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Spacecraft Adaptive Attitude and Power Tracking
with Variable Speed Control Moment Gyroscopes
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Georgia Institute of Technology, Atlanta, Georgia 30332-0150

Control laws for an integrated power/attitude control system (IPACS) for a satellite using variable-speed single-
gimbal control moment gyroscopes (VSCMGs) are introduced. Whereas the wheel spin rates of the conventional
CMGs are constant, the VSCMGs are allowed to have variable speeds. Therefore, VSCMGs have extra degrees
of freedom and can be used to achieve additional objectives, such as energy storage, as well as attitude control.
We use VSCMGs in conjunction with an IPACS system. The gimbal rates of the VSCMGs are used to provide
the reference-tracking torques, whereas the wheel accelerations are used for both attitude and power reference
tracking. The latter objective is achieved by storing or releasing the kinetic energy in the wheels. The control
algorithms perform both the attitude and power tracking goals simultaneously. A model-based control and an
indirect adaptive control for a spacecraft with uncertain inertia properties are developed. Moreover, control laws
for equalization of the wheel speeds are also proposed. Wheel speed equalization distributes evenly the kinetic
energy among the wheels, minimizing the possibility of wheel speed saturation and the occurrence of zero-speed
singularities. Finally, a numerical example for a satellite in a low Earth, near-polar orbit is provided to test the
proposed IPACS algorithm.

Introduction

M OST spacecraftuse chemical batteries to store excess energy
generatedby the solar panelsduring the periodof exposureto

the sun. These batteries are used to provide power for the spacecraft
subsystems during eclipse and are recharged when the spacecraft
is in the sunlight. However, the use of chemical batteries intro-
duces several problems such as limited life cycle, shallow depth
of discharge (approximately 20–30% of their rated energy-storage
capacity), large weight, and strict temperature limits (at or below
20±C in a low Earth orbit). As a matter of fact, these limitations of-
ten drive the entire spacecraft thermal design. Moreover, the use of
chemical batteries requires additional system mass for controlling
the charging and discharging cycles.

An alternative to chemical batteries is the use of � ywheels to
store energy. The use of � ywheels as “mechanical batteries” has
the bene� t of increased ef� ciency (up to 90% depth of discharge
with essentially unlimited life) and the ability to operate in a rela-
tivelyhot (up to 40±C) environment.Most important, � ywheelsoffer
the potential to combine the energy-storageand the attitude-control
functions into a single device, thus increasing reliability and signif-
icantly reducing the overall weight and spacecraft size. This means
increased payload capacity and signi� cant reduction of launch and
fabricationcosts. This concept, termed the integratedpower and at-
titude control system (IPACS) has been studied since the 1960s, but
it has become particularly popular during the last decade. The use
of � ywheels instead of batteries to store energy on spacecraft was
suggestedas early as 1961 in a paper by Roes,1 where a 17-W ¢ h/kg
composite � ywheel spinning at 10,000–20,000 rpm on magnetic
bearings was proposed. The con� guration included two counter-
rotating � ywheels, but the author did not mention the possibilityof
using the momentum stored in the wheels for attitude control. This
idea grew over the next three decades. References 2–4 are repre-
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sentative of the period from 1970 to 1977, during which the term
IPACS was coined.2 Reference5 addressesthe optimal bearing con-
trol for high-speed momentum wheels (MWs). A complete survey
on IPACS is given in Refs. 6 and 7.

To this date, this well-documentedIPACS concept has neverbeen
implemented on an actual spacecraft mainly because of the high
� ywheel spin rates required for an ef� cient IPACS system8 (on the
order of 40,000–80,000 rpm vs less than 6,500 rpm for conven-
tional control moment gyroscopes or momentum wheel actuators).
At such high speeds, the actuators quickly wear out traditionalme-
chanical bearings. Additional challenges include � ywheel material
mass/durability and stiffness inadequacies. Recently, the advances
in composite materials and magnetic bearing technology promise
to enable a realistic IPACS development. NASA John H. Glenn
Research Center at Lewis Field announced that a � ywheel energy
storage system recentlyachieved full-speedoperationat 60,000rpm
(Ref. 9).

Because � ywheels are typically used onboard orbiting satellites
to control the attitude, a suitable algorithm must be used to meet
simultaneously the attitude torques and the power requirements.
In Ref. 6, a control law was presented for an IPACS with mo-
mentum wheels. In the present paper a control law for an IPACS
using variable-speedsingle-gimballed control moment gyroscopes
(VSCMGs) is introduced.Whereas the wheel spin rates of the con-
ventionalCMGs arekeptconstant,thewheel speedsof theVSCMGs
are allowed to vary continuously.10 Therefore, VSCMGs have extra
degreesof freedomand can be used for additionalobjectivessuch as
energystorage,as well as attitudecontrol. In addition,single-gimbal
VSCMGs still have the capabilityof producing large torquesdue to
their torque ampli� cation property. This makes them ideal for sev-
eral commercial and military missions. On the other hand, VSCMG
motors have to be stronger than standard CMG motors.10 Because
of the higher speeds of the VSCMGs (compared to low-speed mo-
mentum of CMG wheels) the power consumption for the VSCMG
motors is expected to be several times larger than the one for CMGs.
(Standard CMG motors are optimized for low-power consumption
at constant speed operation.)Moreover, a signi� cant component of
the CMG power consumption,not present in � xed-wheel IPACS, is
the power required to provide the gimbal holding torque against the
gyroscopic torque along the bearing axis. A comparative study in
terms of total power requirements between � xed-wheel CMGs and
VSCMGs seems to be desirable in this context.

