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Abstract

This work aims to solve the problem of relative navigation for space rendezvous and prox-
imity operations using a monocular camera in a numerically efficient manner. It is assumed
that the target spacecraft has a special pattern to aid the task of relative pose estimation,
and that the chaser spacecraft uses a monocular camera as the primary visual sensor. In this
sense, the problem falls under the category of cooperative relative navigation in orbit. While
existing systems for cooperative localization with fiducial markers allow full 6-DOF pose esti-
mation, the majority of them are not suitable for in-space cooperative navigation (especially
when involving a small-size chaser spacecraft), due to their computational cost. Moreover,
most existing fiducial-based localization methods are designed for ground-based applications
with limited range (e.g., ground robotics, augmented reality), and their performance dete-
riorates under large scale changes, such as those encountered in space applications. Using
an adaptive visual algorithm, we propose an accurate and numerically efficient approach
for real-time vision-based relative navigation, especially designed for space robotics appli-
cations. The proposed method achieves low computational cost, and high accuracy and
robustness, via the following innovations: first, an adaptive visual pattern detection scheme
based on the estimated relative pose is proposed, which improves both the efficiency of
detection and accuracy of pose estimates; second, a parametric blob detector called Box-
LoG is used, which is computationally efficient; and third, a fast and robust algorithm is
introduced, which jointly solves the data association and pose estimation problems. In ad-



dition to having an accuracy comparable to state-of-art cooperative localization algorithms,
our method demonstrates a significant improvement in speed and robustness for scenarios
with large range changes. A vision-based closed-loop experiment using the Autonomous
Spacecraft Testing of Robotic Operations in Space (ASTROS) testbed demonstrates the
performance benefits of the proposed approach.

1 Introduction

Satellite proximity operations are deemed as an enabling technology that can revolutionize future space
operations. The ability to autonomously circumnavigate a target satellite or an asteroid and determine its
relative motion is a necessary ingredient to make tasks such as servicing, health-monitoring, surveillance
and inspection in orbit or for deep space missions routine [Rekleitis et al., 2007, Sun et al., 2014]. Owing
to the large distances involved, human intervention is often not a suitable or timely option. Subsequently,
satellite robotic operations require a large degree of autonomy, accuracy and robustness [Flückiger and Utz,
2014]. While relative pose (i.e., position and attitude) estimation can be made easier and more accurate
with the use of external aids (ground-based signals or target satellite radio-navigation) or active means (e.g.,
LiDARs), the same task is more challenging when passive sensors (e.g., vision cameras) have to be used,
or when the on-board computational resources of the chaser spacecraft are limited. The latter is typically
the case with small chaser satellites. In fact, several space applications (formation flight, persistent Space
Situational Awareness (SSA)) call for small satellites to be used in lieu of a larger, monolithic satellite, as it
is the current practice. Algorithm development for reliable vision-based relative navigation that is suitable
for real-time implementation on such small satellites is currently an open problem.

The motivation behind the proposed work arises from the need for an in-space localization system that
achieves good numerical efficiency while, at the same time, provides highly accurate and robust solutions to
the relative pose estimation problem for small satellites having limited on-board power and computational
resources. Previously, several techniques have been proposed to solve the relative pose estimation problem
between two spacecraft in orbit. These techniques either emphasize the sensory data used (GPS in conjunc-
tion with IMU data, LiDAR sensing data, etc.), or use additional aids, such as ground station aided relative
navigation [DiMatteo et al., 2009, Ruel and Luu, 2010, Kasai et al., 1999, Gaylor and Lightsey, 2003, Ruel
et al., 2011]. Their performance may suffer when applied to persistent pose tracking in space over long
durations (e.g., IMUs experience drift). LiDAR sensors can be used to provide high accuracy, but LiDAR
sensors require a lot of power to operate. An alternative to LiDAR sensors is the use of passive visual sensors
that take advantage of the natural light from the Sun to illuminate the target. While the use of passive visual
sensors also comes with a unique set of challenges (high contrast in space, continuously and rapidly changing
illuminating conditions especially in low Earth orbit, etc), recent developments in visual localization suggest
that vision-based relative pose estimation may be a feasible alternative for relative navigation in space. Since
vision sensors have become more accurate, smaller, and have low power consumption, they are especially
suitable for space applications where the on-board resources (power, computational hardware) are limited
and where relative pose maneuvering occurs over long time scales.

Our work falls under the class of vision-enabled cooperative satellite proximity operations [Fehse, 2003]. In
the cooperative satellite proximity operations scenario, the objective is to achieve relative navigation with
respect to the target satellite, whose motion is not known but it can be inferred by observing a known target
pattern attached on the target satellite main body. Although it shares a similar objective with cooperative
navigation in other robotic applications, the in-space scenario has particular challenges in the following
aspects: (a) it must be efficient both in terms of computation and memory, due to the limited on-board
resources; (b) it must be robust with respect to large scale changes in the environment and the unknown
status of the target (e.g., target can be in or out of the camera field of view); (c) it requires high accuracy
for relative localization; and (d) a high update frequency is required for better closed-loop performance with
a pose-tracking controller.



Figure 1: Overall schematic of proposed cooperative navigation system. The system consists of two main feed-
back loops: one inside the camera localization sub-system, while the other implements the feedback control
loop using the inertia-free pose-tracking controller based on dual quaternions from [Filipe and Tsiotras,
2014]. This paper focuses on the localization sub-system, which is independent from the control sub-system.
The forward loop of the localization sub-system processes each captured image in real-time. The steps of the
localization subsystem are as follows: detection of the target with integral image and Box-LoG kernel; target
acquisition; once target is acquired, the relative pose is estimated by jointly solving the data-association and
pose estimation problem, and the solution is subsequently optimized via smoothing. In the feedback loop,
the predicted homography is fed back to adapt the detector parameters to facilitate detection in the next
image frame.

To address the above challenges, this paper proposes a novel closed-loop cooperative navigation approach
especially designed for space applications involving small satellites with limited resources. The overall struc-
ture of the proposed approach is depicted in Figure 1. The main forward loop implements the camera
localization system, which is the main focus of this paper. Note that camera localization is relative with
respect to a target whose motion in inertial space may be unknown. The outer loop is utilized to feed back
the measured relative pose to an inertia-free pose-tracking controller based on dual quaternions [Filipe and
Tsiotras, 2014]. The overall system is experimentally validated using the 5DOF Autonomous Spacecraft
Testing of Robotic Operations in Space (ASTROS) facility at the School of Aerospace Engineering of Geor-
gia Institute of Technology. The ASTROS is a realistic experimental platform for testing spacecraft attitude
control and similar space proximity operations in a 1-g environment. More details about the capabilities of
the ASTROS can be found in [Cho et al., 2009] and [Tsiotras, 2014].

A key contribution of this work is the feedback loop formulation inside the localization system (see Figure 1).
The optimized homography is fed to a homography predictor based on a constant motion model. The
predicted homography is then decomposed to extract the rotation and scaling effects of the perspective
transformation for the next image frame. This is used as prior information to adapt the Box-LoG detector to
be used in the next localization iteration. As shown in Figure 1, the camera localization system is structured
as a closed-loop system whose intermediate output, the homography from the last frame, is fed back in
order to adapt the parameters of the detector. After initialization, and for each captured image from the
on-board camera, the proposed Box-LoG detector (see Section 3) is adapted to compensate the perspective
transformation between the camera and the target. A subsequent pattern detection step generates the
integral image from the raw image, and it convolves the result with a Box-LoG kernel via a set of Dirac
delta functions. The use of an integral image along with the Dirac delta functions provides much lower
computational complexity compared to the traditional convolution with the original image. The Box-LoG
detector determines whether a target is present, and if so, the next step jointly solves the data-association and
relative pose estimation problems via robust point-set registration with Gaussian Mixture Model generators.
The registration is efficiently optimized over the set of homography maps, and the camera pose is extracted
from the optimized homography. The final estimated pose is the output of a smoothing step.

