;k: tj;k 2 T G�t�g

where

T G�t� � ftj‘;k‘g
i�p
‘�i � G

and 0 	 i 	 N 
 p 
 1. The stencil T G�t� consists of one
neighboring point on the left of t and one neighboring point on the
right of t in the setG, with the remaining p 
 1 points selected from
the set G that result in the least oscillatory polynomial. For more
details on ENO interpolations, the reader is referred to [21–23].

To solve an optimal control problemwith amoving target and/or a
dynamically changing environment, in this paper, we present two
sequential trajectory optimization algorithms. The basic idea behind
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the proposed algorithms is to solve the trajectory optimization
problem at hand over a suitably chosen horizon ��10; �1f�. As we

continue tomove forward in time, we solve the optimization problem
again on the new horizons ��i0; �if�, where i� 2; . . . ; NH , using the

solution of the previous horizon as an initial guess. Here, �10 � �0 and
�i
10 < �i0 < �

i
1
f , where i� 2; . . . ; NH , and NH is the number of

horizons. If the final time is fixed, then

�1f � �2f � � � � � �
NH
f � �f (19)

For further analysis, let

��iro � �i�10 
 �i0; i� 1; . . . ; NH 
 1 (20)

be the time interval after which we reoptimize the trajectory. The
value of��iro can be the same or different for all i� 1; . . . ; NH 
 1.
For the casewhen��iro are all the same for i� 1; . . . ; NH 
 1 (that is,
��iro ���ro, for all i� 1; . . . ; NH 
 1) and the final time is fixed,
the number of horizons is given by

NH � b��f 
 �0�=��ro�c (21)

Next, we present the sequential trajectory optimization algorithm
STOA I. In the following, and for the sake of simplicity, we denote x
and u evaluated at tj;k by xj;k and uj;k, respectively.

Sequential Trajectory Optimization Algorithm I

We first choose the minimum resolution level Jmin based on the
minimum time step required to achieve the desired accuracy in the
regions of the solution in which no constraints are active,‡ the
threshold ��t� (the significance of which will be clear shortly), and
the maximum resolution level Jmax. Then the proposed sequential
trajectory optimization algorithm (STOA I) involves the following
steps. First, we transcribe the continuous-trajectory-optimization
problem into an NLP problem using a q-stage RK discretization, as
described in the previous section. We use trapezoidal discretization
for the first iteration and switch to a high-order discretization for
subsequent iterations. Next, we set i� 1 and iter� 1, initialize
gridiiter � VJmin

, and choose an initial guess for all NLP variables. Let
us denote the set of initial guesses by X i

iter. The proposed sequential
trajectory optimization algorithm then proceeds as follows:

1) Solve the NLP problem on gridiiter with the initial guessX
i
iter on

the horizon ��i0; �if �. If gridiiter has points from the levelWJmax
1, go to

step 4.
2) Mesh refinement.

a) Initialization.
1. If the problem either has pure state constraints or mixed

constraints on states and controls, set

�i
iter �

�
xj;k;uj;k: tj;k 2 gridiiter

�
; Nr � Nx � Nu

2. If the optimal control problem does not have any
constraints or only pure control constraints are present, set

�i
iter � fuj;k: tj;k 2 gridiiterg; Nr � Nu

3. In case no controls are present in the problem, set

�i
iter � fxj;k: tj;k 2 gridiiterg; Nr � Nx

In the following, let�i
iter denote the set constructed in step 2a of the

algorithm; that is, let

�i
iter � f�‘�tj;k�: ‘� 1; . . . ; Nr; tj;k 2 gridiiterg

b) Initialize an intermediate grid gridint � VJmin
1, with function
values

�int � f�‘�tJmin ;k
�: �‘�tJmin;k

� 2 �i
iter

8 tJmin;k
2 VJmin

; ‘� 1; . . . ; Nrg
(22)

and set j� Jmin 
 1.
1. Find the points that belong to the intersection of Wj and

gridiiter:

T̂ j � ft̂j;km : t̂j;km 2Wj \ gridiiter; for m� 1; . . . ; Nt̂

1 	 Nt̂ 	 2j 
 1g
(23)

If T̂j is empty, go to step 2c; otherwise, go to the next step.
2. Set m� 1.

a. Compute the interpolated function values at points

t̂j;km 2 T̂j:

�̂ ‘�t̂j;km� � Ip�t̂j;km ; T gridint
�t̂j;km��

where �̂‘ is the ‘th element of �̂ for ‘� 1; . . . ; Nr.
b. Calculate the interpolative error coefficient dj;km at the

point t̂j;km
§

dj;km��� � max
‘�1;...;Nr

dj;km��‘� � max
‘�1;...;Nr

j�‘�t̂j;km� 
 �̂‘�t̂j;km�j

(24)

If the value of dj;km is below the threshold ��t̂j;km�, then reject
t̂j;km and go to step 2b2f; otherwise, add t̂j;km to the
intermediate grid gridint and move on to the next step.

c. To gridint, add Nneigh points on the left and Nneigh points

on the right of the point t̂j;km in Wj.
d. If Nneigh � 0, to gridint add points belonging to the set

�V Ĵ \ �tj;km ; tj;km�1�� n gridint

else to gridint add points belonging to the set

�V Ĵ \ �t̂j;km
Nneigh
; t̂j;km�Nneigh

�� n gridint

Here, Ĵ�minfj� ĵ; Jmaxg, where ĵ� 2 if iter� 1, else

ĵ � 2, and ĵ is the number of finer levels from which the
points are added to the grid for refinement.

e. Add the function values at all the newly added points to
�int. If the function value at any of the newly added points is
not known, we interpolate the function value at that point
from the points in gridiiter and their function values in �i

iter

using Ip��; T gridiiter
�����.

f. Incrementm by 1. Ifm 	 Nt̂, go to step 2b2a; otherwise,
move on to the next step.
3) Set j� j� 1. If j < Jmax, go to step 2b1; otherwise, go to

step 2c.
c) Terminate. The final nonuniform grid is gridnew � gridint and

the corresponding function values are in the set �new ��int.
3) Set iter� iter� 1. If the number of points and the level of

resolution remain the same after the mesh refinement procedure,
terminate. Otherwise, interpolate the NLP solution found in step 1 on
the new mesh gridnew, which will be the new initial guess X i

iter.
Reassign the set gridiiter to gridnew, and go to step 1.

4) New horizon.
a) Set gridi � gridiiter.
b) Increment i by 1.
c) Set �i0 � �i
10 ���i
1ro .
d) Terminate if �i0 � �i
1f ; otherwise, set iter� 1,

gridiiter � VJmin
.

e) Interpolate the solution of the previous horizon ��i
10 ; �i
1f �
given on gridi
1 to gridiiter, which will be our new initial guessX i

iter

‡The minimum time step required to achieve a desired accuracy in the
regions of the solution in which no constraints are active can be calculated
using the well-known error estimation formulas for RK schemes
[16,20,24,25]. §Note that �‘�t̂j;k� 2 �i

iter for all t̂j;k 2 T̂j and ‘� 1; . . . ; Nr:
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for step 1. Note that gridi1 � gridi
11 on the transformed domain
�0; 1�, but both gridi
11 and gridi1 correspond to different time
intervals: that is, ��i
10 ; �i
1f � and ��i0; �if�, respectively.

f) Update information about the path constraints and the
terminal constraints.
5) Go to step 1.
Remark 2. Although the STOA Iwill work for any form of ��t�, we

recommend using the following expression on each horizon Hi

(i� 1; . . . ; NH):

��t� � �̂E�maxf0; t 
 �g� (25)

where

��
�
ti�10 ; i� 1; . . . ; NH 
 1;
tif; i� NH

(26)

�̂ is at least of order hJmin
� 1=2Jmin [14], and E: �0; 1� ! R� is such

that E�0� � 1. For example, one may choose E�t� � e��maxf0;t
�g�,
where � 2 R�, for t 2 �0; 1�. This choice implies that the threshold is
constant, equal to �̂ for t 2 �0; ��, and it varies with time for t 2 ��; 1�.
Such a choice stems from the fact that the solution should be
calculated with high precision until the initial time of the next
horizon.