The VSCMG cluster stores kinetic energy by spinning up its
wheels during exposure to the sunlight. It provides power for the
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satellite subsystems by despinning the wheels during the eclipse.
The spinning-up/spinning-downoperation has to be coordinated in
such a manner that the generated torquesdo not disturb the attitude.
Most conventional control designs for the IPACS problem use the
linearized equations of motion. In this paper, we use the complete,
nonlinear equations with minimal assumptions. The derived equa-
tions of motion used here for a cluster of VSCMGs are similar to
those in Refs. 10 and 11. The only mild assumptions made in de-
riving these equationsare that the spacecraft, � ywheels, and gimbal
frames are rigid and that the � ywheels and gimbals are balanced.
In addition, Ref. 10 imposes the assumption that the gimbal frame
inertia is negligible.Without loss of generality,in our developments,
the gimbal angle rates and reactionwheel accelerationsare taken as
control inputs to the VSCMG system. That is, as is often done in
practice, a velocity steering law is assumed. This implies that the
gimbal angle acceleration is kept small. An inner servoloop is used
to ensure that the actual gimbal angle rate converges to the desired
rate. This is somewhat different than commanding directly gimbal
accelerations,that is, accelerationsteering law, that typically results
in excessive gimbal torque commands.10;12

In contrast to previous relevant results,10;11;13;14 the model-based
control presented in this paper achieves tracking of arbitrary tra-
jectories as opposed to only attitude stabilization/regulation.More-
over, the research of Refs. 11 and 14 concentrates on rest-to-rest
maneuvers using CMGs with a perfectly known spacecraft model.
Although a general trajectory tracking VSCMG control law is pre-
sentedin Ref. 15, noneof thecitedreferencestreats the simultaneous
attitude and power-trackingproblem with VSCMGs.

In addition to the model-based attitude and power-tracking con-
trol law presented in this paper, an adaptive control concept is also
derived to deal with the uncertainty of the inertia properties of
the spacecraft. For exact attitude tracking, the inertia of spacecraft
should be known. However, the inertia of spacecraft may change
considerablydue to docking, releasing a payload, retrieving a satel-
lite, sloshing and/or consumption of fuel, etc., and so an adaptive
control scheme is chosen for precise attitude-trackingcontrol. Sev-
eral adaptive control laws for the attitude-tracking problem have
been reported in the literature.16¡22 However, most of the previous
results use variable thrust gas jets, momentum or reaction wheels,
or conventionalCMGs as actuators.An adaptive trackingcontroller
described in Ref. 20 uses Euler angles and Rodriguez parameters
(Gibbs vector) to describe the attitude of the spacecraft, so that it
is valid only in a narrow range due to the kinematic singularity. In
Ref. 18, conventionalCMGs are used, and the angular acceleration
is required to be measurable. In case the angular acceleration is not
measurable, approximationschemes are needed. The adaptive con-
troller developed in Ref. 21 has four asymptotically stable states,
one of which is the desiredstate, and the othersare obtainedthrough
the rotation by an angle §¼ around the axes of the desired frame.
These undesiredstatesbecome unstableif the referencemotions are
persistentlyexciting.The adaptivecontrol law in Ref. 16 can be sim-
pli� ed if knowledge of the largest and smallest principal moments
of inertia is available. In addition, it is shown that the products of
inertia can be identi� ed by constant trackingmaneuvers. In Ref. 22,
attitudetrackingis also dealtwith and a controlleris proposedwhich
asymptoticallyapproachesthe speci� ed responseof a linearpropor-
tional integral derivative (PID) controller in the presence of inertia
errors.

Most mentioned references assume that the unknown inertia pa-
rameters are constant, which is not valid for the CMG or VSCMG
systems.As far as the authors know, there are no results for adaptive
attitude control for a VSCMG system. There have been a few re-
sults of adaptive control for a conventionalCMG system, but most
of them use the linearized or simpli� ed equations of motion.17;18

Of particular interest is Ref. 19, where adaptation is used to con-
trol a double-gimballedCMG with uncertain inertia properties.The
present paper offers the � rst design of an adaptive control using the
complete nonlinearequationsof motion for a rigid spacecraftwith a
VSCMG cluster. In addition, this control law achieves both attitude
and power tracking.

One of the dif� culties encountered with the use of traditional
CMGs is the possibility of singularity (gimbal lock) when control

torques cannot be generated along certain directions. In addition,
conventionalmomentum wheels have to deal with wheel speed sat-
uration and momentum dumping issues. Control laws for VSCMGs
must address both the CMG singularity as well as the momentum
wheel saturationproblem.Moreover,becausetheVSCMGs areused
as energy storage devices, it is important that none of the VSCMGs
despins completely. To keep this from happening, an algorithm to
equalizethe wheel speedsof the VSCMG cluster is proposed.Speed
equalization is desirable because it can also reduce the possibility
of actuator saturation and/or the occurrence of singular CMG con-
� gurations. Two techniques to equalize the wheel speeds are intro-
duced.The merits and pitfallsof each methodare discussedin detail.
Comparison via numerical examples is provided at the end of the
paper.

System Model
Dynamics

Consider a rigid spacecraft with a cluster of N single-gimbal
VSCMGs used to provide internal torques. The de� nition of the
axes is shown in Fig. 1. The total angularmomentum of a spacecraft
with a VSCMG cluster consistingof N wheels can be expressed in
the spacecraft body frame as

h D J! C Ag Icg P° C As IwsÄ (1)

where ° D .°1; : : : ; °N /T 2 RN and Ä D .Ä1; : : : ; ÄN /T 2 RN are
columnvectorswhose elements are the gimbal angles and the wheel
speeds of the VSCMGs with respect to the gimbals, respectively.In
Eq. (1) the matrix J is the inertia matrix of the whole spacecraft,
de� ned as

J D BI C As Ics AT
s C At Ict AT

t C Ag Icg AT
g (2)

where BI is the combinedmatrix of inertiaof the spacecraftplatform
and the point masses of the VSCMGs. The matrices Ic? and Iw? are
diagonal with elements the values of the inertias of the gimbal plus
wheel structure and wheel-only structure of the VSCMGs, respec-
tively. Speci� cally, Ic? D Ig? C Iw?, where Ig? D diag[Ic?1 ; : : : ; Ic?N ]
and Iw? D diag[Iw?1 ; : : : ; Iw?N ], where ? is g; s, or t . The ma-
trices A? 2 R3£N have as columns the gimbal, spin, and trans-
verse directional unit vectors expressed in the body frame. Thus,
A? D [e?1; : : : ; e?N ], where e? j is the unit column vector for the j th
VSCMG along the direction of the gimbal, spin, or transverse axis.
Note that As D As.° / and Ag D Ag.° / and, thus, both matrices As

and Ag are functionsof the gimbal angles. Consequently,the inertia
matrix J D J .° / is also a function of the gimbal angles ° , whereas
the matrix BI is constant.