The proposed algorithm addresses some of the challenges of a cooperative spacecraft rendezvous discussed
earlier, by incorporating the following advantages: (a) computation and memory efficiency: both the com-



putational and memory complexity are of linear order in terms of the image size; (b) robustness: the ability
to deal with the (partial) out-of-view status of the pattern and the adaptivity of distance changes via the
multi-scale selection of the pattern, as demonstrated in the experiments; (c) high localization accuracy: the
algorithm achieves the same level of accuracy as other state-of-the-art methods, i.e. AprilTag [Olson, 2011];
(d) high update frequency: high update frequency is demonstrated with modest hardware requirements
and good overall performance when the algorithm is used in closed-loop with an inertia-free pose-tracking
controller based on dual quaternions from [Filipe and Tsiotras, 2014].

This work builds upon our previous work on cooperative navigation, reported in [Zhang et al., 2014], by
adding the following specific contributions: First, the method in [Zhang et al., 2014] is extended to achieve
real-time performance with limited-capability computational hardware. Second, the original Box-LoG kernel
is improved with homography prediction and perspective compensation, both of which improve detection
and estimation performance under severe perspective transformations. Third, the controlled closed-loop
system is validated through a relative attitude regulation experiment with respect to a moving target using
a realistic experimental test platform. Finally, an extensive comparison both in terms of theoretical analysis
and using experimental results is performed against a state-of-art cooperative (fiducial) localization method.
It should be noted that although the focus of this work is space robotic applications, the same algorithms
can be helpful in cooperative, relative navigation for other robotics applications as well, e.g., AUVs, UAVs.

The rest of the paper is structured as follows. Prior related work is discussed in the next section. Section 3
describes in detail the proposed detector, along with the designed target pattern used for cooperative relative
navigation. Section 4 outlines the proposed joint pose estimation and data association solution to this
problem. Section 5 briefly discusses the smoothing of the estimated relative states. Section 6 covers four
sets of experiments: Section 6.1 and Section 6.3 validate the performance of the algorithm using synthetic
and field experiments, respectively; Section 6.4 presents the results from closed-loop experiments performed
in conjunction with an adaptive pose tracking controller, under the scenario of relative attitude regulation
of the chaser spacecraft. A comparison against an existing state-of-art method is presented in Section 6.2.
We finally conclude the paper in Section 7 with a summary of contributions and some suggestions for future
work.

2 Related Work

The problem of localization and mapping using a camera has been investigated extensively in various fields,
including space robotics, AUV (Autonomous underwater vehicle), UAV (Unmanned aerial vehicle), etc. In
this section we first provide the reader with a brief literature review of the subject of localization and
mapping, emphasizing existing methods most closely related to our problem and the proposed solution
approach. Note that although this work focuses on a vision-only system, systems utilizing other sensing
methodologies have also been developed for autonomous space rendezvous. For example, the Automated
Transfer Vehicle (ATV) achieves localization with a videometer emitting pulsed laser beams, which are
further reflected by retroflectors on the target to form unique light patterns [Fehse, 2003]. The Engineering
Test Satellite #7 (ETS- VII) from the National Space Development Agency of Japan (NASDA) successfully
performed autonomous cooperative rendezvous and docking using RGPS (beyond 500 m from the target), a
laser radar (between 2 m and 520 m), and a CCD camera (within 2 m) [Oda, 2001]. A similar sensor, also
using lasers, is the Advanced Video Guidance Sensor (AVGS) developed by NASA, which was used in the
Demonstration of Autonomous Rendezvous Technologies (DART) and DARPA’s Orbital Express programs.
AVGS is an enhanced version of the earlier Video Guidance Sensor (VGS), also developed by NASA in 1997,
and flown and tested during STS-87 and STS-95 missions [Hintze et al., 2007,Howard and Bryan, 2007].

The first question when designing a vision-only localization system for space robotics applications is the
selection between a monocular and a stereo vision system. Stereo systems directly provide depth information,
which makes pose estimation much easier. Despite the cost of an additional camera, when the target is
close, the large epipolar disparity provides high localization accuracy at a low computational cost; however,



when the target is farther away stereo vision does not seem to offer any significant advantage owing to
the small disparity. As a result, stereo-based localization and mapping techniques have been proposed
and extensively used in close proximity space robotics applications [Xu et al., 2010, Xu et al., 2009b] and
underwater ROVs [Jasiobedzki et al., 2008]. [Howard and Bryan, 2007] reported that AVGS also utilized
a stereo-vision system. The two images from the stereo-vision system were used for identifying a known
pattern, the retro-reflectors, via image subtraction. The Prisma mission conducted by the Centre National
d’Etudes Spatiales (CNES) used a similar approach but with a LED pattern on the target, for autonomous
rendezvous with a 50 m to 10 km range [Delpech et al., 2012]. The Synchronized Position Hold Engage
Reorient Experimental Satellites (SPHERES) from MIT also utilizes a stereo-vision system for cooperative
navigation using visual odometry techniques [Tweddle, 2013]. Although the visual pattern is not pre-stored
in the memory of the chaser satellite, a set of textured stickers attached to the target is needed to provide
enough visual texture.

Although preferable for most robotics applications, stereo-systems are also more expensive, consume more
power, and require precise calibration, compared to monocular systems. Alternative, cheaper approaches
tend to use monocular cameras, trading hardware complexity for software complexity. When a stereo system
is replaced with a monocular vision system, depth information is lost. Subsequently, relative pose needs
to be estimated by tracking landmarks in the environment over consecutive frames. Posterior optimization
is also often needed to improve the initial pose estimates. Three problems must be resolved in order to
achieve accurate pose estimation using a monocular camera system: (a) feature/landmark detection; (b)
data association and pose estimation; and (c) pose filtering.

During the detection phase, the salient features of the target are widely used as detection landmarks, es-
pecially in uncooperative scenarios. Typical features include geometric structures such corners [Shi and
Tomasi, 1994], blobs [Lindeberg, 1998], or more sophisticated features like SIFT [Lowe, 2004], SURF [Bay
et al., 2008], and more recently MROGH [Fan et al., 2012], among others. However, in some space applica-
tions the environment may not have sufficient salient features. Moreover, uncooperative methods have scale
(depth) ambiguity due to the camera projection transformation. Thus, cooperative vision-based relative
navigation methods have been proposed, which assume that some form of a priori knowledge about the
target is known. This information is usually the existence of a known pattern on the observed object. Such
patterns include special shapes [Saripalli et al., 2003], or especially designed patterns such as self-similar
landmarks [Negre et al., 2008], Haar rectangular features [Maire et al., 2009], 2D bar code style patterns [Ol-
son, 2011], rings structures [Velasquez et al., 2009], etc. Detection of these patterns may be computationally
costly [Negre et al., 2008], or not robust to large scale changes [Saripalli et al., 2003,Cho et al., 2013,Olson,
2011,Velasquez et al., 2009], or may not provide accurate 6-DOF pose estimation [Maire et al., 2009].

Regarding the data association and pose estimation steps, pose estimation with given corresponding features
is widely considered as a solved problem [Hartley and Zisserman, 2000], while data association remains a key
problem. Conventionally, data association is solved by matching the feature descriptors under some mapping
criterion [Neira and Tardos, 2001], and using a robust statistical framework such as RANSAC [Fischler and
Bolles, 1981]. However, these techniques rely on the discriminatory character of the features. Moreover,
methods utilizing distinct features require expensive feature matching steps, usually based on image patch
matching or feature descriptor matching. For data association without distinct features, some techniques
have been proposed based on robust point-set matching [Cho et al., 2013,Wong and Geffard, 2010] or image
registration [Karasev et al., 2011]. These techniques are especially useful for cooperative cases in which
the features from the target pattern are all similar, such as fiducial dots. Moreover, such approaches avoid
expensive matching of descriptors or raw image patch matching, thus reducing the computational overhead.

Typically, each component in a typical monocular vision-based relative pose estimation pipeline operates in
an open-loop fashion, with the output of one stage in the pipeline feeding on to the next stage input. There
is no feedback of information from a downstream stage to an earlier stage. One of the innovations of the work
in this paper is that the proposed processing pipeline includes an information feedback loop, whereby the
pose estimates are fed back to the detection step in the pipeline in order to improve target pattern detection
reliability, which then impacts future pose estimates.



