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Abstract

In this paper, we study pure peer-to-peer (henceforth abbreviated as P2P) and mixed
(combined single-spacecraft and P2P) satellite refueling in circular orbit constellations com-
prised of multiple satellites. We consider the optimization of two conflicting objectives in
the refueling problem and show that the cost function we choose to determine the optimal
refueling schedule reflects a reasonable compromise between these two conflicting objec-
tives. In addition, we show that equal time distribution between the forward and return
flights for each pair of P2P maneuvers does not necessarily lead to the optimum cost.
Based on this idea, we propose a strategy for reducing the cost of P2P maneuvers. This
strategy is applied to pure P2P refueling scenarios as well as to mixed refueling scenarios.
Furthermore, for the case of a mixed scenario, we propose an asynchronous P2P strategy
that also leads to more efficient refueling.

INTRODUCTION

It has long been recognized that servicing and refueling spacecraft in orbit has the potential
to revolutionize spacecraft operations by extending the useful lifetime of the spacecraft, by
reducing launching and insurance cost, and by increasing operational flexibility and robustness
.1–4 Several studies have been conducted over the past decade, which investigated the relative
merit of satellite refueling when compared to satellite replacement.1,5, 6 Crucial technologies
that enable replenishment of satellites with propellant have already been tested or are in the
process of being evaluated.7–12

Most of the previous studies in the literature have assumed that a single spacecraft alone
undertakes the task of refueling the whole constellation. That is, a single service spacecraft
plays the role of the sole supplier of fuel.1,13,14 Recently, an alternative scenario for distributing
fuel amongst a large number of satellites has been proposed.15–17 In this scenario, no single
spacecraft is in charge of the complete refueling process. Instead, all satellites share the
responsibility of refueling each other on an equal footing. We call this the peer-to-peer (P2P)
refueling strategy.16,17
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A P2P refueling strategy is, by definition, a distributed method to replenish a constellation
of spacecraft with fuel/propellant. Consequently, it offers a great degree of robustness and
protection against failures. For instance, with a P2P strategy a failure of a single spacecraft
will have almost no impact on the refueling of the rest of the constellation. On the contrary,
a failure of the service vehicle in a single-spacecraft scenario will result in the failure of the
whole mission.

Although a stand-alone P2P scenario may seem unconventional at first glance, it arises
naturally as an essential component of a mixed refueling strategy. By mixed refueling strategy
we mean a strategy which involves at least two stages. During the first stage a single spacecraft
refuels only a certain fraction (perhaps half) of the satellites. During the second stage the
satellites that received fuel during the first stage act as go-betweens, and distribute the fuel
to the rest of the constellation in a P2P manner. That is, a P2P refueling strategy can be
implemented as the final distribution phase of a single-vehicle refueling strategy. In Refs. 18,19
it has been shown that a mixed refueling strategy may be more fuel-efficient than a single-
spacecraft strategy, especially for a large number of satellites, and for short refueling periods.
As a matter of fact, it is not difficult to come up with cases for which the single-spacecraft
scenario is infeasible (due to the time constraint), while a mixed refueling strategy is still
possible.

Pure P2P refueling for circular spacecraft constellations was originally proposed in Ref. 20
as a means to equalize fuel. In that work two P2P cases were analyzed. In the first case the
rendezvous costs were negligible when compared to the total amount of fuel exchange taking
place. This situation arises only when the satellites are very closely spaced or when the time
for refueling is sufficiently large.16 The optimal matching in this case is very simple, i.e., it is
a symmetric matching§. For the majority of cases encountered in practice however the cost
incurred during the transfers is significant and cannot be neglected in the optimization process.
In order to achieve fuel equalization in this case, an optimization problem was formulated in
Refs. 17, 19, where the absolute value of the deviation of each satellite’s fuel from the initial
average fuel in the constellation is penalized. Ideally, one would like to minimize the deviation
of each satellite’s fuel from the final average fuel in the constellation. However, without any
additional constraints, the later approach may lead to solutions where the satellites perform
wasteful maneuvering just to equalize fuel. This undesirable situation does not occur in the
formulation used in Ref. 19. By minimizing the deviation from the mean fuel before refueling
takes place (as opposed to the mean fuel after refueling) we eliminate this possibility. This is
a rather heuristic way of addressing the objective of a P2P strategy, namely to both equally
distribute fuel in the constellation and to ensure as little fuel expenditure as possible in the
process.

Fuel equalization and minimum fuel-expenditure are two conflicting objectives. Fuel equal-
ization requires transfer of fuel from one satellite to another and hence consumption of fuel
because of the required orbital maneuvers. Minimizing total fuel consumption on the other
hand, implies few and long transfers. In fact, if the fuel equalization requirement is missing,
the optimal solution to the fuel maximization problem is simple: do nothing. No satellites are
involved in refueling rendezvous. If, on the other hand, the requirement for fuel minimization

§In a symmetric matching the satellite with the most amount of fuel pairs up with the satellite with the least
amount of fuel, the satellite with the second most amount of fuel pairs up with the satellite with the second
least amount of fuel, etc.
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is missing, the opposite occurs: all eligible satellites are involved in refueling rendezvous. In
Refs. 16, 17 and 19 the satisfaction of the previous two objectives was addressed via the in-
troduction of a rather artificial cost function that minimizes satellite fuel deviation from the
mean fuel in the constellation before refueling takes place. A correct formulation of the problem
should involve an explicit incorporation of the previous two conflicting objectives. It is one of
the goals of this paper to fill this gap.

In the first part of the current paper we re-formulate the P2P refueling problem as a
minimization problem of a cost function that is a convex combination of the previous two
conflicting objectives. The cost function introduced this way is parameterized by a single
nonnegative scalar 0 ≤ α ≤ 1 that plays the role of the relative weight of the two elementary
optimization objectives. The choice of α thus becomes a design parameter to be tuned for best
performance. This is a more direct method for formulating the P2P refueling problem than the
one used in Refs. 16,17,19. Nonetheless, we show that the cost in Refs. 16,17,19 corresponds
to the cost used herein for a proper choice of the parameter α. This analysis justifies the
methodology followed in Refs. 16, 17,19.