The equationsof motion are derivedby taking the time derivative
of the total angular momentum of the system. If hc is de� ned as
hc D Ag Icg P° C As Iws Ä, then h D J! C hc and the time derivative
of h with respect to the body B frame is

Ph D PJ! C J P! C Phc D ¡[!£] h C ge (3)

where ge is an external torque (assumed here to be zero for simplic-
ity) and, where for any vector x D .x1; x2; x3/T 2 R3 , the notation

Fig. 1 Spacecraft body with a single VSCMG.
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[x£] denotes the skew-symmetric matrix

[x£] D

2
4

0 ¡x3 x2

x3 0 ¡x1

¡x2 x1 0

3
5

The matrices Ag , As , and At can be written using their initial
values at time t D 0, Ag0 , As0, and At0 and the gimbal angles as14

Ag D Ag0 (4)

As D As0[cos° ]d C At0[sin ° ]d (5)

At D At0[cos° ]d ¡ As0[sin ° ]d (6)

where cos° D .cos °1; : : : ; cos °N /T 2 RN and sin ° D .sin °1; : : : ;
sin °N /T 2 RN and where [x]d 2 RN £ N is a diagonalmatrix with its
elements the components of the vector x 2 RN ,

[x]d D

2

6664

x1 0 ¢ ¢ ¢ 0

0 x2 ¢ ¢ ¢
:::

:::
:::

: : :
:::

0 ¢ ¢ ¢ ¢ ¢ ¢ xN

3

7775

When Eqs. (4–6) are used, a simple calculation shows that
PAs D At [ P° ]d and PAt D ¡As[ P° ]d . The time derivatives of J and hc

in Eq. (3) are then calculated as

Phc D Ag Icg R° C PAs IwsÄ C As Iws PÄ

D Ag Icg R° C At Iws[Ä]d P° C As Iws PÄ (7)

PJ D At [ P° ]d.Ics ¡ Ict /AT
s C As[ P° ]d.Ics ¡ Ict /AT

t (8)

where we have made use of the obvious fact that [ P° ]dÄ D [Ä]d P° .
Finally, the dynamic equations take the form
©

At [ P° ]d.Ics ¡ Ict /AT
s C As[ P° ]d.Ics ¡ Ict /AT

t

ª
!

C J P! C Ag Icg R° C At Iws[Ä]d P° C As Iws PÄ

C [!£].J! C Ag Icg P° C As Iws Ä/ D 0 (9)

Note that the equations for a VSCMG system can also be applied
to a reaction/momemtum wheel system by letting the gimbal angles
° be constant. They can also be applied to a conventional CMG
system by letting the wheel rotation speeds Ä be constant.

Kinematics
The so-called modi� ed Rodrigues parameters (MRPs) given in

Refs. 23–25 are chosen to describe the attitude kinematics error of
the spacecraft.The MRPs are de� ned in terms of the Euler principal
unit vector Ó and angle Á by

¾ D Ó tan.Á=4/

The MRPs have the advantage of being well de� ned for the whole
range for rotations,23;24;26 that is, Á 2 [0; 2¼/. The differential equa-
tion that governs the kinematics in terms of the MRPs is given by

P¾ D G.¾ /! (10)

where

G.¾ / D 1
2

©
I C [¾ £] C ¾ ¾ T ¡

£
1
2
.1 C ¾ T ¾/

¤
I
ª

(11)

and I is the 3 £ 3 identity matrix.
We point out that the use of the MRPs to describe the kinematics

is done without loss of generality. Any other suitable kinematic
descriptioncould have been used with the conclusions of the paper
remaining essentially the same.

Model-Based Attitude-Tracking Controller
In this section a control law based on Lyapunov stability the-

ory is derived for the attitude-tracking problem. In the sequel, it
is assumed that the spacecraft and VSCMGs inertia properties are
exactly known.

Lyapunov Stability Condition for Attitude Tracking
Assume that the attitude to be tracked is given in terms of the

dynamics and kinematics of a desired reference frame (D frame),
that is, in terms of some known functions ¾d .t/, !d.t/, and P!d .t/
for t ¸ 0. Here, ¾d is the MRP vector presenting the attitude of the
D frame with respect to the inertial frame (N frame), and !d is the
angularvelocityof theD framewith respectto theN frameexpressed
in the B frame. Let !D

d be the angular velocity of the D frame
expressed in its own frame, and let P!D

d be the time derivative with
respect to the D frame, assumed to be known. Then the following
relationshipshold:

!d D C B
D!D

d ; P!d D C B
D P!D

d ¡ [!£]C B
D!D

d

The angular-velocity tracking error written in the body frame
(B frame) is de� ned as !e D ! ¡ !d and ¾e is the MRP error be-
tween the reference frame and the body frame calculated from
C B

D.¾e/ D C B
N .¾ /C N

D .¾d/. The kinematics of the MRP error is then

P¾e D G.¾e/!e

A feedback control law to render !e ! 0 and ¾e ! 0 is found
using the Lyapunov function6;10;23

V D 1
2
!T

e J!e C 2k0

¡
1 C ¾ T

e ¾e

¢
(12)

where k0 > 0. This function is positive de� nite and radially un-
boundedin termsof the trackingerrors!e and¾e .The timederivative
of V is

PV D
1

2
.! ¡ !d/T PJ .! ¡ !d / C .! ¡ !d/T J . P! ¡ P!d/

C 2k0
2¾ T

e P¾e

1 C ¾ T
e ¾e

D ¡.! ¡ !d /T

£
»

¡
1

2
PJ .! ¡ !d/ ¡ J . P! ¡ P!d/ ¡ k0¾e

¼

The preceding equation suggests that, for Lyapunov stability, the
choice

¡ 1
2

PJ .! ¡ !d/ ¡ J . P! ¡ P!d/ ¡ k0¾e D K1.! ¡ !d / (13)

where K1 is a 3 £ 3 positive de� nite matrix results in global asymp-
totic stability of the closed-loop system. [Strictly speaking, the
choice of Eq. (13) proves only Lyapunov stability. Asymptotic con-
vergenceto theoriginfollowsfroma straightforwardargumentusing
La Salle’s invariant set theory; see, for instance,Refs. 6 and 27. For
the sake of brevity, we omit the details of the proof.] Equation (3)
then implies that