Among the various existing visual localization system designs, the most relevant to our work are those us-
ing fiducial-based 6-DOF localization. Fiducial systems use artificial patterns to keep track of the relative
camera/target movement as well as to distinguish between different targets. Although fiducial-based sys-
tems usually involve a payload decoding as the last step, all the other steps aim to estimate the 6-DOF
camera relative pose history, and thus share the same goal as our work. ARToolkit [Kato and Billinghurst,
1999] and ARTag [Fiala, 2005] are two popular choices for fiducial-based localization, which are widely used
in augmented reality applications. ARToolkit detects the target tag by binary thresholding of the image,
thus rendering detection sensitive to illumination changes or occlusion. While the ARTag and ARToolkit-
Plus [Wagner et al., 2008] improve detection robustness with image gradients, these methods are mainly
designed for augmented reality applications within a bounded environment, and hence detection is not reli-
able over longer distances. AprilTag [Olson, 2011] has become a prevalent method for 6-DOF fiducial-based
Simultaneous Localization and Mapping (SLAM). This algorithm is designed to be robust and reliable over
long distances, while maintaining high accuracy in terms of pose estimation. AprilTag detects the target
tag by first computing the image gradient, then clustering the gradient and fitting line segments, and lastly
extracting the four-sided regions using a depth-first search. With the quad, the camera poses are further
estimated via computing the homography matrix of the encoded points. The author of [Olson, 2011] re-
ports that this approach outperforms previous fiducial-based systems in many aspects. Based on these nice
properties, AprilTag is used in this paper to compare against numerical efficiency and accuracy with our
approach.

3 Box-LoG Detector and Target Pattern Choices

Relying on a monocular visual sensor for feedback requires algorithms that are invariant or adaptive to
imaging variation caused by the unknown, time-varying relative pose between the chase and target satellites.
For the scenario considered here, the pattern detection algorithm needs to be invariant to relative orientation
about the optical axis, insensitive to the distance from the target, and somewhat robust to the perspective
distortion caused by angled views of the pattern. The pattern itself should provide sufficient information to
estimate relative pose over several distance scales, including sufficiently close proximity operations, during
which only partial views of the pattern may be available. Together, the pattern and detection algorithms
should lead to a computationally efficient solution given the hardware limitations of the on-board space
electronics. The simplest pattern element fitting these requirements and resulting in an equally simple
detection algorithm is a blob (a filled circle). This section details a computationally efficient blob detector
and the associated pattern, consisting of nested blob pattern elements, that are designed specifically to work
at multiple scales (and hence multiple orders of distance).

3.1 Efficient Detection with the Box-LoG Kernel

Blobs are simple features with mathematically appealing structure across spatial scales [Lindeberg, 1998].
Given an image, blob detection involves analysis of the image Hessian (second-order derivative tensor),
with one detection method relying on the determinant of the Hessian and another relying on the trace of
the Hessian [Lindeberg, 1998]. Both strategies work well and are optimal for circular blob-like structures,
however the simplest of the two is the trace of the Hessian. Feature detection is often combined with a
smoothing step and (spatial scale) normalized leading to the Laplacian of Gaussian (LoG) detector, which
applies a normalized and smoothed Laplacian operator 4 to a 2D field. The LoG convolution kernel is
defined as

4G = σ2

(
∂2G

∂x2
+
∂2G

∂y2

)
=
x2 + y2 − 2σ2

2πσ4
e−

(x2+y2)

2σ2 , (1)

where σ is a function of the blob radius r to detect, σ = r/
√

2. For an image I, the operation in-
volves a 2D discrete convolution with the LoG kernel, where the domain of the LoG kernel in (1) is
x, y ∈ [−RLoG, RLoG] ⊂ Z, typically with RLoG = d3σe + 1 to avoid shift artifacts. Appropriately sized
blobs in an image I give large magnitude values in the convolved image ∆G ∗ I.



Figure 2: A LoG (left) with σ = 14.1421 and corresponding Box-LoG (right) kernels. Note that the direction
of the z-axis is reversed for better illustration.

Although more complex, the determinant of the Hessian has been popularized by the SURF descriptor [Bay
et al., 2008], which employs approximations to the determinant of the Hessian by piecewise constant discrete
derivatives in order to achieve efficient blob feature detection. To obtain further computational efficiency
when applying the detector at multiple scales, the SURF feature detection algorithm employs integral images
based on the identity

J = g ∗ I = (g′′) ∗
(∫∫

I

)
, (2)

for any image I convolved with a 2D kernel g [Simard et al., 1999]. Thus the approach when applied to
piecewise-constant convolution kernels gives convolution algorithms with linear runtime (in terms of the
image size) complexity.

Utilizing a piecewise constant trace of the Hessian approximation one has a lower computational cost, with
marginal difference in the output, when compared to the determinant of the Hessian approximation. To
ensure that the difference is minimal, the piecewise constant terms must be designed by matching against
the equivalent LoG response. To this end, consider an approximation of the LoG kernel ∆G(x, y) where
x, y ∈ [−RLoG, RLoG] with a three box filters such that:

∆G(x, y) ≈ g(x, y) ≡ a1H(x, y,R1) + a2H(x, y,R2) + a3H(x, y,RLoG), (3)

where a1, a2, a3 are the coefficients for each box filter to be determined, and H(x, y,R) is the square Heaviside
Step Function given by

H(x, y,R) =

{
1 if x ∈ [−R,R] ∧ y ∈ [−R,R],
0 otherwise.

(4)

To match the response of the LoG kernel for an ideal blob, the approximate version should satisfy the
equations ∑∑

x,y∈[−R1,R1]

∆G =
∑∑

x,y∈[−R1,R1]

g = (a1 + a2 + a3)R2
1, (5a)

∑∑
x,y∈[−R2,R2]

∆G =
∑∑

x,y∈[−R2,R2]

g = a1R
2
1 + (a2 + a3)R2

2, (5b)

∑∑
x,y∈[−RLoG,RLoG]

∆G =
∑∑

x,y∈[−RLoG,RLoG]

g = a1R
2
1 + a2R

2
2 + a3R

2
LoG = 0. (5c)

The last equality is zero because the LoG kernel has zero-mean. The system of equations is linear in the
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Figure 3: Three rectangular layers of the BoxLoG in Figure 2. Height of outer layer (left) is 1.0967× 10−4

with RLoG = 44 ; middle layer (middle) is −2.4868×10−5 with R2 = 21; inner layer (right) is −8.7524×10−4

with R1 = 13.

coefficients a1, a2, a3, given values of R1, R2, and RLoG. Its solution is given bya1

a2

a3

 =

R2
1 R2

1 R2
1

R2
1 R2

2 R2
2

R2
1 R2

2 R2
LoG

−1
∑∑

[−R1,R1] g∑∑
[−R2,R2] g∑∑

[−RLoG,RLoG] g

. (6)

Since RLoG is a function of σ, only the values R1 and R2 need to be specified to arrive at the solution.
Empirical results show that when R1 and R2 satisfy the relations (R1 + R2)/2 = r and R2 = 2.5R1, the
approximate LoG gives good detection analogous to the continuous LoG. Solving for R1 and R2, yields
R1 = d 4

7re, R2 = 2[r]− d 4
7re, so that the coefficients are completely specified by the detection radius r.

For a given value or r, let the associated Box-LoG kernel be defined by the approximate LoG kernel de-
termined by the equations (3) and (6). An example of a LoG kernel and its Box-LoG approximation are
depicted in Figure 2. The Box-LoG has several computational advantages over existing approximations. For
instance, since computing the trace of a matrix is a simpler operation than computing its determinant and,
in addition, the Box-LoG does not require the calculation of mixed second-order derivatives, there will be
fewer evaluations of the integral image, compared to [Bay et al., 2008].

The discrete version of the integral image is defined to be:

S(x, y) =
∑
x′≤x

∑
y′≤y

I(x′, y′). (7)

The second derivative of Box-LoG consists of a linear combination of eight Dirac delta functions, leading to
eight evaluations of S for the Box-LoG computation J = g ∗ I, as follows

J(x, y) =

1∑
i=0

1∑
j=0

(−1)i+j(a1 − a2)S
(
x+ (−1)iR1 , y + (−1)jR1

)
+ (−1)i+j(a2 − a3)S

(
x+ (−1)iR2 , y + (−1)jR2

)
. (8)

After computing the response image J for a discrete quantity of radius scales (octaves in the computer vision
parlance), the blob detection process then thresholds the response magnitudes followed by non-maximum
suppression (dark blobs give positive extrema and light blobs give negative extrema).