In the second – and major – part of the paper we revisit the P2P refueling problem, with
the goal of further improving the transfer costs. Specifically, we relax two of the assumptions
made in Refs. 17, 19, while calculating the fuel burnt for the orbital transfers during each
fuel transaction. One of the assumptions for the P2P refueling problem studied in Ref. 19 is
that when there is a fuel exchange between two satellites in a constellation, the time for the
forward journey equals the time for the return journey for all satellite pairs. In the current
paper, we will allow for unequal time sharing between the forward and return journeys, and we
show that equal time sharing does not lead to optimal fuel consumption. We use this fact to
formulate an algorithm that considerably reduces the cost of P2P maneuvers. This algorithm
is also applied to a mixed refueling scenario in order to make it a more competitive option
to the single-spacecraft refueling scenario. It is also shown that allowing asynchronous P2P
maneuvers in such a mixed scenario further brings down the refueling cost. With the help
of numerical examples, we demonstrate the improvements over Ref. 19 and we show how the
incorporation of the extensions proposed in this paper make the mixed refueling scenario a far
better option than a single spacecraft strategy, particularly when the number of satellites is
large.

THE P2P PROBLEM FORMULATION

The Constellation Graph

Given a collection of n ≥ 3 satellites C = {s1, . . . , sn} with unequal amounts of fuel, the
satellites with fuel greater than the average amount of fuel are termed fuel-sufficient satellites,
whereas the satellites with fuel less than or equal the average amount of fuel in the constellation
are termed the fuel-deficient satellites. We use Cs to denote the set of all fuel-sufficient satellites,
and Cd to denote the set of all fuel-deficient satellites. Clearly, C = Cs ∪ Cd. It is assumed that
all satellites are in the same circular orbit, but they do not have to be evenly distributed along
the orbit. By a refuel transaction herein we assume a sequence of events that involves: (i) a
satellite firing its thrusters so as to change its orbit and rendezvous with another satellite in
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the constellation, (ii) exchange of fuel between the two satellites, and (iii) return of the first
satellite to its original slot.

It will be assumed that during a refueling transaction, only one satellite, called the seller,
can give fuel to another satellite. The latter is called the buyer. The set of seller satellites
will be denoted by S and the set of buyer satellites will be denoted by B. Depending on the
amount of fuel between the two, either of these two satellites can initiate a fuel transaction,
i.e., perform a rendezvous with the other satellite, exchange fuel and return to its original
orbital slot. The former satellite is said to be the active satellite and the latter satellite is said
to be the passive satellite. The set of active satellites will be denoted by A and the set of
passive satellites will be denoted by P. Note that, in general, S ∪B ⊆ C since not all satellites
may be involved in fuel transactions. Similarly, A ∪ P ⊆ C for the same reason. Also note
that it is not necessarily true that S = A or that B = P, although this typically will be the
case. For instance, it may happen that a satellite, say si, initiating a fuel transaction receives
fuel (i.e., si ∈ A ∩ B) or that a passive satellite is the seller (si ∈ P ∩ S). Furthermore, it is
not necessarily true that a fuel sufficient satellite will be active (i.e., Cs �⊆ A). However, a fuel
deficient satellite is always a buyer, that is Cd ⊆ B.

Given now the set C we may construct a graph G having as nodes (or vertices) the
satellites of C. We call G the constellation graph. Associated with G is a set of vertices
V = {s1, s2, . . . , sn} and a set of edges E = {〈i, j〉 : si, sj ∈ V} connecting the nodes of G.
Without loss of generality, we enumerate the vertices such that i ↔ si for all 1 ≤ i ≤ n. This
allows us in the sequel to refer to “vertex” si instead of i without the danger of confusion. We
will make no distinction between the edge 〈j, i〉 and the edge 〈i, j〉. That is, G is a undirected
graph. This point needs some clarification. Since the propellant required for satellite si to ren-
dezvous with satellite sj is not equal to the propellant required for satellite sj to rendezvous
with satellite si, G is, in principal, a directed graph. By assigning the minimum fuel required
between the two transfers si → sj and sj → si to the edge 〈i, j〉 we obtain an undirected
graph. This is elaborated upon in the sequel. In the graph G, an edge between two vertices
exists if a fuel transaction between the corresponding satellites is permissible. The number of
elements of a subset of set X will be denoted by |X |. Clearly, |V| = n and for a complete graph
|E| = n(n − 1)/2.

The set of vertices connected to vertex si is called the set of neighbors of si, and it is
denoted by Ni. The edge neighborhood of si is defined by Qi = {〈i, j〉 ∈ E : sj ∈ Ni}. Note
that if si has no neighbors then no edges are connected to this vertex and Qi = ∅. For
example, we may impose that certain satellites are not involved in any fuel transactions due
to operational constraints. By removing all satellites which are known a priori that cannot be
involved in fuel transactions due to operational restrictions we get the core constellation graph
Gc. For simplicity, in the sequel we assume that G = Gc. It should be kept in mind however
that the following developments hold verbatim if we replace G with Gc.

To each edge 〈i, j〉 ∈ E we will assign a (positive) weight that reflects the cost associated
with a fuel transaction between the satellites connected by this edge. By an assignment or
matching over the graph G we mean a partition of V into two sets Va and Vb, such that
|Va| = |Vb| along with a subset M ⊆ E and a one-to-one mapping σ : Va → Vb such that
M = {〈i, j〉 : si ∈ Va, sj ∈ Vb, and sj = σ(si)}. Given the positive weights on each edge, we
seek the matching that maximizes the sum of the weights of all edges involved in this matching.
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In the next section we show how the problem of finding the optimal pairings of satellites can
be reduced to a problem of computing the maximum weighted matching in the constellation
graph.