Remark 3. One should note that in STOA I, each horizon Hi �
��i0; �if� (i� 1; . . . ; NH) ismapped to �0; 1� for discretizing the optimal

control problem into NLP problem, and hence the mesh refinement
step 2 is given on the transformed domain �0; 1�.

We demonstrate the preceding algorithm with the help of a simple
yet practical example in which the terminal condition is assumed to
be changing with time.

Example 1. Consider Zermelo’s problem taken from [8]. A ship
must travel through a region of strong currents. The equations of
motion of the ship are

_x� V cos �� u�x; y� (27)

_y� V sin �� v�x; y� (28)

where � is the heading angle of the ship’s axis relative to the (fixed)
coordinate axes, x and y represent the position of the ship, V is the
magnitude of the ship’s velocity relative to the water, and u and v are
the velocity components of the current in the x and y directions,
respectively. The magnitude and direction of the currents are
assumed to be

u�x; y� � 
Vy; v�x; y� � 0 (29)

and the ship’s velocity V is assumed to be unity. The path constraint
is the width of the river, and we assume

0 	 x 	 6:8 (30)

The problem is to steer the ship in such a way tominimize the time
necessary to go from a given point B to another given point B. For
this specific example, we assume the coordinates of point A to be

xA � x�0� � 0; yA � y�0� � 
4 (31)

The target B is assumed to be moving. However, the trajectory of
point B is not known in advance. Initially, the coordinates of target B
are taken to be as follows:

xB � x��f� � 6; yB � y��f� � 1 (32)

We assume (step 4f of STOA I) that the information about the
target is updated before each reoptimization is done on a new
horizon. We also assume that the trajectory of the target is given by

xB��� � 6 
 0:1�; yB��� � 1 
 0:2� (33)

Hence, on each horizon Hi (where i� 2; . . . ; NH), we have the
following terminal constraints:

xiB � 6 
 0:1�i0; yiB � 1 
 0:2�i0 (34)

For the sake of simplicity, and so that the proposed algorithm
terminates in a finite number of iterations, we assume that if �i0 � 5,
for some i 2 �1; NH �, then

xmB � 6 
 0:1�i0; ymB � 1 
 0:2�i0 (35)

for all m� i; . . . ; NH .
We solved this problem on a grid with Jmin � 2 and Jmax � 7 for

each horizon with

��t� � 0:01e10maxf0;t
�g; i� 1; . . . ; NH (36)

where � is defined in Eq. (26). The other parameters used in the
simulation are p� 3 and Nneigh � 0. A fourth-order implicit
Hermite–Simpson scheme [15] was used as a high-order scheme for
discretizing the continuous-optimal-control problem into an NLP
problem.

To solve this problem,we let��iro  1 s (i� 1; . . . ; NH 
 1). One
way to find the initial conditions x��i0� and y��i0� for the next horizon
Hi is to integrate the dynamics of the system using the control found
on the previous horizonHi
1 for a duration of��

i
ro s and then use the

integrated states at the end of the interval ��i
10 ; �i0� as the initial
conditions for solving the NLP problem on the new horizon Hi. For
this example, we picked the initial time �i0 for each horizon Hi

(i� 1; . . . ; NH) as follows. For the first horizon, we set �
1
0 � 0, and

for subsequent horizons, we choose

�i0 �min
�
f� 2 gridi
1� : � � �i
10 � 0:95g (37)

where i� 2; . . . ; NH,

grid i
1� � f�: � � ��i
1f 
 �i
10 �tj;k � �i
10 ; 8 tj;k 2 gridi
1g
(38)

Correspondingly, the initial conditions for each horizon Hi

(i� 2; . . . ; NH) were chosen to be the values of x and y at �
i
0, which

are known from the computations on the previous horizonHi
1. We
started STOA I with a linear initial guess. The algorithm terminated
after solving the problem on 6 horizons. The number of iterations
taken by the algorithm before the algorithm terminated on each
horizon (iterf), the maximum resolution level reached on each
horizon (Jf), the number of nodes used by the algorithm at the final
iteration on each horizon (Nf), and the initial and the final times for
all the horizons are shown in Table 1.