3.2 Landmark Pattern Design

The use of circular pattern elements (e.g., blobs) provides rotational invariance about the optical axis and
relative insensitivity to view-point deviations from the optical axis during Box-LoG detection. What remains
is to define a pattern consisting of blobs that fulfills the remaining requirements. Converting the remaining
specification into a list of desired properties for the target pattern results in the following list:



(a) Chosen pattern element (b) Candidate pattern

Figure 4: Pattern element and landmark pattern for cooperative tracking.

i) pattern elements at multiple scales, for robustness to scale changes;

ii) co-planarity, for rapid pose estimation through homographic geometry;

iii) sufficient number of pattern elements, for well-posed pose estimation; and

iv) an asymmetric and non-collinear topology, to avoid degeneracy and pose ambiguity due to rotations
or perspective foreshortening.

A pattern element or marker feature that achieves the first specification consists of nested blobs at different
scales and complementary contrasts (dark on light vs. light on dark). As shown in Figure 4, the marker
design is such that the circle radius at one blob scale is 4.5 times greater than that of the next nested smaller
scale. This factor ensures that the nested blobs can be arranged such that a properly adapted Box-LoG
filter centers exactly on a blob without getting response interference from a neighboring blob scale. When
combined with the multi-scale blob detector from Section 3.1, the blobs at a given scale can be robustly
tracked until the next scale is identified (about two octaves later and with the opposite contrast). Further,
the blob markers at the three different scales provide three detection modes determined by the relative
distance between the target and the camera. During the experiments described in Section 6, the detection
system switches the target blobs from the current scale to the next smaller scale when the image radius of
the current scale becomes larger than 10 pixel units, except for the smallest scale.

To fulfill the last three properties, the pattern should have, at a minimum, three non-collinear pattern
elements on a planar surface (for homography-based pose estimation). To be robust to partial occlusions
or to pattern elements leaving the image frame, at least five markers are used [Nistér, 2004] and arranged
asymmetrically. Moreover, each marker should be at least one diameter in distance away from other markers
to avoid false positive detections (in the area between two markers). A pattern with these characteristics
is shown in Figure 4(b). It consists of ten pattern elements randomly scattered on a square area, each
rotated at a random angle1. During the initial pattern detection phase, when more than 4/5 of the pattern
is detected, then the pattern is considered to be acquired. During tracking, the Box-LoG detection radius is
specified according to the relative pose between the chase and target satellites. When the relative distance
is large, the larger markers are set to be detected. As the camera gets closer to the target, the smaller
nested markers are set to be detected. The following section describes the active adaptation process used in
order to optimize the visual processing pipeline and improve the relative pose feedback to the pose tracking
controller.

Note that in this work, severe illumination changes are not considered. Mild illumination changes are
mitigated by the complementary contrast of the nested blobs.

1The pattern and quantity of pattern elements is a design choice.



3.3 Adaptive Compensation to Perspective Imaging Distortion

The image formed by a circular marker as seen through a (perspective) camera depends on the intrinsic
camera parameters, the marker’s actual radius on the tag, and the camera to marker distance. When the
marker’s actual radius is fixed, there is an inverse linear relationship between the image radius and the
camera-to-marker distance. When the vector normal to the planar pattern is not aligned with the camera’s
optical axis, the blob-like image is warped by a perspective transformation. Under a severe perspective
transformation, the square-shape Box-LoG kernel may fail to detect the pattern. Relative pose information
available during the closed-loop engagement scenario can be used to actively modify the parameters of the
Box-Log detection strategy, as well as to pre-process the image for optimal detection.

The main parameter of the Box-LoG algorithm is the expected detection radius. During tracking, the radius
is known from the initial pattern detection phase (which cycles through the various radii until the target is
acquired). Thus, as part of the processing pipeline, the Box-LoG kernel radius is adapted via feedback of
the estimated target position from the previous frame (lower box of Figure 1), based on the inverse distance
relationship:

rk+1 =
λ√

x̃2
k + ỹ2

k + z̃2
k

, (9)

where λ is a constant determined by the target marker’s world radius (a known constant) and the intrinsic
camera parameters, (x̃k, ỹk, z̃k) is the relative position of the camera with respect to the target center in the
k-th frame, and rk+1 is the detection radius estimate for the (k + 1)-th frame.

Compensation for perspective warping effects is typically achieved by de-warping the image according to
the inverse of the perspective transformation. Computationally this involves generating the warp function
for each pixel and then using interpolation on the image to apply the warp. However, such a method is
expensive both in terms of the number of required computations and memory. To efficiently tackle this
problem, we propose to approximate the perspective transformation by a computationally cheap integer-
based image rotation operation, followed by a modification of the Box-LoG so as to always be of rectangular
shape. Together, these two steps compensate for the perspective warp while minimizing the computational
cost.

The rotated image is efficiently generated by remapping the set of horizontal lines of the original image
to the set of pixelized, integer-based parallel lines of the rotated image, so that the two sets differ by the
rotation angle θ. The pixel positions along each remapped line are determined by Bresenham’s line drawing
algorithm [Bresenham, 1965]. Pixels in the remapped image that do not originate in the sensed image are
set to default background values. The computational complexity of the rotation operation is linear with
respect to the image area, both in terms of the number of computations involved and memory.

The Box-LoG kernel applied to the rotated image is further modified by changing the height-to-width ratio
κ of the kernel. When κ 6= 1, each level of the Box-LoG is of rectangular shape instead of a square shape,
specifically,

g(x, y) ≡ a1Hrect(x, y,R
x
1 , R

y
1) + a2Hrect(x, y,R

x
2 , R

y
2) + a3Hrect(x, y,R

x
LoG, R

y
LoG), (10)

where a1, a2, a3 are solved from equation (6) and Hrect(x, y,R
x, Ry) is the rectangular Heaviside Step Func-

tion given by

Hrect(x, y,R
x, Ry) =

{
1 if x ∈ [−Rx, Rx] ∧ y ∈ [−Ry, Ry],
0 otherwise.

(11)

The shape of Box-LoG is then adapted according to κ such that Rx1/R
y
1 = Rx2/R

y
2 = RxLoG/R

y
LoG = κ.

When κ > 1, RxLoG = d3rk+1/
√

2e + 1, Rx1 = d 4
7rk+1e, Rx2 = 2[rk+1] − d 4

7rk+1e, and when κ < 1, RyLoG =

d3rk+1/
√

2e+ 1, Ry1 = d 4
7rk+1e, Ry2 = 2[rk+1]− d 4

7rk+1e.

The rotation angle θ and Box-LoG rectangular ratio κ are obtained from the predicted homography Ĥk+1



for the (k + 1)-th frame under a constant transformation model:

Ĥk+1 = Ĥk→(k+1)Hk = H(k−1)→kHk = HkH
−1
k−1Hk, (12)

where H(k−1)→k is the homography mapping points from (k−1)-th image to k-th image. The second equality
in (12) is due to the constant velocity model. Let the estimate in (12) be written as follows

Ĥk+1 =

(
A b

01×2 1

)
(13)

for some matrix A ∈ R2×2 and b ∈ R2. The rotation angle and rectangular ratio are extracted via the
singular value decomposition (SVD) of A

A = UAΣAV
T
A , (14)

where UA, VA ∈ R2×2 are unitary matrices and ΣA ∈ R2×2 is a diagonal matrix. Note that the SVD of a
2× 2 matrix can be computed in closed form. The matrix UA in (14) is the rotation transformation and ΣA
is the scaling transformation. Thus

θ = acos (UA 1,1) and κ =
ΣA 1,1

ΣA 2,2
. (15)

In practice, θ need not be computed since the image boundaries are transformed using the (rotation) matrix
UA. Those transformed coordinates then define the parallel lines to follow. With the adapted Box-LoG
kernel, the integral image of the de-rotated image is convolved with the Dirac delta functions, and any blobs
with the targeted radii in the image are detected. A non-maximum suppression is then performed to refine
these detected areas, and sub-pixel detection results are generated by computing the center of mass in each
of the non-maximum suppressed areas. The original image coordinates are obtained by rotating the final
detected positions.