Construction of the Constellation Graph

Let, for convenience, I denote the index set of the vertices in the core constellation graph.
That is, i ∈ I for si ∈ G. Let f−

i and f+
i denote the fuel contained in each satellite before

and after a fuel transaction, respectively. The average amount of fuel in the constellation
before and after all fuel transactions will be denoted by f̄− and f̄+, respectively. That is,
f̄− = (1/n)

∑
i∈I f−

i , and similarly for f̄+. Let pj
i denote the fuel burnt by satellite si ∈ A

in order to rendezvous with satellite sj ∈ P and return to its original orbital slot. Notice
that, in general, pj

i �= pi
j . Also note that in a fuel transaction between si and sj either one

can be the active satellite, provided that it has enough amount of fuel to rendezvous with the
inactive satellite and return to its original orbital slot. Hence, the fuel cost assigned to a single
rendezvous between satellites si, sj ∈ G is given by

pij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pj
i , if si can be active, but sj cannot,

pi
j , if sj can be active, but si cannot,

min{pj
i , p

i
j}, if either si or sj can be active,

∞, if neither si nor sj can be active.

(1)

The objective is to minimize the square deviation of the fuel distributed among all satellites
in the constellation. Therefore, the cost function to be maximized is given by

Ja = −
∑
i∈I

|f+
i − f̄−|2. (2)

The contribution of all matched vertices of G in equation (2) is easily computed as

−
∑
i∈I

∑
〈i,j〉∈Qi

|f+
i − f̄−|2xij , (3)

where xij is a binary variable associated with each edge as follows

xij =

{
1 if 〈i, j〉 ∈ M,

0 otherwise.
(4)

In order to ensure that each satellite is involved in at most one fuel transaction with another
satellite we impose the inequality ∑

〈i,j〉∈Qi

xij ≤ 1, i ∈ I. (5)

If satellite si is not involved in a fuel transaction, then f+
i = f−

i . As a result, xij = 0 for
all 〈i, j〉 ∈ Qi and the corresponding edges are not part of the optimal matching. As a matter
of fact, we have that xij = 0 for all 〈i, j〉 ∈ E\M.
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The contribution to Ja from all unmatched vertices is

−
∑
i∈I

(
1 −

∑
〈i,j〉∈Qi

xij

)
|f−

i − f̄−|2 = −
∑
i∈I

|f−
i − f̄−|2 +

∑
i∈I

∑
〈i,j〉∈Qi

|f−
i − f̄−|2xij . (6)

The term
∑

i∈I |f−
i − f̄−|2 in the previous expression is constant, and thus it has no effect on

the optimization process and it can be neglected. From Eqs. (3) and (7), and summing up the
contributions from all satellites, we finally have

J ′
a =

∑
i∈I

∑
〈i,j〉∈Qi

(|f−
i − f̄−|2 − |f+

i − f̄−|2)xij . (7)

Recalling that each edge 〈i, j〉 ∈ E has contributions from two vertices i, j ∈ I of the graph,
and rewriting the summation in equation (7) as a summation over all edges in the constellation
graph, the objective function to be maximized is given by

J ′
a =

∑
〈i,j〉∈E

(|f−
i − f̄−|2 − |f+

i − f̄−|2 + |f−
j − f̄−|2 − |f+

j − f̄−|2)xij (8)

Letting πij denote the coefficient of xij in the previous sum, the problem becomes one of
maximizing

J ′
a =

∑
〈i,j〉∈E

πijxij . (9)

subject to (4) and (5).

Since the objective of the refueling process is to equalize the fuel among all satellites in the
constellation, we impose the constraint that after each fuel transaction between any pair of
satellites, the two satellites end up with the same amount of fuel. In other words, we impose
the condition that f+

i = f+
j for all i ∈ I at the end of the refueling process. Noting that the

difference between the total fuel in the satellites before and after refueling can be related to
the total fuel burnt during the rendezvous,19 one obtains

f+
i = f+

j =
1
2
(f−

i + f−
j − pij). (10)

Using equation (10), the weight of each edge in the constellation graph becomes

πij = |f−
i − f̄−|2 + |f−

j − f̄−|2 − 1
2
|f−

i + f−
j − 2f̄− − pij |2. (11)

Given these weights on the edges of the constellation graph, we seek a matching M that will
maximize the sum of the weights of all edges in M. This is a standard maximum weight
matching problem in graph theory.21 The solution to this problem provides the pairs of
satellites involved in the optimal distribution of fuel using a P2P refueling scheme.

AN ALTERNATIVE COST MINIMIZATION FORMULATION

As already mentioned, the two objectives to be satisfied during a P2P refueling scenario are:
(i) minimization of the fuel deviation among all satellites in the constellation, and (ii) mini-
mization of the fuel expenditure during the orbital rendezvous transfers. These two objectives
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are conflicting in nature. For instance, we can fulfil only the first objective by performing
continuous orbital transfers until all satellites have the same amount of fuel (perhaps even
null). On the other hand, we can satisfy the second objective by not performing any orbital
transfers at all. The cost function in equation (2) was introduced rather heuristically so that
it implicitly takes into account both of these objectives. In this section we show that this
rationale is valid. We do this by introducing an optimization criterion Jb that incorporates
explicitly the previous two conflicting objectives, and by unraveling the relationship of the cost
Jb with the cost Ja in equation (2).

Since we seek to minimize the fuel deviation among all satellites in the constellation at the
end of the refueling process, we introduce the following cost function to be maximized

J1 = −
∑
i∈I

|f+
i − f̄+|2. (12)

Since we also want to minimize the cost incurred during the orbital maneuvers required for
the fuel transfers, we also introduce the following cost to be maximized

J2 = −
∑

〈ν,µ〉∈M
p2

νµ. (13)

Given J1 and J2, we assign a relative weight between these two costs, and we combine them
into a single cost function to be maximized, as follows

Jb = αJ1 + (1 − α) J2, (14)

where 0 ≤ α ≤ 1 takes care of the relative importance assigned to the two objectives.