The computed trajectory found using the proposed algorithm and
the grid-point distributions for different horizons are shown in Figs. 1
and 2. In these figures, the initial point A is depicted by a square, and
the target point B is depicted by a cross. As pointed out earlier,
target B is assumed to be nonstationary, and for the convenience of
the reader, shown in Figs. 1 and 2 are all of the previous locations of
point B in addition to the current position of target B. The optimal
controls found for all the horizons are shown in Fig. 3.

FromFigs. 1a and 3a,we see that the proposed algorithmused only
9 points out of 129 points of gridV7 for solving the given problem on

Table 1 Example 1 (target snapshots): number of iterations on

each horizon (iterf ), maximum resolution level Jf , number of

nodes used by the algorithm at the final iteration on each horizon

(Nf ), and corresponding horizons

Horizon iterf Jf Nf �0 �f

H1 3 4 9 0 5:6018
H2 3 4 9 1:0503 5:5198
H3 4 5 13 2:1677 5:4687
H4 6 7 17 3:1993 5:4965
H5 2 3 7 4:2043 5:5818
H6 1 2 5 5:2374 5:7538
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the first horizon �0; �f�. The grid-point distribution in Fig. 1b shows
that the points from the finer resolution levels V3 and V4 are
concentrated only near the initial time.

On the second horizon, we assume that target B has moved to the
new location. From Figs. 1c, 1d, and 3b, we again find that the
algorithm used only 9 points for discretizing the trajectory, and the
points from the finer levels of resolution V3 and V4 are again
clustered near the current time.

For the third horizon, the algorithm used 13 points to find the
optimal solution. From the grid-point distribution in Fig. 1f, it is
evident that the algorithm started adding points from the finer
resolution level, V5, near the location at which there should be a
switching in the control, because the ship is approaching the shore.

Moving on to the fourth horizon, we see that as the boat is
approaching the shore there should be a switching in the control.
Hence, to capture this control switching, the algorithm further added
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Fig. 1 Example 1 (target snapshots): trajectory and grid-point distributions for horizons 1, 2, and 3.
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points at the finer resolution levels V6, and V7, as can be observed
from the grid-point distribution for the fourth horizon (Fig. 2b).

For the fifth and sixth horizons, the algorithm used only 7 and 5
points, respectively, for computing the optimal solution. Because we
had �60 > 5 on the sixth horizon, the target was further assumed to be
stationary located at

xmB � 6 
 0:1�60 ; ymB � 1 
 0:2�60 (39)

for allm� 6; . . . ; NH . Hence, the algorithm terminated after solving

the problem on the sixth horizon. The overall CPU time taken by
STOA I to solve this problemwas 5.1 s. The combined trajectory and
the control found on different horizons are shown in Fig. 4.

Next, we incorporate the information of the trajectory profile of the
target (33) in the optimal control problem itself. Because the
trajectory profile of the target is assumed to be given for the optimal
control problem at hand, the resulting problem can be solved in a
single step using the MTOA [14,15]. The results found using the
MTOA are shown in Fig. 4. The overall CPU time taken by the
MTOA to solve this problem was 9.5 s.
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Fig. 2 Example 1 (target snapshots): trajectory and grid-point distributions for horizons 4, 5, and 6.
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We next solved the same problem using STOA I. For comparison
purposes, the results found using STOA I are again shown in Fig. 4.
The number of iterations taken by the algorithm before the algorithm
terminated on each horizon (iterf), the maximum resolution level

reached on each horizon (Jf), the number of nodes used by the

algorithm at the final iteration on each horizon (Nf), and the initial

and the final times for all the horizons are shown in Table 2. The

overall CPU time to solve the problem using STOA I was 6.3 s. We
see that the overall CPU time taken by STOA I is about two-thirds of
the overall CPU time taken by theMTOA to solve the same problem.