Figure 5 illustrates the results of performing a Box-LoG detection with perspective compensation. The input
image in Figure 5(a) is under a perspective transformation whose effective homography is

H =

0.7507 0.3752 0
0.0801 0.5708 93.8600

0 0 1

. (16)

By decomposing the matrix A of the homography matrix via SVD, the rotation and scaling matrices are
computed as follows

UA =

(
−0.8835 −0.4684
−0.4684 0.8835

)
, ΣA =

(
0.9218 0

0 0.4322

)
, (17)

which means the image needs to be rotated clockwise by 152.07 deg. The rotated image via Bresenham’s
line iteration is depicted in Figure 5(b), where the image has been expanded to fit the rotated image area
and the unmapped pixels have been filled in with white. The original image is 853 × 569 pixels while the
rotated image is 1020× 902 pixels. Convolution is performed using the κ-adapted Box-LoG to generate the
response seen in Figure 5(c). The detected blobs’ sub-pixel positions are extracted and rotated back to the
original orientation as per Figure 5(d).

The detection algorithm is summarized in Algorithm 1, along with the corresponding computational com-
plexity for each step. The dominant steps are the image rotation, image integral and fast convolution with
the Dirac delta functions. Because all of these steps are of linear order with respect to the image size, the
total complexity of the detection algorithm is also of linear order with respect to the image size.

4 Joint Pattern Tracking and Pose Estimation

Pose estimation occurs between consecutive frames using the pixel locations of the detected markers. To be
robust to false-positive and true-negatives, rather than imposing or seeking one-to-one point correspondences



(a) Image under perspective transformation. (b) De-rotated image using integer image rotation.

(c) Box-LoG response with scaling adaptation. (d) Final extracted pattern blob positions
(red stars).

Figure 5: Perspective compensation process within Box-LoG detector for a target pattern under perspective
transformation.

between two consecutive images, this section describes a homography-seeking robust point set registration
algorithm. The algorithm attempts to align the two point sets without imposing explicit correspondences.
The final alignment provides the correspondences, and hence the required pattern tracking.

4.1 Homography Map

Denote the markers’ (homogeneous) locations in the previous image frame as vi ∈ R2, the markers’ (homo-
geneous) locations on the current image frame as ui ∈ R2, for i = 1 . . . nm, and let the (homogeneous) 3D
positions Xi ∈ R3 of the markers on the pattern plane be given, such that πTXi = 0, where π = (ζT, 1)T,
ζ ∈ R3, for i = 1 . . . nm, where nm is the number of markers and ζ is the normal to the pattern plane.
For simplicity, let the previous camera pose be the identity pose, i.e., having camera projection matrix
Pv = [I | 0].

Assume that the camera moves rigidly from the previous to the current frame, and hence its motion is given



Algorithm 1: Box-LoG detection with perspective compensation. Final complexity: O(NM)

Data: Input binary image frame Ik+1 ∈ RN×M , previous estimated homography Hk, Hk−1, previous
estimated pose gk

Result: Detected blobs sub-pixel positions {y(i)
k+1}

1 while Ik+1 6= ∅ do

2 Ĥk+1 ← Homography Prediction(Hk, Hk−1) ; // Equations 12

3 θ, κ← Homography Decompose(Ĥk+1) ; // Equations 14, 15

4 g(x, y)← BoxLoG Kernel Generation(κ, gk) ; // Equations 3 to 6

5 I ′k+1 ← Fast Image Rotation(Ik+1, θ) ; // O(NM), based on Bresenham’s line iteration

6 S′k+1 ← Image Integration(I ′k+1) ; // O(NM)

7 J ′k+1 ← Dirac Delta Function Convolution(S′k+1, g) ; // O(NM)

8 {y′(i)k+1} ← Detection Refinement(J ′k+1)

9 ; // Non-maximum suppresion and sub-pixel accuracy detection, < O(NM)

10 {y(i)
k+1} ← Pixel Position Rotation ({y′(i)k+1},−θ)

by the rigid transformation

guv =

(
R T
0 1

)
, (18)

where R is the rotation and T is the translation of the camera between the two frames. The camera projection
on the current frame is then given by

Pu = [R |T ]. (19)

Since v = [I|0]X the back-projecting ray of v is Xv = (vT, ρ)T, where ρ is the distance of Xv to the
camera center and, moreover, Xv lies on plane π, i.e. πTXv = 0. Combining these expressions yields
Xv = (vT,−ζTv)T. If v,u correspond to the same 3D points in the world frame, i.e., if Xu = Xv, then

u = PuXu = [R|T ]Xv = [R|T ](vT,−ζTv)
T

= (R− TζT)v , Hv. (20)

Since the two views are of points in the same plane, the previous equation shows that the homography map
relates corresponding points between consecutive frames (i.e., it maps vi to ui) [Hartley and Zisserman,
2000]. Note from (20) that the homography map is completely characterized by the transformation from the
previous pose to the current pose and by the plane’s normal vector.

When the point correspondences and the camera intrinsic matrix are known, the homography, and ultimately
the rigid motion transformation matrix guv , is computable. The computation of the transformation matrix
from the homography matrix utilizes the constraint that R is a unitary matrix and thus R3 = R1 ⊗ R2,
where Ri is the i-th column of the rotation matrix [Xu et al., 2009a]. Conversely, when the homography is
known, then the points can be placed into correspondence and tracked. The problem arises when neither
of them is known, and the point sets have extra or missing elements (due to false positive or true negative
detections). To handle these uncertainties, the next section jointly solves the pose estimation and point
tracking problems using robust point-set registration.

4.2 Robust Point-Set Registration

In robust point-set registration, each image point set U = {ui}|U|i=1 and V = {vj}|V|j=1 of two consecutive
images of potentially different cardinality, generates a Gaussian Mixture Model (GMM), the first of which
is also transformed by an unknown homography map H. Point-set registration is performed by minimizing
the L2 distance of the GMMs [Jian and Vemuri, 2005,Jian and Vemuri, 2011]. Normally, the minimization is
performed over the space of rigid or affine transformations (plus possibly a parameterized model of non-affine
deformations). However, in this work the minimization is performed over the space of homographic maps.



Recall that the GMM generator for a set of points X = {xi}|X|i=1 is

Φ (x ; X) =
1

|X|

|X|∑
i=1

N (x ; xi,Σ), (21)

where |X| is the cardinality of the set X, and N (· ; xi,Σ) is the multi-variate normal distribution with mean
xi and (constant) covariance Σ (here a diagonal matrix with equal variances). When the homography map
is included in the GMM generator as a parameter, then

Φ (x ; X, H) =
1

|X|

|X|∑
i=1

N
(
x ; Axi + b, AΣAT

)
, (22)

given that the homography map of an image point x ∈ R2 is H(x) = Ax + b. Given two points sets U and
V, and a homography map H, the registration error is defined by the L2 distance of the generated GMMs
as

dist(Φ (· ; U, H) ,Φ (· ; V)) ,
∫

(Φ (x ; U, H)− Φ (x ; V))2 dx. (23)

The multi-variate Gaussian distribution obeys the identity∫
N (x ; µ1,Σ1)N (x ; µ2,Σ2) dx = N (0 ; µ1 − µ2,Σ1 + Σ2). (24)

As a result, dist(Φ (· ; U, H) ,Φ (· ; V)) can be computed in closed-form as follows

dist(Φ (· ; U, H) ,Φ (· ; V)) =
1

|U|2
|U|∑
i=1

|U|∑
j=1

N
(
0 ; A(ui − uj), 2AΣAT

)
−2

1

|U||V|

|U|∑
i=1

|V|∑
j=1

N
(
0 ; H(ui)− vj , AΣAT + Σ

)
+

1

|V|2
|V|∑
i=1

|V|∑
j=1

N (0 ; vi − vj , 2Σ).

