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Abstract

The development of analytic solutions for the forced attitude motion of a rigid body is
a formidable task because of the appearance of nonlinear di�erential kinematic equations
when the problem is represented in terms of Eulerian angles� On the other hand� when the
problem is cast into the quaternion formulation� the resulting time�varyingmatrix renders
the linear di�erential equations just as intractable for large ranges of the time variable� In
this paper a new kinematic formulation is introduced which characterizes the problem as
a single� complex Riccati equation with time�varying coe�cients� In this form the highest
order nonlinear terms are quadratic� in contrast to the nonlinear trigonometric terms of
the Eulerian angles� When the quadratic terms are dropped the new kinematic equations
correspond directly to the linearized �small angle� Eulerian formulation� The quadratic
kinematic equations are ideal for analytic solutions because an approximate analytic
integration of the quadratic terms �which characterize the large angle motion� can be
achieved to a high degree of accuracy� The solutions are derived through asymptotic and
series expansions and are based entirely on integrals found previously in the small angle
theory� The numerical simulations demonstrate that spin axis excursions in excess of �
radian can be accurately represented by the new analytic solutions�

Introduction

In the last several decades there has been a great deal of activity in the development of
analytic solutions for attitude motion of a rigid body in more and more sophisticated prob�
lems ������� The earliest works �e�g� Poinsot ����	 address the motion of the unforced rigid

body and
 due to the availability of integrals of the motion �namely energy and momentum	

provide exact
 compact solutions for both symmetric and asymmetric cases� More recent
studies have focused on the self�excited rigid body
 which Grammel ��
 �� de�nes as a body
free to rotate about a point �xed in the body and space
 when it is acted upon by a torque
vector arising from internal reactions which do not appreciably change the mass or the mass
distribution� The attitude motion of a rigid spacecraft
 subject to thruster torques
 presents
a modern example of a self�excited rigid body
 and many of the aforementioned references
deal speci�cally with this problem�
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Nearly all of the analytic solutions for the self�excited rigid body rely on small angle
approximations
 in which one of the body axes is con�ned to small angular excursions
from its initial orientation in inertial space� This is because most of these developments
are based on the Eulerian kinematic equations which are highly nonlinear
 in general
 but
are quite amenable to analysis when small angles are assumed� In fact
 much as been
achieved through this approach including solutions for the motion of a rigid body subject
to time�varying body��xed torques �Longuski and Tsiotras ����
 Tsiotras and Longuski
���
 ���	� These solutions
 although lengthy
 provide important tools for the study of rigid
body motion� By examining only the most important terms of an analytic solution �with
regard to a speci�c application	
 one can gain insight into the behavior of the motion�
When more general studies are required
 these analytic solutions can provide the basis for
ecient computational algorithms
 which can in turn be used to study the general behavior
through parametric studies �e�g� Longuski and Kia ����	� Such parametric studies would
be extremely expensive and time consuming if attemped by numerical integration of the
di�erential equations of motion� A further application of these analytic solutions
 is that
they can provide for rapid onboard computations of spacecraft maneuvers and hence
 can
ultimately serve in the missions of autonomous spacecraft�

In this paper we use a new kinematic formulation
 �Tsiotras and Longuski ����	
 which
renders the large angle motion of a rigid body analytically tractable� The approach can be
applied to all attitude motion problems� Here we apply it to the self�excited near�symmetric
rigid body subject to constant torques about all three axes
 as an example�

We mention
 in passing
 that the new kinematic formulation has also provided break�
throughs in the development of simple and elegant control laws as as shown in ���
 ����

Kinematic Equations in Eulerian Angles

Consider a Type �� ����� Euler angle sequence using the nomenclature of Wertz ����� Type
� refers to sequences that involve three coordinate axes
 whereas Type � refers to cases in
which the �rst and third rotations take place about the same axis� For a ����� sequence
the Eulerian angles ��z � �x� �y	 are de�ned by successive rotations about the z
 x� and y��

coordinate axes� The resulting kinematic equations are

��x � �x cos�y � �z sin �y ��a	
��y � �y � ��z cos�y � �x sin �y	 tan�x ��b	
��z � ��z cos �y � �x sin �y	sec�x ��c	

where ��x� �y� �z	 are the angular velocity components� The nonlinear nature of these
equations coupled with the arbitrary angular velocities make these equations intractable in
general� However
 we note that �z is an ignorable variable
 so that if we can �nd expressions
for �x and �y
 then �z is found by quadrature