Phc C 1
2

PJ .! C !d/ C [!£]Ag Icg P° D K1.! ¡ !d/

C k0¾e ¡ J P!d ¡ [!£].J! C As IwsÄ/ (14)

The left-hand side (LHS) of Eq. (14) contains the control inputs P°
and PÄ. In particular, it can be shown that

Phc C 1
2

PJ .! C !d/ C [!£]Ag Icg P° D B R° C C P° C D PÄ D L rm

where

B D Ag Icg (15)

C D At Iws[Ä]d C [!£]Ag Icg C 1
2

£¡
es1e

T
t1 C et1eT

s1

¢
.! C !d/; : : : ;

¡
es N eT

t N C et N eT
s N

¢
.! C !d/

¤
.Ics ¡ Ict / (16)

D D As Iws (17)
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When the right-hand side (RHS) of Eq. (14) is denoted as the re-
quired control torque L rm for attitude tracking

L rm D K1.! ¡ !d / C k0¾e ¡ J P!d ¡ [!£] .J! C As IwsÄ/

one obtains that the control inputs must be chosen as

B R° C C P° C D PÄ D Lrm (18)

Velocity-Based Steering Law for Attitude Tracking
Typically, the gimbal acceleration term B R° can be ignored be-

cause the matrix B is small compared to the matrices C and D
(Ref. 10). In this case P° and PÄ can be used as control inputs in-
stead of R° and PÄ. This is referred to in the literature as (gimbal)
velocity-based steering law. Let B R° ¼ 0 in Eq. (18); the condition
for stabilization then becomes

[C D]

µ
P°
PÄ

¶
D L rm (19)

Because Iws and [Ä]d are diagonal matrices and the second and
third terms in the RHS of Eq. (16) are relatively small, it follows
that the column vectors of the C matrix are almost parallel to the
transverse axes of the gimbal structure and that the column vectors
of the D matrix are parallel to the spin axes of the gimbal structure.
Therefore, if there are at least two VSCMGs and their (� xed) gimbal
axes are not parallel to each other, and if none of the wheel spin rates
becomes zero, the columnvectorsof C and D always span the three-
dimensionalspace. It follows that this VSCMG system can generate
control torques along an arbitrary direction. In other words, such a
VSCMG system never falls into the singularity (gimbal lock) of a
conventionalCMG system because of the extra degrees of freedom
provided by the wheel speed control.10 Moreover, if we have three
or more VSCMGs, Eq. (19) is underdetermined, and there exist
null-motion solutions that do not have any effect on the generated
control torque.11;13 Therefore,we can use this null motion for power
tracking and/or wheel speed equalization. This is discussed in the
forthcoming “Power Tracking” section.

Adaptive Attitude Tracking Controller
In this section,we designa controllaw to deal with theuncertainty

associated with the spacecraft inertia matrix. Several research re-
sults have been publishedon adaptiveattitude control of spacecraft,
but most of these results use gas jets and/or reaction/momentum
wheels as actuators. In all of these cases, the spacecraft inertia ma-
trix J is constant. As already stated, a dif� culty arises because in
the VSCMG (and CMG) case the spacecraft inertia matrix J is not
constant because it depends on the gimbal angles ° .

Next, we propose an adaptive control law for the VSCMG case.
The approach follows arguments that are similar (but not identi-
cal) to standard adaptive control design techniques. In the sequel,
we assume that the VSCMG cluster inertia properties are exactly
known.

Adaptive Control with VSCMGs
In the VSCMG mode, the inertiamatrix J is not constantbecause

it depends on the gimbal angles ° . However, the derivative of J is
known because it is determined by the control gimbal commands
P° . In this section we use this observation to design an adaptive
control law that uses estimates of the elementsof J . Althoughdirect
adaptiveschemes that do not identify the moments of inertiaare also
possible, knowledge of the inertia matrix is often required to meet
other mission objectives. We do not pursue such direct adaptive
schemes in this work. Of course, as with all typical adaptive control
schemes, persistency of excitation of the trajectory is required to
identify the correct values of the inertia matrix. Nonetheless, in all
cases it is shown that the controller stabilizes the system.

First, we rewrite the equations of the system (9) as

1
2

PJ! C J P! C [!£].J! C As IwsÄ/ C B R° C QC P° C D PÄ D 0 (20)

where B and D as in Eqs. (15) and (17) and where

QC D At Iws[Ä]d C [!£]Ag Icg C 1
2

£¡
es1eT

t1 C et1eT
s1

¢
!; : : : ;

.es N eT
t N C et N eT

s N /!
¤
.Ics ¡ Ict / (21)

We again make the assumption that the term B R° can be neglected,
and hence, the system dynamics reduce to

1
2

PJ ! C J P! C [!£].J! C As Iws Ä/ C QC P° C D PÄ D 0 (22)

By differentiatingnow Eq. (10), one obtains

! D G¡1.¾ / P¾; R¾ D G.¾ / P! C PG.¾; P¾ /!

and by use of Eq. (22),

JG¡1.¾ / R¾ D JG¡1.¾ / PG.¾; P¾ /! C J P! D J G¡1.¾ / PG.¾; P¾ /!

¡ [!£].J! C As IwsÄ/ ¡ QC P° ¡ D PÄ ¡ 1
2

PJ!

Let h1 D J! and h2 D As Iws Ä. The equationof the system can then
be written in standard form:

H ¤.¾ / R¾ C C¤.¾; P¾ / P¾ D F (23)

where

H ¤.¾ / D G¡T .¾ /JG¡1.¾ /

C¤.¾; P¾ / D ¡G¡T .¾ /J G¡1.¾ / PG.¾; P¾ /G¡1.¾ /

¡ G¡T .¾ /
£
h£

1

¤
G¡1.¾ /

F D G¡T .¾/
£
h£

2

¤
! ¡ G¡T .¾ /. QC P° C D PÄ/ ¡ 1

2 G¡T .¾/ PJ!

Note that the LHS of Eq. (23) is linear in terms of the elements of
J , which are the unknown parameters to be estimated.