(25)

The homography is obtained by minimizing dist(Φ (· ; U, H) ,Φ (· ; V)) over H,

H = arg min
H

dist(Φ (· ; U, H) ,Φ (· ; V)) (26)

After finding H, two points ui and vj are considered to be in correspondence if they have minimal distance
compared to all other possible correspondences, and the minimizing distance is below a given threshold.
Minimization of (25) is performed iteratively through gradient descent. Note that the last term in (25) is
constant, having no effect on the optimization, and thus it can be removed from the computations.

5 Smoothing the Pose Estimates

While the pose estimates are optimized for the current observations conditioned on the previous observations
(Section 4.2), they are not optimized temporally over all observations (e.g., they are not filtered). The reason
why smoothing may be preferable to filtering is beyond of scope of this paper. The interested readers can refer
to [Strasdat et al., 2012]. For vision-based measurements, temporal smoothing is performed by minimizing
the image re-projection errors, given the set of pose estimates and homographic mappings to date.

Denote by Gt , {gτ}τ≤t the set of camera poses up to time instant t and by Zt , {ξτ}τ≤t the collection of
measurements up to time t, where ξt consists of the points {ui,t}nmi=1, where ui,t denotes the measurement



of ui at time t. Let Lt , {lατ (·)}τ≤t be the set of target pattern landmarks up to time instant t, where αt(·)
is a time-dependent association function that matches a measurement index to a landmark index at time t
(this function is instantiated when the pattern is detected and maintained during marker tracking). Define
the measurement function h(g, l) to be the perspective camera projection, mapping a 3D point l of the
target pattern landmark to a 2D image coordinate at camera pose g. Given a measurement and landmark
association, the image re-projection error for measurement index i at time t is

εi,t = h(gt, lαt(i))− ui,t. (27)

Assuming Gaussian measurement noise, the distribution of the measurement given the landmark positions
is

P
(
ui,t|gt, lαt(i)

)
∝ exp

(
−1

2
‖εi,t‖2Σ

)
. (28)

where Σ is the covariance matrix of pixel noise as in Section 4.2. Let now Θ , (Gt,Lt) denote the collection
of the unknown camera poses and landmarks observed up to time t, and model the system using a factor
graph [Kschischang et al., 2001]. In our case, no odometry information is available because the target’s motion
is unknown with respect to the inertial frame. Therefore, there are no factors encoding the prediction model.
Using the factorization property of factor graphs, the joint probability of the random variables Θ is [Dellaert
and Kaess, 2006]

P (Θ) ∝

(∏
t

ϕt(θt)

)∏
t,j

ψt,j(θt,θj)

 , (29)

where the t index runs over the variables in Gt, j index runs over the variables in Lt, and the potentials ϕt(θt)
encode the prior estimate at θt ∈ Θ, and the pairwise potentials ψt,j(θt,θj) encode information between
two factors (here, a camera pose and a landmark). Using this information, the potentials are

ϕt(θt) ∝ P (gt) (30)

ψt,j(θt,θj) ∝ P (uα−1
t (j),t|gt, lj). (31)

For the second set of potentials, ψt,j(θt,θj), the potential (and hence factor graph edge) does not exist when
the inverse is not defined for a given (t, j) (i.e., the landmark was not seen). The maximum a posteriori
(MAP) estimate is

Θ̂ = arg max
Θ

P (Θ|Zt) = arg max
Θ

P (Θ,Zt) = arg min
Θ

(− logP (Θ,Zt)). (32)

Since the information is arriving sequentially in time, the incremental smoothing method [Kaess et al.,
2008, Kaess et al., 2012] is used for optimizing the pose estimates. We use the GTSAM library [Dellaert,
2012], written by the authors of the above references, to implement the incremental smoothing step.

6 Experiments and Discussion

This section evaluates the processing pipeline described in the previous sections, and depicted in Figure
1, on both synthetic and actual relative motion scenarios. Accuracy is evaluated for both position and
orientation separately. Position accuracy is measured in terms of a percentage using the relative norm of
the relative position error. Specifically, let X̃ be the estimated camera position, X be the ground-truth
camera position, and XT be the center of the target, all in the world-frame. The position accuracy used
is then 100‖X̃ −X‖2/‖X −XT ‖2. The orientation accuracy is given by the error of the estimated camera
orientation computed via the norm of the logarithm on SO(3) converted to degrees. Specifically, suppose
that R̃ is the estimated orientation and R is the ground-truth orientation, then the error is

ESO(3) =
180

π

∥∥∥∥(logSO(3)(R̃
TR)

)∨∥∥∥∥ (33)



where the “unhat” operation (·)∨ maps a 3× 3 skew-symmetric matrix to a vector.

Experimental validation is performed on the 5DOF spacecraft simulator testbed (Autonomous Spacecraft
Testing of Robotic Operations in Space - ASTROS) at Georgia Tech, which is depicted in Figure 6. The
spacecraft (seen in Figure 6(b)) has a lower stage (the pedestal) and an upper stage (main spacecraft bus).
The lower stage consists of four high-pressure air storage vessels, three linear air-bearing pads, a hemi-
spherical air-bearing cup (connecting the lower and upper stages), along with dedicated electronics and
power supply. When placed on the flat epoxy floor, of dimensions approximately 14 ft × 14 ft, with the
air pads activated, the spacecraft experiences almost friction-free conditions. The main structure of the
ASTROS is the upper stage, whose operational characteristics can be found in [Cho et al., 2009]. The upper
stage represents a typical spacecraft “bus” and is made of a two-level brass structure that is supported on
a hemi-spherical air bearing allowing rotation of the upper stage with respect to the supporting pedestal
about all three axes (±30 deg about the x and y axes and a full rotation about the z axis).

For image capturing, a CCD camera (TMS-730p by Pulnix) mounted on the test bed is connected to a PC-
104 Meteor II-Morphis frame grabber (MOR+/2VD/J2K by Matrox Imaging) with a digitizer resolution of
640× 480. For on-board image processing, there is a PC-104-Plus computer running Ubuntu 10.04, with a
1.8 GHz Pentium M CPU, 1 GB of RAM, and a 64 GB Compact Flash drive. All vision code is implemented
in C++ without SIMD optimization due to the limitations of the on-board CPU. A six camera ViconTM

system captures the ground-truth pose of the upper stage of the platform, which is related to the camera
frame by a rigid transformation estimated as part of system calibration, and the target pattern pose.

During closed-loop operation, a second on-board computer runs the controller. This computer is an ADLink
NuPRO-775 Series PC with an Intel Pentium III 750 MHz CPU, 128 MB DRAM, and 128 MB disk-on-
chip. The two on-board computers communicate via UDP protocol. The controller is implemented as a
Simulink model, shown in Figure 7, and then is uploaded to the platform using MATLAB’s xPC Target
environment. Three Variable-Speed Control-Moment Gyroscopes (VSCMG) are used to control the attitude
of the platform [Cho et al., 2009]. A VSCMG can function either as a reaction wheel or as a control moment
gyro; attitude of the platform can be controlled by changing the angular speed of the wheel inside the gimbal
of the VSCMG or by rotating the gimbal itself. The control torque calculated by the controller is allocated
between the three VSCMGs following the approach in [Yoon and Tsiotras, 2002]. A set of 12 thrusters
provides translational motion.

6.1 Synthetic Image Experiments of Camera Localization

We first validated our algorithm using synthetic image sequences. The benefits of synthetic experiments
are: first, the experiments are fully controlled with accurate ground-truth camera trajectories and camera
intrinsic parameters; second, in the synthetic environment we can test scenarios involving camera movements
that cannot be tested in field tests due to the degree-of-freedom restrictions (no translation along the vertical
axis) of the platform. In the experiments, a 3D virtual reality environment with the designed target is first
simulated. Then, a simulated camera moves along a designated trajectory capturing images of the target
according to a pinhole camera projection model. The focal length of the simulated camera is 1, 388 mm
and the resolution is 1082× 722 pixels. The algorithm was tested on synthetic images and the results were
evaluated. In this experiment, there is no distortion in the camera projection and no noise in the camera
movement.