�z�t	 �
Z t

�
f�z��	 cos��y��	�� �x��	 sin��y��	�g sec��x��	� d� ��	

Thus
 the fundamental problem has two degrees of freedom and the task at hand reduces
to the problem of solving for �x and �y �

Equations ��	 have been used in their linearized form �with �x and �y assumed small	 to
study attitude motion in which the spin axis is the z body axis� The small angle assumption
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amounts to interpreting the angles �x and �y as error angles measured from the desired
inertial Z axis orientation� With the further assumption that the product �y�x in ��c	
is small compared to �z �as is usually the case for spin�stabilized bodies	
 we have the
linearized form of equations ��	

��x � �x � �y�z ��a	
��y � �y � �x�z ��b	
��z � �z ��c	

Again
 because of the decoupling of �z from �x and �y 
 we can concentrate on solving ��a	
and ��b	� Using the complex notation introduced by Tsiotras and Longuski ���
 ���
 we
can write these two equations in the following single complex equation for the linearized
transverse Eulerian angles �x and �y

�� � i�z� � � ��	

where �
�
� �x � i�y and �

�
� �x � i�y �

Equation ��	 represents the small angle problem in compact form� For analytic integra�
tion of the large angle problem
 a di�erent kinematic formulation in the form of a Riccati
equation is employed�

Riccati Kinematic Equation

In general for any set of Eulerian angles we have a transformation matrix A such that���
��

X
Y

Z

���
�� � A

���
��

x
y

z

���
�� ��	

where x� y and z are body coordinates and X� Y and Z are inertial coordinates� For the
����� Euler angle sequence ��z � �x� �y	 we have the corresponding transformation matrix
A����

A��� �

�
�	 c�zc�y � s�zs�xs�y �s�zc�x c�zs�y � s�zs�xc�y
s�zc�y � c�zs�xs�y c�zc�x s�zs�y � c�zs�xc�y

�c�xs�y s�x c�xc�y



�� ��	

where c and s denote cosine and sine
 respectively�
It is well known that the transformation matrix A obeys the di�erential equation

�A � AW ��	

where

W �

�
�	 � ��z �y

�z � ��x

��y �x �



�� ��	

W is called the a�nor of rotation by Leimanis ��� or the angular velocity matrix by Kane

Likins and Levinson ����� Integration of equation ��	 provides the complete attitude history
of the rigid body� B�odewadt ��
 �� proposed a closed�form solution of equation ��	 for the
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self�excited rigid body
 but his solution is incorrect in general because the matrix A does
not commute with its integral �see Longuski ����	�

For any row of A we have

� �a �b �c� � �a b c�

�
�	 � ��z �y

�z � ��x

��y �x �



�� ��	

where a� b and c are scalar elements of the row� Noting that

a� � b� � c� � � ���	

we can use stereographic projection of points �a� b� c	 on the unit sphere onto the complex
plane w � wx � i wy to get ����

w � wx � i wy � �b� i a	��� � c	 � ��� c	��b� i a	 ���	

The kinematic equation can be derived by di�erentiating equation ���	

�w � ��b� i �a	��� � c	� �b� i a	 �c��� � c	� ���	

Using equation ��	 and after some algebra we �nd that

�w � i �zw �
�

�
�
��

�
w� ���	

Equation ���	 is a di�erential equation of the Riccati type� An equation of this form �rst
appeared in ���� in connection with some problems in classical di�erential geometry
 however
its derivation using the stereographic projection and its use in attitude kinematics was �rst
established in �����

In order to recover a� b and c from w one can use the following relations

a � i �w� �w	��jwj�� �	 ���a	

b � �w� �w	��jwj�� �	 ���b	

c � ��jwj� � �	��jwj�� �	 ���c	

Since we can set the values of a
 b and c to those of any row of the transformation matrix
A
 let us pick the third row of the the matrix A��� in ��	�

a � � cos�x sin �y� b � sin �x� c � cos �x cos �y ���	

Then substituting equations ���	 into equation���	
 we obtain

w � �sin �x � i cos�x sin �y	��� � cos�x cos �y	 ���	

Here we note that if �x and �y are small angles
 then

w � �

�
��x � i�y	 �

�

�
� ���	
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Analytic Integration of the Riccati Equation

Equation ���	 is well�suited for analytic investigations of the large angle problem� Let us
introduce the small parameter
 �
 into equation ���	�

�w � i �zw �
�

�
� �

��

�
w� ���	

When ���
 equation ���	 reduces to the small angle problem� In the small angle case we
see from equation ���	 that w � �

�� and that equations ��	 and ���	 are equivalent� When
��� equation ���	 becomes equation ���	�

Thus we can use the small parameter
 �
 as a mathematical device �having no physical
interpretation	
 to control the degree of nonlinearity we wish to model in equation ���	�
The form of equation ���	 is ideally suited to the application of Poincar�e�s method of small
parameters ���� where we assume that the solution is

w � w� � � w� � ��w� � ��� ���	

Substituting equation ���	 into equation ���	 and collecting terms of like powers in � we
obtain

�w� � i �zw� � ��� ���	

�w� � i �zw� � ��w�
��� ���	

�w� � i �zw� � ��w�w� ���	

for the �rst three di�erential equations� The solution for equation ���	 has already been
obtained for the problem of the self�excited near�symmetric rigid body �constant torques
about three axes	 in ����� Numerical simulations presented in ���� demonstrate that the in�
clusion of equation ���	 provides a signi�cant improvement in the analytic solution and gives
very accurate results for the large angle problem� However we will see that in attempting
to integrate the forcing term which appears in equation ���	 certain approximations must
be made in order to achieve a closed�form solution� Here we present only the �rst order ap�
proximation given in ���	 since numerical investigations have demonstrated that this term
captures a signi�cant portion of the nonlinearity in ���	�

Thus
 we will approximate the solution to w as

w � w� � w� ���	

and the governing di�erential equation is �from equations ���	 and ���		�

�w � i �zw � �

�
�
��

�
w�
� ���	

Here we see that equation ���	 represents simply one successive approximation to equation
���	 where the linear solution
 w�
 is substituted into the nonlinear forcing term�

It is convenient to express the solution to equation ���	 in terms of the two components
w� and w��

w��t	 � w��	 exp


�i
Z t

�
�z�u	 du

�

�
�

�
exp


�i
Z t

�
�z�u	 du

�Z t

�
��u	 exp


i

Z u

�
�z�v	 dv

�
du ���	

�



w��t	 �
�

�
exp


�i
Z t

�
�z�u	 du

�Z t

�
���u	w�

��u	 exp


i

Z u

�
�z�v	 dv

�
du ���	

Since an explicit form for equation ���	 is reported in ���� for our problem
 we will concen�
trate our current e�ort on equation ���	� Before going into details it is �rst necessary to
brie�y review the assumptions and results of �����

The Self�Excited Rigid Body

For the self�excited rigid body
 Euler�s equations of motion apply

Mx � Ix ��x � �Iz � Iy	�y�z ���a	

My � Iy ��y � �Ix � Iz	�z�x ���b	

Mz � Iz ��z � �Iy � Ix	�x�y ���c	

where the principal moments of inertia
 Ix
 Iy and Iz 
 are assumed to be constants� The
body��xed moments
 Mx
 My and Mz 
 may be constants �as in ����	 or time�varying func�
tions �as in ���
 ��
 ���	�

For our purposes we will assume constant moments and near�symmetry �Iy � Ix	 about
the z spin axis so that the last term of equation ���c	 can be dropped� The spin rate can
then be integrated to give

�z�t	 � �Mz�Iz	 t� �z�� �z�
�
� �z��	 ���	

We will demonstrate that with these assumptions a very accurate analytic solution can be
obtained for the large angle motion� However
 the method is not limited to these partic�
ular assumptions and extensions to include time�varying body��xed torques ���
 ��
 ��� or
asymmetric bodies ���
 ��� are straightforward�

Without loss of generality we assume that the principal moments of inertia are ordered
according to the inequalities Iz � Ix � Iy � By de�ning a new independent variable

�
�
� �z�t	 ���	

and the new complex dependent variable

� � �x � i�y
�
� �x

q
ky � i �y

p
kx ���	

where
kx

�
� �Iz � Iy	�Ix� ky

�
� �Iz � Ix	�Iy� k

�
�
q
kxky ���	

we can rewrite Euler�s equations of motion ���a	����b	 as the complex di�erential equation

�� � i ��� � F ���	

where prime denotes di�erentiation with respect to the new independent variable � � In
equation ���	 we have also made use of the de�nitions