The term PG.¾; P¾ / can be derived by differentiatingEq. (11) as

PG.¾; P¾ / D 1
2 .[ P¾ £] C P¾ ¾ T C ¾ P¾ T ¡ P¾ T ¾ I / (24)

Using the fact that d=dt .G¡1/ D ¡G¡1 PGG¡1 , we have

PH ¤ ¡ 2C ¤ D
d

dt
.G¡T /J G¡1 ¡ G¡T J

d

dt
.G¡1/

C 2G¡T
£
h£

1

¤
G¡1 C G¡T .¾ / PJG¡1.¾ /

which implies that the matrix . PH ¤ ¡ 2C¤ ¡ G¡T PJ G¡1/ is skew
symmetric.

The remaining procedure follows one of the standard adaptive
control design methods.20 To this end, let a 2 R6 be the parameter
vector de� ned by

a D .J11; J12; J13; J22; J23; J33/T (25)

and let Oa be the parametervectorestimate.The parameterestimation
error is Qa D Oa ¡ a, and Q¾ D ¾ ¡ ¾d is the attitude tracking error.
Consider now the Lyapunov-likefunction

Va D 1
2 sT H ¤.¾/s C 1

2 QaT 0¡1 Qa (26)

where 0 is a strictly positive constant matrix and s D PQ¾ C ¸ Q¾ D
P¾ ¡ P¾r (¸ > 0) is a measure of the attitude tracking error. Note
that P¾r D P¾d ¡ ¸ Q¾ is the reference velocity vector. Differentiat-
ing Va , and using the skew-symmetry of the matrix . PH ¤ ¡ 2C¤ ¡
G¡T PJ G¡1/, one obtains

PVa D sT
£
F ¡ H ¤.¾ / R¾r ¡ C ¤.¾; P¾ / P¾r C 1

2 G¡T .¾ / PJ G¡1.¾/s
¤

C QaT 0¡1 PQa

Let a control law be such that

F D OH ¤.¾/ R¾r C OC ¤.¾; P¾ / P¾r ¡ KDs ¡ 1
2 G¡T .¾/ PJ G¡1.¾ /s (27)
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where OH ¤ D G¡T OJ G¡1 and OC¤ D ¡G¡T OJ G¡1 PGG¡1 ¡
G¡T [ Oh£

1 ]G¡1 and where KD is a symmetric positive de� nite ma-
trix. Then it follows that

PVa D sT
£

QH ¤.¾/ R¾r C QC¤.¾; P¾ / P¾r ¡ KD s
¤

C QaT 0¡1. POa ¡ Pa/

where QH ¤.¾ / D OH ¤.¾ / ¡ H ¤.¾ / and QC ¤.¾; P¾ / D OC¤.¾; P¾ / ¡
C¤.¾; P¾/. Note that Eq. (8) implies that Pa is known if P° is known.

The linear parameterization of the dynamics allows us to de� ne
a known matrix Y ¤.¾; P¾; P¾r ; R¾r / such that

QH ¤.¾ / R¾r C QC ¤.¾; P¾ / P¾r D Y ¤.¾; P¾; P¾r ; R¾r / Qa (28)

Choosing the adaptation law as

POa D ¡0.Y ¤/T s C Pa (29)

yields PVa D ¡sT KDs · 0. The last inequality implies boundedness
of sand Qa and, in addition,thats ! 0. Usingstandardarguments,20;27

it follows that ¾ ! ¾d . Therefore, global asymptotic stability of the
attitude-trackingerror is guaranteed.

From Eq. (27) it follows that the required control inputs are
obtained by solving

[C D]

µ
P°
PÄ

¶
D Lra (30)

where D D As Iws and

C D At Iws [Ä]d C [!£]Ag Icg

C 1
2

£¡
es1eT

t1 C et1eT
s1

¢¡
! C G¡1 P¾r

¢
; : : : ;

¡
es N eT

t N C et N eT
s N

¢¡
! C G¡1 P¾r

¢¤
.Ics ¡ Ict / (31)

and where

Lra D ¡GT .¾ /
£ OH ¤.¾ / R¾r C OC ¤ P¾r ¡ KDs

¤
C

£
h£

2

¤
! (32)

Once P° is known from the solution of Eq. (30), it can be substituted
in the adaptive control law in Eq. (29).

Remark: Usually the combinedmatrix of inertia of the spacecraft
platformand the pointmasses of VSCMGs, BI , occupiesmost of the
total matrix of inertia J .° /, and the ° -dependentpart of the inertia
matrix is relatively small. In such a case, we can assume that J is
a constant matrix. With this assumption, the equation of the system
(20) can be written in a simpli� ed form as

J P! C [!£].J! C As IwsÄ/ C B R° C QCs P° C D PÄ D 0 (33)

where B and D are as in Eqs. (15) and (17) and where
QCs D At Iws[Ä]d C [!£]Ag Icg . The equation in the standard form
[Eq. (23)] remains the same, except that now F becomes

Fs D G¡T .¾ /
£
h£

2

¤
! ¡ G¡T .¾/. QCs P° C D PÄ/

Moreover, we have

PH ¤ ¡ 2C¤ D
d
dt

.G¡T /J G¡1 ¡ G¡T J
d
dt

.G¡1/ C 2G¡T
£
h£

1

¤
G¡1

which implies that the matrix PH ¤ ¡ 2C ¤ is skew symmetric. There-
fore, the required control input is obtained by solving Eq. (30) with
QCs instead of C . The adaptation law also simpli� es to

POa D ¡0.Y ¤/T s (34)

Acceleration-Based Steering Law for Attitude Tracking
The gimbal motors require angle acceleration (equivalently,

torque) commands instead of gimbal rate commands. The control
law in terms of P° has then to be implemented via another feedback
loop around the gimbal angle acceleration. For instance, once the
reference or desired gimbal rate command P° d has been determined
from, for example, Eq. (19) or Eq. (30), the gimbal acceleration
(and, hence, torque) command can be computed from

R° D K4. P° ¡ P° d/ C R° d ¼ K4. P° ¡ P° d / (35)

where K4 is a 4 £ 4 matrix of controller gains. When the matrix K4

is chosen to be Hurwitz, this control law will force the actual gimbal
rates P° to track P° d as t ! 1.