Four trajectories were simulated. The trajectories and the (measurement) camera poses for each simulation
are shown in the first row of Figure 8. Each simulated trajectory consists of motion primitives (straight
motion, camera rotation, circular motion, etc.) that a normal engagement scenario might consist of. Some
of these motion primitives have different perspective imaging properties that influence the relative position
and orientation estimates in different ways. In the second scenario the camera performed a pure rotation from
0 to 360 deg counterclockwise with respect to its optical axis with constant angular velocity. Most motions
also involve large perspective changes over the course of the trajectory which also tests the (adaptive) pattern
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(a) Dimension of the field for testing (b) Setup of the platform and the target

(c) ViconTM setup

Figure 6: Experimental testbed. Figure (a) depicts the actual dimensions of the testing arena, where the
blue lines are the boundary of the area in which the ASTROS can reach. Figure (b) shows a picture of the
experimental platform. The target is attached to the wall and the ASTROS can move freely on the floor.
Figure (c) illustrates the ViconTM setup, with the marker cameras (green), platform frame (red), target
pattern frame (blue) and field floor (orange).

detection algorithm.

In Figure 8, the second and third columns contain the graphs of the relative position accuracy (percentage)
and the orientation error (degrees); lower is better in both cases. After the smoothing step both estimates
have good accuracy: the smoothed relative position estimates are all within 3% relative error, and relative
orientation error is less than 0.2 deg. These results demonstrate that the proposed algorithm can detect the
pattern, estimate the relative poses accurately, and adapt the detection scale accordingly.

6.2 Comparison with Existing Fiducial Marker System

The prevailing approaches to tag-based (e.g., planar known patch marker) localization are edge- or line-
based and often encode marker identity information as part of the tag (called the data payload) [Olson,
2011,Wagner et al., 2008,Fiala, 2005]. They have been used for relative pose estimation [Olson et al., 2012]
and global localization [Lorenz et al., 2012]. This section includes a comparison of the proposed target pattern



Figure 7: Simulink model implementation of the closed-loop system. The “platform” block includes the
whole camera localization system, which is regarded as a measurement source for camera relative poses.

detection with AprilTag [Olson, 2011]. AprilTag is a visual fiducial system for 6DOF camera localization. It
will serve as the baseline algorithm for comparison given that it has been comprehensively validated against
other fiducial systems including ARToolkitPlus [Wagner et al., 2008] and ARTag [Fiala, 2005], and it was
shown to be preferable in terms of localization accuracy, robustness, processing frame-rate, etc [Olson, 2011].
Although ARToolkitPlus has good performance, especially in terms of frame-rate processing, it does not
provide high localization accuracy across a large range of distances; it has also poor orientation estimation
(in noiseless synthetic scenarios). In contrast, AprilTag provides accurate relative pose across a large range
of distances and orientations.

For compatibility with the experimental platform codebase, the C++ version of AprilTag provided by the
MIT CSAIL lab was used (http://people.csail.mit.edu/kaess/apriltags/). For a fair comparison the
payload decoding (tag ID) step was disabled. Tags of comparable sizes were printed. Furthermore, the on-
board PC settings, the hardware configuration, the visual environment of the experiment, and the relative
poses between the platform and the target, were all fixed during the experiments. The images were captured
with a resolution of 640 × 480 pixels. The time for capturing one frame is 0.005360± 0.000291 sec, i.e., the
frame rate for only image capturing is 187.0605±9.517 fps. Scoring involved measuring the frame rate of the
tag detection and localization procedures, as well as comparing the relative localization against the ViconTM

ground truth. The experiment involved testing the fiducial marker systems at differing relative distances.

The results of the frame rates are plotted in Figure 9, where the mean and standard deviation versus distance
(more than 300 images were taken per distance point) are shown. The results for the relative translation
errors and absolute orientation errors versus distance are plotted in Figures 10(a) and 10(b). Both methods
share very similar localization accuracy, most likely due to the similarity between the two homography-based
localization strategies. However, the value of performing simple blob detection over edge detection followed
by edge linking is evident in the achievable frame rates. The proposed method achieves a frame rate that is
5∼6 times faster than that of AprilTag, across the different distances tested. The reason for the improved
performance of our method is mainly owing to the fact that the computationally dominant steps, i.e., image
rotation, image integration and Dirac convolution, are invariant to the tag distance. AprilTag, on the other
hand, is more expensive due to a potentially larger number of linear structures from the environment, all of
which must be checked. Examining the AprilTag algorithm, the inclusion of low-pass, Gaussian filtering at a
cost of O(nmNM) where (n×m) is the size of the filter kernel, already incurs a computational overhead that
is higher than the main parts of the Box-LoG detection algorithm. The graph-based gradient clustering and
quad (four-sided regions) extraction via depth-first search are more expensive than the previous steps [Olson,
2011], which leads to the reported frame-rate.

Additional advantages of the proposed method against other competing methods is the lower limit of working
distance during tracking. The pattern detection step for AprilTag, ARTag, ARToolkitPlus all depend on



Figure 8: Synthetic experiment results. Column 1: simulated trajectories (units: mm) and camera poses.
Column 2: RMS of relative position error versus time for the estimated states. Column 3: orientation error
norm versus time for the estimated states.



Figure 9: Frame rates of AprilTags algorithm and proposed algorithm on the testbed, under different relative
distances. Both the mean values and the standard deviations of frame rates in all instances are shown. The
statistics of each instance is computed over a sequence of more than 300 frames.

(a) Relative translation errors of AprilTag and proposed
algorithms.

(b) Angular errors of AprilTag and proposed algorithms.

Figure 10: The errors in translation and orientation of the proposed algorithm and AprilTags algorithm
respectively from the testbed experiments. Both the mean values and the standard deviations of errors in
all instances are shown.

extracting the full boundary of the tag. These methods would fail to pick up the tag as the camera-tag
relative distance drops and portions of the tag leave the field-of-view. The proposed blob pattern approach
keeps track of the target until there are fewer than three blobs captured. This advantage of our method is
particularly important to some proximity operations like docking, where multiple distance scales would have
to be traversed during the docking procedure.

Given that the latency of the AprilTag is too high for supporting closed-loop operation, it will not be
evaluated in the subsequent sections. The controller is designed in continuous time, and the performance
drops significantly if the measurement frequency is lower than 10 Hz. This fact highlights the importance
of high computational efficiency in the camera localization algorithm. The proposed tag and detection
algorithm is distinguished from the existing tags by its low latency, and high localization accuracy across
multiple distance scales.



Figure 11: Under different relative distances, blobs of different sizes are automatically selected by the system
as the detection target. Left: when the camera is far away from the pattern, the largest size blobs are
selected. Right: when the camera is closer to the target, smaller size blobs are selected. The selection is
according to the predicted radius (see equation (9)) (the blobs with rk+1 closest to 10-pixel is selected). This
simple strategy enables multi-scale tracking without much additional computation.

6.3 Open-Loop Relative Pose Estimation Experiments

Prior to testing the closed-loop system, experiments comparable to the simulated system were carried out
to test the empirical localization performance of the visual-processing and pose filtering pipeline, as well
as the active tag detection system. Two scenarios were tested. In the first scenario, the platform camera
follows the (green) trajectory shown in Figure 14(a), which includes translation, rotation, and loss of the
target pattern. In the time between poses No. 37 and No. 38 there are three camera image measurements
for which the pattern is out of the field of view of the camera, meaning that the pattern is not imaged.
In the second experiment, the target pattern is tilted up about 60 degree (y-axis), to test the algorithm’s
performance under large perspective transformations. The trajectory is recorded as the green line shown
in Figure 14(b). For the first half of the trajectory (from frames 1 to 12) the upper stage of the platform
is fixed, while for the second half (from frame 12 on) the upper stage of the platform undergoes unknown
rotation between camera measurements.

At the beginning of each experiment, the camera is relatively far away from the target. The largest size blobs
are automatically selected by the algorithm for detection. As the camera approaches the target, the system
switches to detect the blobs of medium scales. The detection results from these two phases are illustrated in
Figure 11. When the pattern is acquired, joint data-association and pose estimation is performed. Figure 13
shows a data-association result, in which the detection from the current frame is associated with the previous
frame. For both experiments, the final pose estimates are depicted by the camera objects shown in Figures
14(a) and 14(b). Comparing the estimated states from the proposed method to the ground-truth states for
both experiments leads to the error plots in Figures 15(a)-16(b).