�
�
� k�Iz�Mz	 ���a	

F � Fx � i Fy
�
� �Mx�Mz	�Iz�Ix	

p
ky � i �My�Mz	�Iz�Iy	

p
kx ���b	

�



For constant F 
 the solution to equation ���	 is

���	 � �� exp�
�
�i��

�	 � exp���i��
�	FI����� � � �	 ���	

where �� � ����	 exp���
� i��

�
� 	 and

I����� � � �	
�
�

Z �

��

exp���
� i�u

�	 du ���	

The integral I����� � � �	 of equation ���	 is discussed in detail in ���
 ���
 and can be readily
calculated in terms of Fresnel integrals�

I����� � � �	 �
q
	�j�j

�
sgn��	 �E

q
j�j�	 �

�
� sgn���	 �E

q
j�j�	 ��

��
���	

where

�E�x	 �

�
E�x	 for � � �
�E�x	 for � 
 �

���	

and

E�x	
�
�
Z x

�
exp���

�i	u
�	du ���	

is the complex Fresnel integral ���
 ���� The term sgn��	 in equation ���	 represents the
signum function such that sgn�x	 � � for x � � and sgn�x	 � �� for x 
 ��

Attitude Motion of the Self�Excited Rigid Body

The Small Angle Theory

We now turn our attention back to the kinematic equation ���	� By using the new
independent variable ���	
 equation ���	 becomes

w� � i��w � ��� � ��w�
�	�� ���	

where we have introduced
�
�
� Iz�Mz ���	

The zero order equation is
w�� � i��w� � ���� ���	

The solution to equation ���	 is

w���	 � w�� exp���
�i��

�	 � ����	 exp���
� i��

�	 �k� ����� � ��	 � k� ����� � ��	� ���	

where w��
�
� w���	 exp�

�
�i��

�
� 	 and where

 ����� � ��	
�
�

Z �

��

exp��� i�u
�	��u	 du ���a	

 ����� � ��	
�
�

Z �

��

exp��� i�u
�	���u	 du ���b	

and
k�

�
�
�p

kx �
q
ky
�
��k� k�

�
�
�p

kx �
q
ky
�
��k ���	

�



Notice that  ����� � ��	 and  ����� � ��	 are related by

 ����� � ��	 � � ����� � ���	 ���	

therefore only one of the integrals  �
  � needs to be evaluated in the expressions ���	�
Notice that the k� and k� appear in equation ���	 when we write � of equation ���	 in
terms of � �equation ��		�

���	 � k����	 � k� ����	 ���	

The small angle solution
 w�
 of equation ���	 can be written most compactly by fol�
lowing the nomenclature of ����
 where

 ����� � ��	 � ��� � F I����� �	�

Z �

��

exp���i�u
�	 du

� F

Z �

��

exp��� i�u
�	 I��u� �	 du ���	

where �
�
� �� � � ��� � k	� The integral I����� �	 is a special case of integrals which have

been identi�ed in ����
 namely

In�x� �	
�
�

Z x

�
exp���

�i�u
�	undu ���	

When n � � we recognize from equations ���	 and ���	 that

I����� �	
�
�
Z ��

�
exp���

� i�u
�	du �

q
	�� sgn���	 �E�

q
��	 ��	 ���	

The next integral which appears in equation ���	 isZ �

��

exp���i�u
�	du � I����� � ���	 ���	

which we recognize as equation ���	� We designate the last integral which appears in
equation ���	 as

J����� � ��� �	
�
�

Z �

��

exp���i�u
�	 I��u� �	 du ���	

Using equation ���	 in equation ���	
 we have

J����� � ��� �	 �
q
	�j�j

Z �

��

sgn�u	 exp���i�u
�	 �E�

q
j�j�	u	 du ���	

By the change of variable

�u
�
�
q
j�j�	u ���	

the integral ���	 simpli�es to

J����� � ��� �	 � �	�j�j	
Z ��

���
sgn��u	 exp���i���u

�	 �E��u	d�u
�
� �	�j�j	 �J������ �� � ��	 ���	

where
���

�
�
q
j�j�	 ��� ��

�
�
q
j�j�	 �� ��

�
� �	�j�j ���	

�



Thus
 dropping the tildes for notational convenience
 we see that the essential integral
involved in the small angle theory is

J����� � ��	
�
�
Z �

��

sgn�u	 exp���i�u
�	 �E�u	 du ���	

The integral of equation ���	 is thoroughly analyzed in ���� where series expansions of the
Fresnel integral �E�u	 were used to integrate termwise�

We can summarize the results for  � and  � as follows�

 ����� � ��	 � ��� � F I����� �	� I����� � ���	 � F J����� � ��� �	 ���a	

 ����� � ��	 � ���� � �F �I����� �	� I����� � ��	 � �F J����� � ��� �	 ���b	

with 
�
� � � �� Thus
 the complete solution for the small angle problem is given by

equations ���	
 ���	
 ���	
 ���	 and ���	�

The Large Angle Theory

We now demonstrate the development of the large angle theory based on equation ���	�
The surprising result of the analysis which follows is that no new integrals appear
 so that
the extension to the large angle theory is
 in principle
 no more dicult than the original
small angle theory�

For the large angle theory
 the solution to equation ���	 is

w � w� � w� ���	

where w� is the small angle �zero order	 solution from ���	 and w� is the �rst order correction
term�

w���	 �
�

�
exp���

� i��
�	
Z �

��

exp���i�u
�	 ���u	w�

��u	 du ���	

For convenience
 let us de�ne the integral in equation ���	 as

H���� �	
�
�

Z �

��

exp���i�u
�	h�u	 du ���	

where
h�u	 � ���u	w�

��u	 ���	

It is a very dicult task to compute the integral H���� �	 uniformly for large and small
values of the spin rate � � We can therefore split the problem of computing H���� �	 into
two parts
 viz� the evaluation of H���� �	 for large �absolute	 values of the spin rate and
the evaluation of H���� �	 for small values of the spin rate� One expects that with these
two cases taken care of
 one might be able to extend the solution to the extreme case of
spinning through zero spin rate
 i�e to cases when the limits of integration in ���	 pass from
a positive spin rate ��� � �	 to a negative spin rate �� 
 �	
 or vice versa� To analyze such
cases we write equation ���	 in the following form

H���� �	 �

Z �

��

g�u	 du�

Z ��

�

g�u	 du�

Z �

��

g�u	 du� H� �H� �H� ���	

where � is a �small	 constant� By this procedure we can �nd H� and H� through asymptotic
expansions in terms of � and H� by Taylor series expansion about � � � of the integrand�

�



The problem of specifying the constant � to obtain the greatest accuracy becomes a numer�
ical issue dictated by the speci�c problem being analyzed�

The case of the asymptotic approximation of H���� �	
 or equivalently of H� and H� in
���	
 �i�e�
 when � � �� � � or � � � � ��	 can be treated as follows�

First note that the solutions for � and w� can be written in terms of I����� � � �	 and
 ����� � ��	 as follows�

���	 � �� exp�
�
� i��

�	 � exp���i��
�	�F�

p
k	I����� � � �	 ���	

w���	 � w�� exp���
�i��

�	 � ����	 exp���
�i��

�	 ���� � ��	 ���	

where I����� � ��	 was de�ned in ���	 and  ���� � ��	 is now de�ned as

 ���� � ��	
�
�

Z �

��

exp��� i�u
�	��u	 du ���	

Note that
 without loss of generality
 we assume here only the case of an axisymmetric rigid
body since the methodology can be easily generalized to the nonsymmetric case
 although
the algebra quickly becomes very cumbersome in this case�

The asymptotic expansion of �I����� � ��	 �keeping just the �rst term	 is

�I����� � ��	 � �i��	
h
exp��� i��

�
� 	��� � exp���i���	��

i
� a� � a�R��� � �	 ���	

where
R��� � �	

�
� exp���i��

�	�� ���	

and
a�

�
� i exp���i��

�
� 	����� a�

�
� �i�� ���	

Similarly
 using ���	 the asymptotic expansion for  ���� � ��	 becomes

 ���� � ��	� b� � b�R��� ��	 � b�R��� ��	 ���	

where
R��� ��	

�
� exp���i��

�	��� ���	

and

b�
�
�

Fp
k

�
i

��
�Ei�

�

�
��� 	 �

exp���i��
�
� 	

�����

�
�

��p
k

i

�

exp���i��
�
� 	

��
���a	

b�
�
� � Fp

k

exp���
�i��

�
� 	

����
� ��p

k

i

�
���b	

b�
�
�

F

��
p
k

���c	

where �Ei�������	 is de�ned by

�Ei�
�

�
��� 	 �

�
Ei����

�
� 	 for � � �

�Ei���
��

�
� 	 for � 
 �

���	

and where

Ei�x	
�
�
Z �

x

eiu

u
du ���	

��



is in essence the exponential integral �����
Substituting ���	 and ���	 into ���	 and after collecting terms
 one has for H���� �	 that