The contribution to (12) from the satellites participating in fuel transactions is

−
∑
i∈I

∑
〈i,j〉∈Qi

|f+
i − f̄+|2xij . (15)

The contribution to J1 from the satellites not participating in fuel transactions is

−
∑
i∈I

(
1 −

∑
〈i,j〉∈Qi

xij

)
|f−

i − f̄+|2. (16)

Combining the contributions from the participating (matched) and nonparticipating (un-
matched) satellites into (12), one obtains

J1 = −
∑
i∈I

∑
〈i,j〉∈Qi

|f+
i − f̄+|2xij −

∑
i∈I

|f−
i − f̄+|2 +

∑
i∈I

∑
〈i,j〉∈Qi

|f−
i − f̄+|2xij . (17)

The average fuel available in the constellation before and after refueling are related by

f̄+ = f̄− − 1
n

∑
〈ν,µ〉∈M

pνµ. (18)

Using equation (18), we may rewrite equation (17) as

J1 =
∑
i∈I

∑
〈i,j〉∈Qi

(|f−
i − f̄−|2 − |f+

i − f̄−|2 +
2
n

(f−
i − f+

i )
∑

〈ν,µ〉∈M
pνµ

)
xij −

∑
i∈I

|f−
i − f̄+|2. (19)
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A simple calculation yields∑
i∈I

|f−
i − f̄+|2 =

∑
i∈I

(
|f−

i − f̄−|2 +
2
n

(f−
i − f̄−)

∑
〈ν,µ〉∈M

pνµ

)

+
1
n

( ∑
〈ν,µ〉∈M

p2
νµ +

∑
〈ν,µ〉∈M

pνµ

∑
〈m,k〉∈M\〈ν,µ〉

pmk

)

Note that ∑
i∈I

(f−
i − f̄−) = 0.

Moreover, the term
∑

i∈I |f−
i − f̄−|2 is constant for a given constellation, and plays no role in

the optimization process. Excluding this constant term, we have∑
i∈I

|f−
i − f̄+|2 =

1
n

( ∑
〈ν,µ〉∈M

p2
νµ +

∑
〈ν,µ〉∈M

pνµ

∑
〈m,k〉∈M\〈ν,µ〉

pmk

)
.

Hence the cost function to be maximized can be written as

J ′
b = α

∑
i∈I

∑
〈i,j〉∈Qi

(
|f−

i − f̄−|2 − |f+
i − f̄−|2 +

2
n

(f−
i − f+

i )
∑

〈ν,µ〉∈M
pνµ

)
xij

−α

n

( ∑
〈ν,µ〉∈M

p2
νµ +

∑
〈ν,µ〉∈M

pνµ

∑
〈m,k〉∈M\〈ν,µ〉

pmk

)
− (1 − α)

∑
〈ν,µ〉∈M

p2
νµ. (20)

Writing the above summation as a summation over the edges and using equation (10), it
follows that the criterion to be maximized takes the form

J ′
b = α

∑
〈i,j〉∈E

(
|f−

i − f̄−|2 + |f−
j − f̄−|2 − 1

2
|f−

i + f−
j − pij − 2f̄−|2

)
xij

+
α

n

∑
〈i,j〉∈E

pij

∑
〈m,k〉∈E\〈i,j〉

pmkxmkxij − (1 − α − α

n
)

∑
〈ν,µ〉∈E

p2
νµxνµ. (21)

This expression consists of both linear and quadratic terms in the decision variables xij . This
makes the problem a quadratic binary programming problem. One way to solve this problem
is by introducing new variables in lieu of the quadratic terms. This also introduces new
constraints involving the new and old variables. Formulating these as linear constraints, the
problem can be converted to a linear binary programming problem for which efficient algorithms
exist.

To this end, consider the quadratic term xijxmk where xij and xmk are binary variables.
Note that two edges that are part of the matching cannot share the same vertex, that is, if i,
j, m ∈ I, and xim = 1, then xij = 0 for all 〈i, j〉 ∈ E , j �= m. Thus, we may only consider
quadratic terms of the form xijxmk, 〈i, j〉, 〈m, k〉 ∈ E and i, j, k, m ∈ I, all distinct. Let now
I ′ be a set of indices (of cardinality |E|) generated as follows

q = n × i + j, for all 〈i, j〉 ∈ E , i, j ∈ I. (22)

Conversely, given q ∈ I ′ the corresponding indices i and j are obtained via integer division by
n using (22). We can therefore establish a one-to-one correspondence between elements of I ′

and E , and we write q ∼ 〈i, j〉 to denote this correspondence.
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Considering now distinct indices i, j, m, k ∈ I, and p, q ∈ I ′ such that p ∼ 〈i, j〉 and
q ∼ 〈m, k〉, we introduce the new variable defined by

xpq = xijxmk, (23)

These new variables are also binary since

xpq =

{
1, when xij = 1 and xmk = 1,
0, otherwise.

(24)

The restrictions in equation (24) can be imposed on the new variable by introducing the
following three linear constraints

xpq ≤ xij , (25)

xpq ≤ xmk, (26)

−xpq + xij + xmk ≤ 1. (27)

The first two constraints ensure that whenever xij = 0 or xmk = 0, we have xpq = 0. The
last of the previous three constraints ensures that xpq = 1 when xij = 1 and xmk = 1. Hence,
the problem of minimizing the dual objectives absorbed in equation (14) is equivalent to the
following linear binary integer programming problem

J ′
b =

∑
〈i,j〉∈E

α

(
|f−

i − f̄−|2 + |f−
j − f̄−|2 − 1

2
|f−

i + f−
j − 2f̄− − pij |2

)
xij

−(1 − α − α

n
)

∑
〈i,j〉∈E

p2
ijxij +

2α

n

∑
〈i,j〉∈E

〈m,k〉∈E\〈i,j〉

pijpmkxpq, (28)

subject to the constraints given by equations (25), (26), (27), and equations (4)-(5).