Power Tracking
In Ref. 6 a solution to the simultaneous attitude and power-

tracking problem was given for the case of a rigid spacecraft with
N momentum wheels. In this section, we extend these results to
the case of N VSCMGs. By setting the gimbal angles to a constant
value, we can retrieve the results of Ref. 6 as a special case.

The total (useful) kinetic energy stored in the momentum wheels
is

T D 1
2 ÄT IwsÄ

Hence, the power (rate of change of the energy) is given by

P D
dT

dt
D ÄT Iws PÄ D

£
0 ÄT Iws

¤ µ
P°
PÄ

¶
(36)

This equation is augmented to the attitude-trackingequation (19)
or Eq. (30), to obtain the equation for IPACS with VSCMG as
follows:

Qu D Lr p (37)

where

u D
µ

P°
PÄ

¶
; Q4 £ 2N D

"
C3 £ N D3 £ N

01 £ N

¡
ÄT Iws

¢
1 £ N

#

Lr p D
µ

Lr

P

¶
(38)

and P is the required power and Lr is either Lrm or Lra , depending
on the attitude controller used.

Solution of Velocity Steering Law for IPACS
If the Q matrix has rank 4 (is full row rank),Eq. (37) has in� nitely

many solutionsand the minimum-normsolution,which is generally
chosen among the solutions to reduce the input, can be calculated
from

u D QT .QQT /¡1 Lr p (39)

If the C matrix in Eq. (38) has rank 3 (is full row rank), then the
matrix Q is also full row rank, and the control can be calculated
from Eq. (39). If, however, the C matrix has rank 2, then Q may
be rank de� cient, and an exact solution that satis� es Eq. (37) does
not exist unless L rp is in the range of Q. Otherwise, only an ap-
proximate solution can be calculated from u D Q†Lr p , where Q†

is the Moore–Penrose inverse of Q. [Because the Moore–Penrose
inverse solutionbecomes equal to Eq. (39) when Q is full row rank,
we can always choose this solution regardless of the rank of Q.] In
this case, simultaneous attitude and power tracking is not possible,
except in very special cases.6

Although the rank de� ciency of the C matrix can be reduced
using more VSCMGs, the possibility of a singularity still remains.
Moreover, if the minimum-norm solution of Eq. (37) is used for
control, this solution tends to steer the gimbals toward the rank
de� ciency states.28¡30 This happens because the projection of the
generated torques along the required torque direction is maximum
when the transverse axis of the gimbal (the axis along which torque
can be generated in CMG mode) is close to the required torque.
Thus, the minimum-norm solution tends to use the gimbals whose
con� guration is far from the rank de� ciency states.Several methods
have been proposed for keeping the matrix C full rank using null
motion.10;11;13;30 In particular,Schaubet al.10 suggesteda singularity
avoidancemethod using a VSCMG system.

It is advantageousfor the VSCMGs to act as conventionalCMGs
to make the most out of the torque ampli� cation effect, which is the
most signi� cant merit of the CMGs. A weighted minimum-norm
solution, which minimizes the weighted cost

J2 D 1
2 uT W ¡1u (40)
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can be used to operate between the CMG and MW modes.10 For
example, if the weighting matrix W is de� ned as

W D
µ

w1e¡w2¾c IN 0N

0N IN

¶
(41)

where IN is the N £ N identitymatrix and where ¾c is the condition
number of C (the ratio of the largest to the smallest singular value)
and w1 and w2 are positive gains chosen by the user, the weighted
minimum-norm solution control law is given by

u D W QT .QW QT /¡1 Lr p (42)

In case Q is not full row rank, the approximate solution can be
obtained from

u D W
1
2
¡
QW

1
2
¢†

Lr p (43)

Note that according to the condition number of the matrix C , the
VSCMG can operate either as a MW (close to a CMG singularity,
i.e., when ¾c is large) or as a regular CMG (away from a singularity,
i.e., when ¾c is small). As a CMG singularity is approached, the
VSCMGs will smoothly switch to a momentum wheel mode. As a
result, this method can also handle temporary rank de� ciencies of
the matrix C (Ref. 10). In this work, the condition number of the
matrix C is used as a measure of closeness of the matrix C to being
rank de� cient. Larger condition numbers mean a more “singular”
matrix C . This is a more reliable measure of rank de� ciency of
a matrix than, for example, the determinant of the matrix.31 The
condition numbers have also been used in Refs. 11 and 13.

Notice that a purely MW mode can be enforced by letting W in
Eq. (42) be

WMW D
µ

0N 0N

0N IN

¶

A conventional CMG operation is enforced if W in Eq. (42) is
chosen as

WCMG D
µ

IN 0N

0N 0N

¶

As alluded to in the Introduction, in MW mode the VSCMGs are
power inef� cient (when compared to low-speed � ywheels). Under
normal conditions, however, the MW mode will be engaged only
sporadically,and for short periods of time, to provide the necessary
torque (albeit in a power-inef� cient manner) near singularities.

Wheel Speed Equalization
If some of the wheel spin rates become too small, a change of

the gimbal angle cannot generate the required torque. If this is the
case, the remaining degrees of freedom may not be enough to allow
exact attitude and power tracking. On the other hand, if some of
the wheel spin rates become too high, some of the wheels may
saturate. Desaturation of the wheels requires thruster � ring, thus
depleting valuable fuel. To minimize the possibility of singularity
and/orwheel saturation,it is desirableto equalizethewheel spinning
rates of the VSCMGs, whenever possible. Next, we propose two
control laws to achieve wheel speed equalization for a VSCMG-
based IPACS.