H���� �	 �
�X

i��

riGi���� �	 ���	

where

r�
�
� � �F�

p
k	����	�� r�

�
� �������	

�� r�
�
� ����w�� ���a	

r�
�
� �Fw�

���
p
k� r�

�
� ���w

�
��� r�

�
� �F�w���

p
k ���b	

and where

G����� �	
�
�

Z �

��

exp���
� i�u

�	�I����� u��	 
����� u��	 du ���a	

G����� �	
�
�

Z �

��

exp���
� i�u

�	 ����� u��	 du ���b	

G����� �	
�
�

Z �

��

exp���
� i�u

�	 ���� u��	 du ���c	

G����� �	
�
�

Z �

��

exp���
� i�u

�	�I����� u��	 du ���d	

G����� �	
�
�

Z �

��

exp���
� i�u

�	 du ���e	

G����� �	
�
�

Z �

��

exp���
� i�u

�	�I����� u��	 ���� u��	 du ���f	

Using the expressions ���	 and ���	 we �rst calculate the integral G����� �	 in ���	 as follows�

G����� �	 �
��X
i��

p��iQ��i���� �	 ���	

where

p��� � a�b
�
�� p��� � a�b

�
�� p��� � a�b

�
� ���a	

p��� � �a�b�b�� p��� � �a�b�b�� p��� � �a�b�b� ���b	

p��	 � a�b
�
�� p��
 � a�b

�
�� p��� � a�b

�
� ���c	

p���� � �a�b�b�� p���� � �a�b�b�� p���� � �a�b�b� ���d	

and where

Q������� �	 �

Z �

��

exp���
� i�u

�	 du � I����� � ��	 ���a	

Q������� �	 �
Z �

��

exp��� i�u
�	�u� du ���b	

Q������� �	 �
Z �

��

exp��� i��� �	u���u� du ���c	

Q������� �	 � ln�j� j	� ln�j��j	 ���d	

Q������� �	 �

Z �

��

exp���
� i�u

�	�u� du ���e	

��



Q������� �	 �
Z �

��

exp��� i�u
�	�u� du ���f	

Q��	���� �	 �

Z �

��

exp���
� i�u

�	�u du ���g	

Q��
���� �	 �

Z �

��

exp��� i��� �	u���u� du ���h	

Q������� �	 �
Z �

��

exp��� i�u
�	�u� du ���i	

Q�������� �	 �
Z �

��

exp��� i�u
�	�u� du ���j	

Q�������� �	 �
�
����� � ����

�
�� ���k	

Q�������� �	 �
Z �

��

exp��� i�u
�	�u� du ���l	

Similarly
 for Gi���� �	 �i � �� ���� �	 one has that

G����� �	 �
�X

i��

p��iQ��i���� �	 ���	

where

p��� � b��� p��� � b��� p��� � b�� ���a	

p��� � �b�b�� p��� � �b�b�� p��� � �b�b� ���b	

and where

Q������� �	 � Q������� �	� Q������� �	 � Q������� �	 ���a	

Q������� �	 � Q������� �	� Q������� �	 � Q������� �	 ���b	

Q������� �	 � Q������� �	� Q������� �	 � Q������� �	 ���c	

���d	

For G����� �	 one has

G����� �	 �
�X

i��

p��iQ��i���� �	 ���	

where
p��� � b�� p��� � b�� p��� � b� ���	

and where

Q������� �	 � Q������� �	� Q������� �	 � Q������� �	� Q������� �	 � Q������� �	 ���	

For G����� �	 one has

G����� �	 �
�X

i��

p��iQ��i���� �	 ���	

where
p��� � a�� p��� � a� ���	

��



and where
Q������� �	 � Q������� �	� Q������� �	 � Q��	���� �	 ���	

For G����� �	 one has that
G����� �	 � Q������� �	 ���	

and �nally for G����� �	 one has

G����� �	 �
�X

i��

p��iQ��i���� �	 ���	

where

p��� � a�b�� p��� � a�b�� p��� � a�b� ���a	

p��� � a�b�� p��� � a�b�� p��� � a�b� ���b	

and where

Q������� �	 � Q������� �	� Q������� �	 � Q������� �	 ���a	

Q������� �	 � Q������� �	� Q������� �	 � Q��	���� �	 ���b	

Q������� �	 � Q�������� �	� Q������� �	 � Q�������� �	 ���c	

All the integrals appearing in the equations ���	 are of the formZ �

��

exp��� iku
�	�un du ���	

Integrals of this form can be calculated using the recurrence formula ����Z �

��

exp���iku
�	�un du �

h
exp��� ik�

�
� 	��

n��
� � exp���ik��	��n��

i
��n� �	

� i
k

n� �
Z �

��

exp���iku
�	�un�� du� n � �� �� � � � ���	

The �rst two terms of this sequence can be computed as followsZ �

��

exp���iku
�	 du � I����� � ��k	 ���	Z �

��

exp���iku