Sequential Trajectory Optimization Algorithm II

In this section, we present yet another sequential trajectory
optimization scheme referred to as the Sequential Trajectory
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Optimization Algorithm II (STOA II), which takes full advantage of
the multiresolution structure of the grid in the mesh refinement
procedure so that the previously computed information is retained
while moving from one horizon to the next. To avoid notational
complexities, and without loss of generality, we will assume in this
section that the time interval of interest is the unit interval
��0; �f� � �0; 1�. Transformation (8) can be used to convert any
optimal control problem from the domain ��0; �f� to �0; 1�.

We choose the parameters Jmin, Jmax, and ��t�, as for the STOA I.
The proposed STOA II involves the following steps. First, we
transcribe the continuous-trajectory-optimization problem into an
NLP problem using a q-stage RK discretization, as described in the
previous section. We use trapezoidal discretization for the first
iteration and switch to a high-order discretization for subsequent
iterations. Next, we set i� 1, iter� 1, and �i0 � 0; initialize
gridiiter � VJmin

; choose an initial guess for all NLP variables (X i
iter);

and fix �J� Jmin 
 1. The proposed sequential trajectory
optimization algorithm proceeds as follows:

1) Solve the NLP problem on gridiiter with the initial guessX
i
iter on

the horizon ��i0; 1�. If gridiiter has points from the levelWJmax
1, go to
step 4.

2) Find gridnew using the mesh refinement step (step 2) of STOA I.
3) Set iter� iter� 1. If the number of points and the level of

resolution remain the same after themesh refinement procedure, then
terminate; otherwise, interpolate the NLP solution found in step 1 on
the new mesh gridnew, which will be our new initial guess X i

iter.
Reassign the set gridiiter to gridnew, and go to step 1.

4) New horizon.
a) Set gridi � gridiiter.
b) Increment i by 1.
c) Set �i0 � t �J;i
1.
d) If i� 2

�J � 1, terminate; else go to the next step.
e) Set gridi
 � f�: � 2 gridi
1; � � �i0g.
f) If the number of points in the set fgridi
 \ VJmin
1g is less than

p� 1, set Jmin � Jmin � 1.

g) Set iter� 1, Vj � Vj n �Vj \ �0; �i0�� (where j� �J; . . . ;
Jmax), and Wj �Wj n �Wj \ �0; �i0�� (where j� �J; . . . ;
Jmax 
 1). Find gridnew using the mesh refinement step (step 2)
of STOA I with gridiiter � gridi
.

h) Empty gridiiter and reassign gridnew ! gridiiter.
i) Interpolate the NLP solution given on gridi
 to gridiiter, which

will be our new initial guess X i
iter for step 1.

j) Update the information about the path constraints and the
terminal constraints.
5) Go to step 1.
Remark 4. Although STOA II will work for any form of the

threshold ��t�, on each horizon Hi (i� 1; . . . ; NH), we recommend
choosing

��t� � �̂E�maxf0; t
 t �J;ig� (40)

where �̂ is at least of order hJmin
� 1=2Jmin [14], and E: �0; 1� ! R�

such that E�0� � 1 and t 2 �0; 1�. This choice implies that the
threshold is constant and is equal to �̂ for t 2 �0; t �J;i� and varies with
time for t 2 �t �J;i; 1�. Such a choice stems from the fact that the
solution should be calculatedwith high precision until the initial time
of the next horizon, which would be t �J;i in this case.