The parameter α in equation (14) weighs the relative importance for the fulfilment of
the two performance objectives we have set for a P2P refueling scenario. If α = 0, no fuel
equalization is desirable (Jb = J2), and we only minimize the rendezvous costs. Obviously,
in such a case the optimal solution involves no satellite pairings: all satellites remain at their
initial orbital slots and the matching set M is empty. Equivalently, |M| = 0. As we increase
the value of α, fuel equalization becomes increasingly important and after a certain value of
α = ᾱ > 0 at least one pair of satellites performs a fuel transaction. The matching set M is
non empty, and consequently |M| > 0. For α = 1 fuel equalization is the only optimization
objective (Jb = J1), which is achieved with a (perhaps) unacceptably large number of fuel
transactions. A compromise between the performance objectives J1 and J2 is achieved via
an intermediate value of α. To investigate the effect of α in the optimal number of satellite
pairings, and compare with the original “two-in-one” cost Ja, several numerical examples have
been conducted.

Numerical Example

In this section we investigate numerically the relationship between the solutions obtained via
the two costs (2) and (14). Specifically, we show that solutions obtained via (2) correspond
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Table 1: Sample Constellations.

Label Description
C1 14 satellites, same structure and specific thrust

fi(0−): 38.8, 36, 35.2, 32.8, 29.6, 27.6, 26.8, 17.6, 14, 8, 6.8, 6.4, 5.6, 0.4
T = 12

C2 6 satellites different structure and specific thrust
fi(0−): 5, 45, 86, 31, 12, 90

T = 16
C3 18 satellites, same structure and specific thrust

fi(0−): 62, 50, 40, 98, 70, 25, 88, 20, 72, 30, 82, 54, 42, 66, 35, 10, 90, 45.
T = 8

C4 8 satellites, same structure and specific thrust
fi(0−): 85, 30, 95, 20, 65, 40, 75, 10

T = 12
C5 20 satellites, same structure and specific thrust

fi(0−): 65, 70, 72, 65, 92, 44, 32, 16, 15, 28, 56, 88, 90, 92, 86, 30, 25, 36, 52, 60.
T = 10

C6 7 satellites, different structure and specific thrust
fi(0−): 25, 40, 70, 82, 12, 95, 42

T = 8
C7 9 satellites, different structure and specific thrust

fi(0−): 85, 30, 50, 95, 20, 65, 40, 75, 10
T = 12

C8 10 satellites, different structure and specific thrust
fi(0−): 25, 40, 50, 70, 82, 45, 12, 95, 30, 42

T = 8

to solutions obtained via (14) for a range of values of α that achieve a balanced compromise
between the original conflicting optimization objectives J1 and J2.

Figure 1 shows a typical variation of Jb with α for the two constellations C4 and C8 in
Table 1. The plots are piecewise linear, with each linear portion corresponding to a particular
set of pairings of the satellites in the constellation.

Typical variations of the values of the two objective functions J1 and J2 are shown in
Figures 2 and 3 for the constellations C4 and C8, respectively. Each point on the curve in
these plots is optimal, corresponding to a particular choice of α. The range of values of α for
which the same pairings of satellites occur as with the optimization of Ja is also shown on
these plots. Note that for this range of α the pairings of satellites are the same, hence the
values of J1 and J2 are also the same.

For this range of values of α we have a reasonable compromise between the two performance
specifications J1 and J2. Moreover, from these plots it is concluded that the use of the simpler
cost Ja in lieu of Jb is justified, as the former results in solutions which are identical to those
obtained via Jb for values of α that provide a balance between the objectives J1 and J2. The
case for using Ja instead of Jb is made stronger in light of the fact that the calculation of the
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Figure 1: Typical variation of Jb with respect to α.

optimal matching using the cost Jb is computationally more intensive than using the cost Ja

owing to the larger number of decision variables and the associated constraints; see (23)-(27).
As a result, in practice one can confidently bypass the optimization of Jb and deal only with
the optimization of Ja when computing the optimal satellite pairings in a P2P scenario. We
will make use of this observation in all our computations from now on.

PURE P2P REFUELING STRATEGIES

In this paper, in order to calculate the optimal fuel expenditure during the maneuvers that
take place during refueling, we have considered optimal two-impulse transfers obtained from
multi-revolution solutions to the Lambert’s problem .22 We also allow initial or final coasting
by the active satellite. The term coasting here refers the additional time just before an initial
impulse of just after a final impulse. Assume, for instance, that during an orbital transfer of
maximum allowable time tf the first impulse occurs at time t1 and the second impulse at a
time t2. If t2 − t1 < tf , then the transfer can be achieved with an amount of coasting time
equal to equal to tf − (t2 − t1).

It is well known22,23 that coasting can significantly reduce the fuel expenditure during a
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Figure 2: Variation of J2 with respect to J1 (constellation C4).

rendezvous. Therefore, during each transfer, initial or final coasting intervals play an important
role in the overall optimal rendezvous cost. Figure 4 shows a typical variation of the rendezvous
cost (non-dimensionalized ∆V ) with respect to the transfer time. In this figure the initial
separation angle between the satellites is 60 deg and both satellites are in the same circular
orbit. The dotted line shows the cost if coasting is not allowed, while the solid line shows the
cost when initial coasting is allowed. In the latter case, the active satellite stays for some time
in its original orbit and the actual transfer occurs over a smaller time period. Therefore, by
allowing a coasting period during an orbital transfer we can reduce the overall cost. The idea
of allowing coasting intervals is utilized in this section to propose a strategy for reducing the
overall P2P rendezvous cost.

As it is evident from Figure 4 the optimal cost when coasting is included is a non-increasing
function of time. That is, the inequality

∆V (tf1) ≤ ∆V (tf2), for tf1 ≥ tf2 (29)

holds for any two transfer times tf1 and tf2. Note that this monotonicity of ∆V versus the
transfer time does not hold if there are no coasting intervals.