The � rst method adds an extra constraint that forces the wheel
speeds to converge to the average wheel speed of the cluster.By the
introductionof

Jw1.Ä1; : : : ; ÄN / D
1

2

NX

i D 1

.Äi ¡ NÄ/2 D
1

2
ÄT

e Äe (44)

where

NÄ D
1

N

NX

i D 1

Äi ; Äe D Ä ¡ NÄ1N £ 1

and 1N £ 1 is N £ 1 vector whose elements are 1s, the condition for
equalization is expressed as the requirement that

d

dt
Jw1 D rJw1 PÄ D

NX

i D 1

@Jw1

@Äi

PÄi D ¡k2Jw1

where k2 > 0. This condition is augmented in Eq. (37), and the con-
trol input u is calculated from this augmented equation.Summariz-
ing, the control law that achieves attitude and power tracking with
wheel speed equalization is given by

2
4

C D
0 ÄT Iws

0 rJw1

3
5

µ
P°
PÄ

¶
D

2
4

L r

P

¡k2Jw1

3
5 (45)

and the use of Eq. (42). Using the fact that Äe D
[IN ¡ .1=N /1N £ N ]Ä, where 1N £ N is N £ N matrix whose elem-
ents are 1s, and the fact that the matrix [IN ¡ .1=N /1N £ N ] is idem-
potent, it can be easily shown that rJw1 D ÄT

e . (Note that a matrix
A is idempotent if A2 D A.)

The second method uses a modi� ed cost of Eq. (40) in which the
directions of wheel speed changes are considered. The cost to be
minimized in this case is expressed as

Jw2 D 1
2
uT W¡1u C Ru (46)

The weighting matrix R is determined so that the wheels that rotate
faster or slower than the averagewheel speedare suitablypenalized.
For instance, one may choose

R D
£
01 £ N k3Ä

T
e

¤
(47)

where k3 > 0. The motivation for this choice for R stems from the
following observation.Notice that with R as in Eq. (47) we have

Ru D
NX

i D 1

.Äi ¡ NÄ/ PÄi

If Äi > NÄ for some i , then Ru is minimized by choosing PÄi < 0,
that is, by making Äi tend closer to NÄ. If, on the other hand,Äi < NÄ,
then Ru is minimized by choosing PÄi > 0, forcing again Äi toward
NÄ. Of course, the linear term Ru does not have an unconstrained
minimum; hence, a quadratic term is included in Eq. (46) to ensure
that the minimization problem has a solution.

The solution that minimizes the cost (46) subject to the equality
constraint (37) is

u D W
£
QT .QW QT /¡1

¡
Lr p C QW RT

¢
¡ RT

¤
(48)

In case Q is not full row rank, the equation

u D W
1
2
¡
QW

1
2
¢†¡

L rp C QW RT
¢

¡ W RT

D W
1
2
¡
QW

1
2
¢†

Lr p ¡
£
I ¡ W

1
2
¡
QW

1
2
¢†

Q
¤
W RT (49)

can be used, instead. Note that this method is identical with the
control law without wheel speed equalization if k3 D 0.

It can be shown that with the choice W D ® I (® > 0), the second
method is basically equivalent to so-called the gradient method,32

which was originally devised for the singularity avoidanceproblem
of conventional CMGs13;32 using the null motion. The null motion
does not have any effect on the generated output torque but has
the effect of increasing (or decreasing) the cost function. The null
motion of Eq. (37) can be written as

µ
P°
PÄ

¶

null

D [I ¡ Q† Q]d D Pd; d 2 R2N £ 1 (50)

It can be easily shown that Q[ P° T ; PÄT ]T
null D 0 and that the projec-

tion matrix P D [I ¡ Q† Q] is idempotent. It is also a symmetric
matrix (and, hence, positive semide� nite) because it represents an
orthogonalprojection onto the null subspace of the matrix Q.
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If now the vector d is selected as

d D ¡k3

2

6664

@J T
w1

@°

@J T
w1

@Ä

3

7775 (51)

then the rate of change of Jw1 due to the null motion is

PJ w1jnull D
µ

@Jw1

@°

@Jw1

@Ä

¶ µ
P°
PÄ

¶

null

D ¡k3

µ
@Jw1

@°

@Jw1

@Ä

¶
P

2

6664

@J T
w1

@°

@J T
w1

@Ä

3

7775 · 0

Thus, it is expected that the wheel speeds will be equalized.We also
see that in case W D ® I the quantityW RT in Eq. (49) is equal to ¡d
in Eq. (51), because @Jw1=@° D 0 and @Jw1=@Ä D ÄT

e . It follows
that the second method is identical to the gradient method.

Each of the preceding two wheel speed equalization algorithms
has its own merits and pitfalls.The � rst one guaranteesexact equal-
ization for the IPACS. However, this method uses an additional
degree of freedom because one has to solve the augmented linear
system (45). The second method, on the other hand, shows a ten-
dency forwheel speedequalization,but it does not guaranteeperfect
equalizationof wheel speeds, in general. The wheel speeds tend to
become equal away from the CMG singularity but they exhibit a
bifurcationnear the singularitybecause the torques for attitude con-
trol must be generatedfrom changesof wheel speeds.However, this
method does not use any additional degrees of freedom. If some
other objectives such as a singularity avoidance strategy is desired,
the second method may be preferable.

Table 1 Simulation parameters

Symbol Value

N 4
µ 54.75 deg
!.0/ [0; 0; 0]T rad/s
P!.0/ [0; 0; 0]T rad/s2

¾.0/ [0; 0; 0]T

° .0/ [¼=2; ¡¼=2; ¡¼=2; ¼=2]T rad
P° .0/ [0; 0; 0]T rad/s2

BI

"
15,053 3,000 ¡1,000
3,000 6,510 2,000

¡1,000 2,000 11,122

#
kg ¢ m2

Iws diagf0.7, 0.7, 0.7, 0.7g kg ¢ m2

Iwt ; Iwg diagf0.4, 0.4, 0.4, 0.4g kg ¢ m2

Igs ; Igt ; Igg diagf0.1, 0.1, 0.1, 0.1g kg ¢ m2

Fig. 2 Attitude error trajectory.