In the first experiment, the relative errors of the smoothed position estimations are all smaller than 2.8%.
The angle deviation between the final estimate rotation matrices and the ground-truth matrices are within
4 deg. For the second experiment the errors of the smoothed pose estimates are below 3.5% (position) and
3.5 deg (orientation). Both experiments confirm the ability of the system to detect and adaptively track the
target pattern, as well as to estimate relative pose using the known planar geometry of the pattern elements.
In addition, it can be observed that for the position errors, when the camera is closer to the pattern, the
relative position errors become smaller. Moreover, compared to the results of the first field experiment
under the same relative distance range, the overall errors of these experiments do not increase significantly,
which indicates that the perspective image warping due to the placement of the pattern does not affect the
performance significantly. Overall, the position and rotation errors are low enough to be used for closed-loop
operation with confidence, illustrating the accuracy and robustness of the proposed algorithm.



Figure 12: Detection results of the second field experiment. In this experiment, the medium size blobs are
automatically selected as the target markers during the whole experiment.

Figure 13: Data association result from two consecutive frames. The red crosses are the target blob positions
from the previous frame, while the green dots are the transformed locations of the current frame. The blue line
segments stand for the correspondences between the two detected point sets. Note that for clearer illustration,
not all the correspondences are plotted, but the data-association results across the whole experiment have
been examined to be correct.

6.4 Closed-Loop Relative Attitude Regulation

To validate the performance of the camera localization system in closed-loop, an experiment was run on the
ASTROS platform in combination with the inertia-free pose-tracking controller based on dual quaternions
from [Filipe and Tsiotras, 2014]. The controller guarantees almost global asymptotic stability2 of the pose-
tracking error without requiring knowledge of the mass and inertia matrix of the platform. Only 3-DOF
rotational motion was tested in closed-loop, due to the availability of the actuators at that time. The
inputs to the controller are the relative attitude and the relative angular velocity between the platform
and the target, with the relative attitude measured using the vision-based localization pipeline. During
the experiment, the average time between pose measurements was 0.08127 sec (average pose update rate
of 12.30 Hz). The angular velocity of the platform with respect to the inertial frame was measured at
100 Hz with the platform’s three-axis rate-gyro (a Humphrey RG02-3227-1 with noise standard deviation
of 0.027 deg/s and bias not larger than 2 deg/s). These velocity measurements are filtered by a 4-th order
discrete-time Butterworth filter. Since the angular velocity of the target with respect to the inertial frame
is not measurable, the controller assumes it is zero and uses the rate-gyro angular velocity measurement as
the measurement estimate for the angular velocity between the platform and the target (target motion is

2Almost global asymptotic stability is stability over an open and dense set. It the best one can achieve with a continuous
controller for orientation, because the group of rotation matrices SO(3) is a compact manifold [Bhat and Bernstein, 2000].



(a) Experiment 1. (b) Experiment 2.

Figure 14: Estimated trajectories of the the open-loop experiments. Depicted are the ground-truth trajectory
of the camera (green line with stars at the actual positions), the target marker positions (red stars), and the
final estimated camera poses (camera objects).

effectively a disturbance).

The measurements of the vector part of the quaternion and angular velocity between the platform and the
target were merged in a Quaternion Multiplicative Extended Kalman Filter (Q-MEKF) [Lefferts et al., 1982].
The Q-MEKF is a continuous-discrete Kalman filter (the state and its covariance matrix are propagated
continuously between discrete-time measurements). The discrete-time measurements need not be equally
spaced in time, making irregular or intermittent measurements easy to handle. Moreover, this structure
eases the integration of sensors with different update rates. The states of the Q-MEKF are the quaternion
describing the rotation between the platform and the target frame, and the bias of the rate-gyro. The
attitude and angular velocity of the platform with respect to the target estimated by the Q-MEKF are fed
back to the controller.

In the sequel, S denotes the platform frame, T denotes the target frame, and D denotes the target’s desired
frame. During the first 20 sec, no control commands are issued and the Q-MEKF is allowed to converge.
Afterwards, the reference attitude is given by ψD/T ≡ −2 deg, θD/T ≡ 8 deg, and φD/T ≡ −90 deg, where
ψD/T, θD/T, φD/T are the three Euler angles in aerospace sequence.

The upper stage is levitated at around 16 sec. At approximately 42 sec after the beginning of the experiment,
the target is slowly rotated, leading to a decrease of approximately 3 deg in ψS/T and θS/T. At approximately
68 sec after the beginning of the experiment, the target is slowly rotated back to its original orientation,
leading to an increase of approximately 3 deg in ψS/T and θS/T. Finally, at approximately 92 sec after the
beginning of the experiment, the target is rotated again, leading again to a decrease of approximately 3 deg
in ψS/T and θS/T. The third Euler angle remains approximately constant throughout the experiment.

Figure 17 compares the desired attitude and angular velocity of the S-frame with respect to the T-frame
(constant in this experiment) with an estimate of the state of the platform (given by the outputs of the



(a) Relative position error.

(b) Rotation error.

Figure 15: Experiment 1: Plot of position and orientation error versus frame.

(a) Relative position error. (b) Rotation error.

Figure 16: Experiment 2: Plot of position and orientation error versus frame.

Q-MEKF). The error between them is presented in Figure 18. After each change in the target orientation,
each desired Euler angle is matched within ±2 deg and each desired angular velocity coordinate is matched
within ±1 deg/s. This is the same tracking error obtained from previous experiments on the same platform
and with the same controller, but with a Crossbow AHRS400CC-100 IMU instead of the camera localization
system and rate-gyro, which shows that the error stems primarily from actuator limitations.

7 Conclusions

This paper presents a numerically efficient approach for monocular vision-only relative pose estimation in
a cooperative space proximity operations scenario. A cooperative scenario in this context is defined as one
where there is a known pattern on the target spacecraft but the target spacecraft motion is unknown. The
target pattern, consisting of nested, complementary, contrasting circular blobs in placed asymmetrically, and
has been designed specifically to aid detection and localization. The proposed detection strategy employs
integer computations where possible, incorporates efficient approximations to costly convolution kernels, and
actively employs the closed-loop state estimates to adaptively optimize target detection and localization.
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Marker tracking and frame-to-frame relative pose measurement is done simultaneously by performing point-
set registration using a homography-parameterized GMM representation for the detected markers.

The performance of the proposed algorithm has been validated on a 5DOF spacecraft platform capable
of simulating realistic spacecraft motion in 1g environment. Open-loop localization test results using the
platform demonstrated balanced computational efficiency with good relative pose estimation accuracy. Ex-
periments were also conducted in order to compare the proposed algorithm with AprilTag, a state-of-the-art
fiducial-based localization algorithm. These experiments demonstrated a large speedup of the proposed al-
gorithm compared to AprilTag. A closed-loop relative attitude regulation experiment was also performed,
which showed that the regulation error rates matched the open-loop estimation error rates, thereby validating
the overall controlled active vision system [*why controlled active vision?*]. The algorithm is particularly
useful for cooperative navigation between small-size spacecraft, which may have limited on-board power and
computation capabilities.

Specifically, compared to existing work, the novel improvements of this work are:

• It provides a solution with low computation and memory complexity and good localization accuracy.
The algorithm offers about × 6 speedup in terms of frame rate, when compared to AprilTag. This
improvement is achieved by the novel elements incorporated in the algorithm, including the Box-LoG
detector with efficient perspective compensation, the joint data-association and pose estimation, and
the feedback framework with homography prediction. The low complexity further helps in improving
the update frequency and lowering latency.

• A novel design for cooperative rendezvous using a pattern consisting of a multi-scale blob array,
combined with the proposed image processing algorithm, provides robustness against large scale
changes for maneuvers in a space environment involving a target with unknown motion status.

Future work includes improving the existing algorithm to accommodate severe illumination changes, typical
in space imaging applications. These illumination changes result in large contrast and intensity changes on
a single image, which are detrimental to detection accuracy. Another problem left for future investigation is
target detection in a cluttered environment. Possible clutter in space includes the Earth in the background,
components of the spacecraft (e.g., antennas, solar panels), etc. Background subtraction with more robust
target detection algorithms are needed to address the cluttering problem.
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