In our previous investigation of P2P refueling strategies20 it was assumed that given the
total amount of time to complete each fuel transaction, the time was equally divided between
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Figure 3: Variation of J2 with respect to J1 (constellation C8).

the forward and return orbital transfers for each fuel transaction. Here we relax this restriction.
In particular, we show that by allowing unequal transfer times between the forward and return
journeys for each fuel transaction, one can reduce the transfer cost.

To see why this is true, let us consider a single refueling maneuver between two satellites
si and sj , and let si ∈ A be the active satellite, and sj ∈ P be the passive satellite. Note
that either of the two satellites can be the seller or the buyer during the fuel transaction. The
amount of fuel spent by si to rendezvous with sj is given by24

pfi = (msi + f−
i )(1 − e−∆Vij/c0i), (30)

where msi is the mass of the permanent structure of satellite si, f−
i is the initial fuel of satellite

si, f−
j is the initial fuel of satellite sj , and ∆Vij is the velocity increase required to transfer from

the orbit of satellite si to the orbit of satellite sj . The parameter c0i is defined by c0i = g0Ispi,
where g0 is the acceleration due to gravity at the Earth’s surface, and Ispi is the specific thrust
of satellite si.

The amount of fuel consumed by satellite si to return back to its original position after a
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fuel exchange has taken place¶ is given by

pri = (2msi + f−
i + f−

j − pfi)
(1 − e−∆Vji/c0i)
(1 + e−∆Vji/c0i)

, (31)

where ∆Vji is the optimum rendezvous cost for the return journey. Note that, in general
∆Vji �= ∆Vij . Using the previous equations the total fuel used by satellite si during the two
transfers is given by

pij = pfi + pri. (32)

Now let us denote by tij the total time allowed to complete both legs of the fuel transaction
between satellites si and sj . Moreover, let tfij denote the time for the forward journey and trij
denote the time for the return journey, so that

tij = tfij + trij . (33)

In case of an equal partition of the total time between the forward and return transfers, we
have tfij = trij = tij/2. In the sequel we use the superscript I, to denote quantities associated

¶It is assumed that during the exchange of fuel the seller satellite gives enough fuel to the buyer satellite so
that both have the same amount of fuel at the end of the fuel transaction.19

14



with such an equal time partition transfer. For simplicity, we assume a coasting period for
the forward leg, and we will use the superscript II to denote the quantities associated with a
transfer with unequal time partition of tij such that the forward and return legs are completed
within the time intervals tfij = tij/2 − t′ij and trij = tij/2 + t′ij , where t′ij denotes the optimal
final coasting time for the forward leg. Similarly, we will use the superscript III to denote the
quantities associated with a transfer with unequal time partition of tij such that the forward
and return legs are completed within the time intervals tfij = tij/2 + t′′ij and trij = tij/2 − t′′ij ,
where t′′ij denotes the optimal coasting time for the return leg. Let us concentrate on the case
where coasting is part of the forward leg.

Note that since coasting periods do not have any effect on the cost,

∆V I
ij = ∆V II

ij

which implies, according to (30) that
pI

fi = pII
fi. (34)

For the return flight, and since tij/2 + t′ij ≥ tij/2 we have, via (29), that

∆V I
ji ≥ ∆V II

ji ,

which implies that e−∆V I
ji/c0i ≤ e−∆V II

ji /c0i . Using this inequality, it follows that 1−e−∆V I
ji/c0i ≥

1 − e−∆V II
ji /c0i , and also 1 + e−∆V I

ji/c0i ≤ 1 + e−∆V II
ji /c0i . These two inequalities together yield

1 − e−∆V I
ji/c0i

1 + e−∆V I
ji/c0i

≥ 1 − e−∆V II
ji /c0i

1 + e−∆V II
ji /c0i

(35)

which, via (31), yields
pI

ri ≥ pII
ri. (36)

From equation (34) and inequality (36), the identity (32) yields

pI
ij ≥ pII

ij . (37)

A similar analysis holds when a coasting period of length t′′ij is part of the return leg, in
which case one can show that

pI
ij ≥ pIII

ij . (38)

We have therefore shown the following proposition.

Proposition 1. Given the total time for a fuel transaction to take place between two satellites
in the same circular orbit, an equal time allocation between the forward and return legs of the
two associated rendezvous transfers is always suboptimal.

We will next utilize this idea to devise a coast time allocation (CTA) algorithm for reducing
the fuel coast during each fuel transaction.
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Coast Time Allocation Algorithm

The main idea behind the formulation of a fuel-reducing strategy is to allow for unequal time
distribution between the forward and the return legs for each fuel transaction. To this end, we
consider the following three cases:

• Case-I: tfij = trij = tij/2

• Case-II: tfij = tij/2 − t′ij and trij = tij/2 + t′ij

• Case-III: tfij = tij/2 + t′′ij and trij = tij/2 − t′′ij

Assume a fuel transaction between satellites si ∈ A and sj ∈ P and let pjI
i , pjII

i and pjIII
i

denote the fuel spent for satellite si to rendezvous with sj and return back to its original
position, for each of the previous three cases, respectively. The optimal time sharing is the one
that satisfies

pj∗
i = min{pjI

i , pjII
i , pjIII

i }. (39)

The corresponding time allocation is then given by

(tfij , t
r
ij) =

⎧⎪⎨
⎪⎩

(tij/2, tij/2), if pj∗
i = pjI

i ,

(tij/2 − t′ij , tij/2 + t′ij), if pj∗
i = pjII

i ,

(tij/2 + t′′ij , tij/2 − t′′ij), if pj∗
i = pjIII

i .