�	�u du �

�

�

h
�Ei���k�

�
� 	� �Ei���k�

�	
i

���	

We note in passing that the !naive" direct asymptotic approximation of H���� �	 using
integration by parts
 that is

H���� �	 � �i��	 �exp������� 	h���	��� � exp���i���	h��	�� � ���	

does not yield accurate results
 even for moderately large values of the spin rate� One
therefore needs to use the asymptotic expansion method described above�

In order to have an accurate approximation for H���� �	 for small spin rates as required
in ���	
 and in particular for cases such that � � � � �� we develop a Taylor series expansion
for h��	 about � � ��

h��	 � h��	 � h���	� � h����	����# � ���� h �n��	�n�n# � Rn�� ���	

��



where the remainder is
Rn�� � h �n����	�n����n� �	# ���	

and � � � � � � In order to �nd a general formula for the series
 we must be able to
compute derivatives to any order� In general if a function is written as a product of two
other functions

h��	 � f��	g��	 ����	

then the nth order derivative of equation ����	 is given by

h �n��	 �
nX

k��

�
n

k

�
f �n�k��	g�k��	 ����	

In our case
 since h��	 � ����	w�
���	
 we have to apply equation ����	 twice to obtain

h�n��	 � �����	w�
���		

�n �
nX

k��

kX
j��

�
n
k

��
k
j

�
���n�k��	w

�k�j
� ��	w

�j
� ��	 ����	

Next we seek general expressions for the derivatives of �� and w�� We note from equation
���	 that

���n � k���
�n � k��

�n ����	

So we need to �nd the derivatives of �� $From equation ���	 we have

����	 � i�����	 � F ����	

The next two derivatives of equation ����	 provide

�����	 � i������	 � i����	������	 � i�������	 � �i�����	 ����	

and we deduce the rule

��n��	 � i����n����	 � �n� �	i���n����	� n � �� �� �� ��� ����	

which is easily proven by induction� Since in our case the Taylor series expansion is about
� � �
 we have from equations ����	�����	�

����	 � F ����a	

��n��	 � �n� �	i ���n����	� n � �� �� �� � � � ����b	

To �nd expressions for w
�n
� we use equation ���	�

w����	 � �i��w���	 �
�

�
���	 ����	

Taking the next two derivatives of equation ����	 one obtains

w�����	 � �i�w���	� i��w����	 �
�

�
����	 ����	

w���� ��	 � ��i�w����	� i��w�����	 �
�

�
�����	 ����	

��



$From equations ����	 and ����	 one can easily deduce the recurrence formula

w
�n
� ��	 � ��n � �	i�w �n��

� ��	� i��w
�n��
� ��	 �

�

�
��n����	� n � �� �� �� � � � ����	

which is also con�rmed by induction� For � � � we have

w����	 �
�

�
���	 ����a	

w
�n
� ��	 � ��n � �	i�w �n��

� ��	 �
�

�
��n����	� n � �� �� �� � � � ����b	

Finally
 since the Taylor series expansion of ��w�
� leads to a series of terms in un
 we

need the recurrence relation ���� for the integral ���	�

In�x� �	 � i
xn��

�
exp���

� i�x
�	� i

n� �
�

In���x� �	� n � �� �� �� � � � ����	

Equation ���	 provides I��x� �	 and for I��x� �	 we have ����

I��x� �	
�
�
Z x

�
exp���

� i�u
�	 u du � �i��	�exp���

�i�x
�	� �� ����	

Thus
 for small arguments the integral H���� �	 of equation ���	 can be computed to any
order through equations ���	
 ����	
 ����	
 ����	
 ���	 and ����	�����	� Notice that these
expressions are not restricted to the symmetric case �as was assumed for the asymptotic
expansions for the sake of simplicity	
 but include the nonsymmetric case as well�

The large angle solution given by equations ���	
 ���	 and ���	 can then be explicitly
calculated in terms of asymptotic or Taylor series expansions� We note that the new terms
introduced in the large angle theory do not involve any new integrals that were not required
in the small angle theory� This fact could have signi�cant implications in the extensions of
all previous analytic solutions which were based on small angle assumptions�

Numerical Results

In this section we present a numerical example to demonstrate the previous methodology�
We pick a very dicult case in order to exaggerate any weaknesses in the analytic theory�
Speci�cally
 we choose a spin�down maneuver in which the spin rate is driven from a positive
value to a negative one
 while constant body��xed torques act on all three axes� When zero
spin rate is reached
 the body loses all of its stabilizing momentum and suddenly
 under
the in�uence of the transverse torques
 moves through large angular excursions of the spin
axis� Any analytic theory which provides accurate results for this extreme case would be
more than adequate for the vast majority of practical applications�

A Galileo�type spacecraft will serve as an example ���� where representative values for
the mass properties are taken as

Ix � ���� kgm
�� Iy � ���� kgm

�� Iz � ���� kgm
� ����	

For the spin�down maneuver
 the body��xed torques are assumed to be

Mx � � Nm� My � � Nm� Mz � ����� Nm ����	

��



and the initial conditions are

�z��	 � ��� r�s� �x��	 � �y��	 � �� �x��	 � �y��	 � �z��	 � � ����	

For the �nal condition we assume

�z�tf 	 � ���� r�s ����	

Naturally condition ����	 represents a hypothetical case
 as no engineer at the Jet Propul�
sion Laboratory would wish to see the spacecraft spin�down through zero spin rate
 since
not only would attitude control be lost
 but the retro�propulsion module
 which depends on
centripetal acceleration for operation
 would fail� Such a spin�down maneuver represents a
catastrophic event�

However
 in the interest of theoretical dynamics
 we pursue our example� In Figs� ���
the solid line represents the exact solution which is found by precise numerical integration
of equations ��	 and ���	� In Figs� � and � the dotted line represents the analytic solution
based the small angle assumption �linear solution	� The analytic solution for �x and �y
is found by analytic integration of equations ���	 and ��	
 namely equation ���	� In other
words
 the analytic solution in Figs� � and � corresponds to the analytic integration of the
linearized system of equations ��	 when a small angle assumption for �x and �y is imposed�
In Fig� � we see that after zero spin rate is reached �at approximately ��� seconds	 the
value of �x suddenly rises and subsequently exceeds a magnitude of � radian ��� deg	� The
behavior of �y is similar and is shown in Fig� �� At such large amplitudes
 the nonlinear
behavior becomes apparent and we see a signi�cant phase shift between the analytic versus
the exact solutions�

The dotted lines in Figs� �� � and � represent the results for the large angle solution
where only the �rst correction term ���	 is added to the zero order solution
 as in equation
���	� The approximate analytic solution for �z is
 from ��c	 and ���	


�z�t	 �
Z t

t�

�z��	 d� � �Mz�Iz	 t
��� � �z� t � �z� ����	

Because of the very dicult example problem we have selected
 the large variation of the
argument � from large values through zero presents special numerical challenges� For the
chosen values
 it was found that �� terms in the Taylor series expansion ���	 are required in
order to provide an accurate approximation for the integral H���� �	 of equation ���	 near
� � �� The value of � in ���	 is

� � ��� r�s ����	

Conclusion

The large angle theory developed in this paper provides signi�cant improvement over the
small angle theory
 without the requirement of solving any new integrals� The quadratic
kinematic equations lead to an important breakthrough for the extension of all previous
analytic solutions based on small angle linearization� A numerical simulation for the Riccati
kinematic equation shows that it can be very helpful in very accurately describing the motion
of a spinning spacecraft during a spin�down maneuver�

��
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Figure �� Exact and Analytic Solutions for �x �small angle theory	�
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Figure �� Exact and Analytic Solutions for �x �large angle theory	�
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Figure �� Exact and Analytic Solutions for �y �small angle theory	�
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Figure �� Exact and Analytic Solutions for �y �large angle theory	�
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Figure �� Exact and Analytic Solutions for �z �
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