Example 2. In this example, we consider the problem of
minimizing the total stagnation-point convective heating per unit
area during the reentry in the atmosphere of an Apollo-type capsule.
This problem has been treated in [26] and,more recently, in [14]. The
equations of motion and the initial and final boundary conditions can
be found in these references. The angle of attack is constrained as

juj 	 68 deg (41)

We have used STOA II to solve this problem with Jmin � 4 and
Jmax � 7. The threshold used on each horizon Hi for this problem
was

��t� � 0:01e7maxf0;t
t3;ig; i� 1; . . . ; NH (42)

The other parameters used in the simulation for the mesh refinement
step were p� 3 and Nneigh � 1. A fourth-order implicit Hermite–
Simpson scheme [15] was used as a high-order scheme for
discretizing the continuous-optimal-control problem into an NLP
problem. We started STOA II with a linear initial guess. The
algorithm terminated after solving the problemon 8 horizons, and the
overall CPU time taken by the algorithmwas 41.2 s, out ofwhich 22 s
were used to compute the solution on the first horizon H1. For the
sake of brevity, we only show the time histories of the control u,
along with the grid-point distribution for different horizons, in
Figs. 5–7. The number of iterations taken by the algorithm before the
algorithm terminated on each horizon (iterf), the maximum
resolution level reached on each horizon (Jf), and the number of
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Fig. 4 Example 1: trajectory and time history of the control � using three different multiresolution strategies.

Table 2 Example 1 (target trajectory known): number of

iterations on each horizon (iterf ), maximum resolution level (Jf ),

number of nodes used by the algorithm at the final iteration on

each horizon (Nf ), and corresponding horizons

Horizon iterf Jf Nf �0 �f

H1 3 4 9 0 5:9065
H2 3 4 9 1:1075 5:8256
H3 3 4 11 2:2870 5:8648
H4 6 7 17 3:4051 5:8643
H5 1 2 5 4:4810 5:8642
H6 1 2 5 5:5184 5:8642
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nodes used by the algorithm at thefinal iteration on each horizon (Nf)
are shown in Table 3.

STOA I Versus STOA II

Both STOA I and STOA II have their own merits. STOA I will
work for any user-specified time intervals (��ro), whereas the time

intervals in STOA II are dyadic and fixed. On the other hand,
STOA II takes full advantage of the multiresolution structure of the
grid in the mesh refinement procedure. Most of the nodes in the grid
for the new horizon are the nodes from the grid of the previous
horizon. In STOA II, most of the points of gridi1 consist of the points
belonging to gridi
 � gridi
1, for which the solution is already
known. Hence, previously computed information is not lost, while
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Fig. 5 Example 2: control time-history and grid-point distributions for horizons 1, 2, and 3.
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going from one horizon to the next. To provide an initial guessX i
1 for

starting the NLP solver on horizon Hi (i� 2; . . . ; NH), the function
values only need to be interpolated at a few additional points in the
vicinity of the current time from the solution found on the grid gridi
1

during the previous horizon Hi
1. Moreover, in STOA I, the
algorithm always begins to iterate from the coarsest grid VJmin

. In
STOA II, because most of the points of gridi1 consist of the points
belonging to gridi
, the algorithm need not necessarily start from the
coarsest grid, and gridi1 may in fact have nodes from finer scales,
resulting in faster convergence.

For both STOA I and STOA II, if the path constraints and the
terminal constraints do not change significantly, the algorithm for
each successive horizon converges fast, because the solution of the
previous horizon is provided as an initial guess for solving the NLP
problem on the current horizon. The CPU times achieved using the
current implementation show the merits of the proposed algorithms
in terms of speed.We should mention at this point that because all of
the computations presented in this paper were carried out in
MATLAB, the reported CPU times can be significantly reduced by
coding the algorithms in C or FORTRAN.
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Conclusions

In this paper, we have proposed two sequential trajectory
optimization schemes to solve optimal control problems with
moving targets and/or under dynamically changing environments in
a fast and efficient way. The proposed algorithms autonomously
discretize the trajectory with more nodes near the current time (not
necessarily uniformly placed) while using a coarser grid for the rest
of the trajectory to capture the overall trend.Moreover, if the states or
the controls are irregular at a certain future time, the mesh is further
refined automatically at those locations as well. The final grid-point
distributions for all the horizons and for both the examples
considered in this paper confirm these observations. Given their
simplicity and efficiency, the proposed techniques offer a potential
for online implementation for solving problems with moving targets
and dynamically changing environments. Further analysis is
necessary to investigate the convergence of the proposed algorithms.
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