We can similarly compute the cost of a single fuel transaction for the case si ∈ P and sj ∈ A.
Finally, the optimum fuel consumption between any two satellites si, sj ∈ G is given by

p∗ij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pj∗
i , if si can be active, but sj cannot be active,

pi∗
j , if sj can be active, but si cannot be active,

min{pj∗
i , pi∗

j }, if either si or sj can be active,
∞, if neither si nor sj can be active.

Next, we demonstrate these results via a numerical example. Let us first consider a single
fuel transaction between two identical satellites in the same circular orbit. We assume that
the mass of the permanent structure for all satellites is ms = 60 units, and the characteristic
constant of the engine is c0 = 2943 units. The initial fuel of the active satellite is 100 units and
of the passive satellite is 10 units. The allowed time to conduct the fuel transaction is chosen
to be 12 units. Note that one unit of time corresponds to one period of the circular orbit of
the constellation.

Figure 5 shows a comparison between the three cases as a function of the separation angle
between the two satellites. For all separation angles, an equal time allocation for the forward
and return legs of a fuel transaction (Case I) always results in more or equal fuel expenditure
than an unequal time allocation (Cases II or III).
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Figure 5: Effect of CTA algorithm to a single P2P maneuver.

The effect of the CTA algorithm when refueling a constellation using a pure P2P strategy
is evaluated by the introduction of the following figure of merit

G =
(
∑

〈i,j〉∈M′ pij −
∑

〈i,j〉∈M p∗ij)∑
〈i,j〉∈M p∗ij

× 100 %, (40)

where M is the matching edge set for the optimal time allocation, and M′ is the matching
edge set for the refueling strategy under evaluation. We call G the net percentage gain of the
refueling.

Several circular constellations with a varied number satellites of physical characteristics
have been studied, and the final fuel distribution and rendezvous costs associated with both
pure P2P and mixed refueling strategies have been computed. The CTA algorithm has been
applied to a complete P2P refueling scenario for the constellations given in Table 1. In this
table, the initial fuel for each satellite is shown, along with the total allowed time T for the
forward and return trips.

The corresponding gains are shown in Figure 6. The results in Figure 6 indicate considerable
amount of fuel savings if the CTA algorithm is adopted. Note that in most cases, the application
of the CTA algorithm has no effect on the satellite pairings. However, for constellation C6, it
was also found that the entire set of optimal pairings of satellites change when the algorithm
is applied. This shows that the CTA algorithm can altogether affect the scheduling of the
refueling process in order to reduce the cost.

MIXED REFUELING STRATEGIES

So far we have discussed pure P2P refueling strategies for the purpose of equalizing fuel among
all satellites in the constellation. Although significant unequal fuel distribution between iden-
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Figure 6: Effect of CTA algorithm to an entire constellation; see also Table 1.

tical satellites in the same orbit are rather unlikely (except in case of failures), and hence pure
P2P strategies may seem to be exceptional at first glance, nonetheless they arise naturally
as a second stage of mixed refueling strategies. This has been demonstrated in Refs. 18, 19,
where it was shown that a mixed strategy will typically outperform a single-spacecraft refueling
strategy, as the number of satellites in the constellation increases.

Let us consider a constellation in a circular orbit with an even number of satellites si, i ∈
I = {1, 2, ..., 2n}. For the sake of simplicity, we may assume that all satellites are initially
depleted of fuel, that is, si ∈ Cd for all i ∈ I. Given a maximum refueling period, say T , we
wish to refuel all of the satellites from a service vehicle s0, such that after time T they all end
up with approximately the same amount of fuel. In the process, we also want to minimize
the total fuel expenditure during the ensuing orbital maneuvers. Equivalently, we want to
maximize the total amount of fuel that can be delivered to the constellation. We have two
alternatives for solving this problem.

The first alternative is for s0 to refuel (perhaps sequentially15) all satellites in the constella-
tion. This scenario is shown in Figure 7. The second alternative is a mixed refueling strategy,
consisting of two stages. During the first stage, the service vehicle s0 delivers fuel to half the
satellites in the constellation. During the second step, these satellites share their fuel with the
remaining satellites in P2P fashion. This alternative refueling scenario is shown in Figure 8.

Let I1 denote the index set of the satellites refueled during the first stage by the service
vehicle s0 in a mixed strategy, and let I2 = I\I1 denote the remaining satellites which are
to be refueled during the second stage. Without loss of generality we may assume that I1 =
{1, 2, . . . , n} and I2 = {n+1, n+2, . . . , 2n}. Let also T (1) denote the time allotted for the first
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stage and T (2) = T − T (1) the time allotted for the second (P2P) stage in a mixed strategy.

During T (1) the service vehicle s0 delivers fuel sequentially to the n satellites si (i ∈ I1) in
an optimal fashion. The optimal time distribution for these transfers, denoted by t

(1)
i,i+1 (i =

1, . . . , n − 1) then satisfies

T (1) =
n−1∑
i=1

t
(1)
i,i+1, (41)

where the optimal values t
(1)
i,i+1 are calculated by solving a binary integer programming prob-

lem.20

In Ref. 19 we showed that a mixed strategy will, in general, outperform a single-spacecraft
strategy, especially as the number of satellites in the constellation increases. In Ref. 19 we
assumed only synchronous implementation for the P2P second stage, that is, all P2P maneuvers
during the second stage of the mixed refueling scenario, occur simultaneously and they all take
time T (2) to be completed. However, we can further improve on the fuel savings incurred
during the second stage by allowing asynchronous P2P maneuvers, as described next.
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Figure 7: Single-spacecraft refueling scenario.