Numerical Examples
A numerical example for a satellite in a low Earth orbit is pro-

vided to test the proposed IPACS algorithm. Similar to Refs. 8 and
10, we use a standard four-VSCMG pyramid con� guration. In this
con� guration, the VSCMGs are installed so that the four gimbal
axes form a pyramid with respect to the body. The angle of each of
the pyramid sides to its base (assumed to be parallel to the space-
craft x–y plane) is given by µ . Table 1 contains the parameters used
for the simulations.These parameters closely parallel those used in
Refs. 8 and 10.

Two simulation scenarios are presented to demonstrate the valid-
ity of the adaptive IPACS and speed equalizationcontrol algorithms
given in the preceding sections. In the � rst scenario, a satellite in a

Fig. 3 Desired £, and actual ——, power pro� les.

a) Method 1

b) Method 2

Fig. 4 Angular wheel speeds with speed equalization.
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Fig. 5 Gimbal angles, control inputs, and condition number of matrix C (method 1).

a)

b)

c)

d)

Fig. 6 Gimbal angles, control inputs, and condition number of matrix C (method 2).
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near-polar orbit with a period of 98 min is considered. (The orbital
data are chosenas in Ref. 6.)The satellite’s boresightaxis is required
to track a ground station, and the satellite is required to rotate about
its boresight axis so that the solar panel axis is perpendicular to
the satellite–sun axis to maximize the ef� ciency of the panel. For
simplicity, it is assumed that the satellite keeps tracking the ground
station and the sun even when these are not directly visible due to
the location of the Earth.

During the eclipse (which lasts approximately35 min), the nom-
inal power requirement is 680 W, with an additional requirementof
4-kW power for 5 min. During sunlight (which lasts approximately
63 min), the wheels are chargedwith a power level of 1 kW until the
total energy stored in the wheels reaches 1.5 kW ¢ h. These attitude-
and power-tracking requirements are the same as in Ref. 6. The
details of the method used to generated the required attitude, body
rate, and body acceleration are also given in the same reference. In
this scenario, the spacecraft body frame is initially aligned with the
inertial frame. The control gains are chosen as

K D D 4 £ 103 I3 £ 3; 0 D 1 £ 107 I6 £ 6; ¸ D 0:01

k2 D 2 £ 10¡3; k3 D 2 £ 10¡3; K4 D ¡2I4 £ 4

w1 D 1 £ 10¡4; w2 D 1

based on trial and error. As a challenging case, all of the initial
parameter estimates are chosen to be zero, which means no initial
information about the inertia matrix is available. In practice, any
educated estimate of the inertia parameters (or prior experience)
can be used to choose the controller gains or the initial parame-
ter estimates accordingly.The results of the numerical simulations
are shown next. Figure 2 shows the attitude error. The spacecraft
attitude tracks the desired attitude exactly after a short period of

a)

b)

Fig. 7 Attitude error trajectories: a) without adaptation and b) with
adaptation.

time. Figure 3 shows that the actual power pro� le also tracks the
required power command exactly. The crosses indicate the desired
power history and the solid line indicates the actual power history.
Figures 2 and 3 show that the goal of IPACS is achieved success-
fully.Figure 4 shows the wheel speedhistorieswhen each of the two
wheel equalization methods is applied. The corresponding gimbal
angles and control signals for both methods are shown in Fig. 5 and
6. The attitude histories are similar for both cases.

As seen fromFig. 4a, the � rst methodachievesexact speedequal-
ization, whereas the second method equalizes the wheels only ap-
proximately(Fig. 4b). In fact, after the conditionnumber of the ma-
trix C becomes large(Fig. 6d) the secondmethod switchessmoothly
to a MW mode, and thus, the wheel speeds deviate from each other.
The � rst method still keeps the wheel speeds equalized after the
sudden change of the required power pro� le, whereas the second
method shows a tendencyof divergence.As expected,in both cases,
the wheels spin-up (charge) during sunlight and despin (discharge)
during the eclipse.

Note that in all simulations the moment of inertia matrix has been
assumed to be completely unknown.Despite this, the adaptive con-
trol law achieves both attitude and power tracking while equalizing
the wheel speeds, as desired.Although the control algorithmshows
excellent attitude-/power-tracking performance, the reference atti-
tude trajectory in this scenario is too slow to achieveparameter con-
vergence. To emphasize the performanceof the adaptive controller,
we considered another scenario in which the reference trajectory
varies much faster. For illustration purposes, a reference trajectory
similar to the coning motion of Ref. 16 is chosen. Initially, the ref-
erence attitude is aligned with the actual attitude, and the angular
velocity of the reference attitude is chosen as

!d.t/ D 0:02

£ [sin.2¼ t=800/; sin.2¼ t=600/; sin.2¼ t=400/]T rad/s

Jx x , Jyy , Jzz

Jx y , Jx z , Jyz

Fig. 8 Parameter convergence for coning motion.
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A 20% uncertainty in the spacecraft nominal inertia matrix BI is
assumed. Figure 7 shows the attitude error trajectories with and
without adaptation.These simulation results show that the designed
adaptive control gives signi� cantly improved performance over the
controllerwithout adaptation.The time history of the inertia param-
eters are shown in Fig. 8. The horizontal lines are the actual values
of the parameters. As shown in Fig. 8, parameter convergence is
achieved for this maneuver.

Conclusions
We have developedalgorithms for controllingthe spacecraftatti-

tude in orbit while simultaneously tracking a desired power pro� le
using a cluster of VSCMGs. For attitude tracking, both a model-
based control that assumes exact knowledge of the spacecraft in-
ertia matrix and an adaptive control that deals with the uncertainty
of the inertia matrix have been proposed. These control laws have
been augmented with a power-trackingalgorithm, to solve for a ve-
locity steering law for an IPACS. The scheme is similar to previous
results that decomposethe torqueinto two perpendicularspaces:one
for attitude controland the other for power tracking.6;7 Although the
VSCMG systemdoesnot exhibitgimbal lock in the attitude-tracking
mode, singularities may still occur if a power pro� le must also be
followed. This problem can be solved using any of the singularity
avoidancemethods for a conventionalCMG system. A wheel speed
equalizationmethod has also been devised to reduce the possibility
of singularity and to avoid actuator saturationproblems. Numerical
examples based on a realistic scenario demonstrate the ef� cacy of
the proposed control methods.
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