Asynchronous P2P Refueling

In a synchronous P2P scenario all the satellite rendezvous take place simultaneously. In a
mixed refueling strategy, this implies that all fuel deficient satellites (at the end of the first
stage) are refueled within the time T (2). Note, however that the time T (2) is binding only for
satellite sn (the last satellite to be visited by s0 during the first stage of a mixed strategy). All
other satellites si (i = 1, . . . , n − 1) have available T (2) +

∑n−1
k=i t

(1)
k,k+1 time units to perform

their fuel transactions. Thus, the time available for si to complete the P2P maneuver with its
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Figure 8: Mixed refueling scenario.

matching pair sj is given by

t
(2)
ij =

{
T (2) +

∑n−1
k=i t

(1)
k,k+1, if i ∈ I1\{n},

T (2), if i = n.
(42)

We refer to this strategy as asynchronous P2P refueling, since not all satellite pairs complete
their corresponding fuel transactions within the same time period. Since t

(2)
ij ≥ T (2) for all

satellite pairs, and referring again to equation (29), it is clear that each rendezvous between two
satellites will require less fuel than a synchronous implementation. Consequently, the overall
fuel consumption for the whole constellation will also be reduced by using an asynchronous
P2P implementation. This is demonstrated next via numerical examples.

NUMERICAL EXAMPLES

We next apply the CTA algorithm along with an asynchronous (mixed) P2P refueling strategy
to sample constellations. With the help of numerical examples we show how these improve-
ments for a mixed refueling strategy make the latter a competitive alternative to a refueling
strategy using a single service vehicle or to mixed synchronous P2P strategies.

To this end, we assume a circular orbit constellation with an even number of satellites. The
service spacecraft, denoted by s0, starts with an initial amount of fuel f0(0−) = 500 units. We
assume that s0 is initially at a higher circular orbit than the constellation orbit. It is required
that s0 returns to the same orbit after completing the refueling process with f0(T+) = 10 units
of fuel, where T = 20 is the maximum allowed time for completing the whole refueling process.
Recall that one unit of time corresponds to one period of the circular orbit of the constellation.
Hence, the total amount of fuel to be delivered to the satellites in the constellation including
the fuel to be used during the corresponding orbital transfers is 490 units. The spacecraft
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spends p0 = 44.26 units of fuel to arrive from the higher orbit to the constellation orbit‖ After
refueling s0 returns to its initial orbit by spending pf = 6.01 units of fuel. The mass of the
permanent structure for each satellite is msi = 60 units and the characteristic constant of the
engine is c0i = 2943 units for all satellites.

In the first example, we consider a constellation with six satellites evenly distributed in
the circular orbit. The service vehicle s0 visits all these six satellites and distributes the fuel
equally among all satellites in the constellation. There are five rendezvous segments, and
the maximum time of transfer allowed for each rendezvous segment is 6 time units. The
optimal time distribution for each of these five rendezvous segments, and the corresponding
fuel expenditure are given in Table 2.

Table 2: Optimal Fuel Consumption With A Single Service Vehicle. Six Satellite

Constellation.

Segment tij ∆Vij Fuel Expense
i = 1, j = 2 4.1607 0.1676 30.6311
i = 2, j = 3 4.1607 0.1676 24.8345
i = 3, j = 4 4.1607 0.1676 19.4244
i = 4, j = 5 4.1607 0.1676 14.3751
i = 5, j = 6 3.3570 0.2204 12.5754

At the end of this process, each of the six satellites ends up with an equal amount of fuel
f+

i = 56.31 (i = 1, 2, ..., 6). The total amount of fuel used during all these transfers is thus
490− 6× 56.31 = 152.14 units. Note that these values do not include the fuel-consumption for
the initial (p0 = 44.2619) and final (pf = 6.0094) transfers of s0 to and from the constellation
orbit, which are constant and thus not part of the optimization process.

Table 3: Optimal Fuel Consumption During the First Stage of Mixed Refueling

Strategy. Six Satellite Constellation.

Segment t
(1)
ij ∆Vij Fuel Expense

i = 1, j = 2 4.8279 0.1444 22.0481
i = 2, j = 3 3.8421 0.1826 16.3783

The optimal solution for a mixed refueling strategy yields that the first step – during which
s0 delivers fuel to satellites s1, s2 and s3 – requires two rendezvous segments of T (1) = 8.67
time units. The optimal time distribution and the corresponding fuel consumption for this step
are given in Table 3. The three satellites refueled by s0 have 133.76 units of fuel each, before
performing the P2P maneuvers with the remaining satellites s4, s5 and s6. The available time
and the corresponding fuel expenditures for the P2P maneuvers are given in Table 4. The
final fuel content of each satellite at the end of the refueling process are f1(T+) = f6(T+) =

‖Here we assume that the constellation orbit and the higher orbit are coplanar. This is not restrictive. For
orbits at different inclinations a plane change may have been considered. However, this extra degree of freedom
does not affect the comparison of the two refueling strategies. This is because the fuel of the transfer of s0 to
and from the constellation orbit is part of both refueling strategies, and hence it is not part of the optimization
process.
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Table 4: Optimal Fuel Consumption During Second Stage of Mixed Refueling

Strategy. Six Satellite Constellation.

Pairs T T (1)/T (2) Fuel Expense
(s1, s6) 20.00 10.17/9.83 9.0299
(s2, s4) 15.17 7.85/7.32 23.4042
(s3, s6) 11.33 6.00/5.33 31.3522

62.37, f2(T+) = f4(T+) = 55.18 and f3(T+) = f5(T+) = 51.21. The average amount of fuel in
the constellation then is equal to 56.25 units. The total amount of fuel burnt is 490−6×56.25 =
152.50 units, which is 0.24% more than the amount of fuel burnt if the satellites are refueled
by a single spacecraft. A single-spacecraft refueling strategy is marginally better than a mixed
refueling strategy in this case.

For the second example we consider a constellation with twelve satellites evenly distributed
in a circular orbit. The total time allowed for refueling is again T = 20 time units. There
are eleven rendezvous segments with a single-spacecraft refueling strategy. The optimal time
distribution for each of the five rendezvous segments and the corresponding fuel consumption
are given in Table 5. At the end of this process, each of the six satellites end up with an equal
amount of fuel f+

i = 17.31. The total amount of fuel used during all the transfers is thus
490 − 12 × 17.31 = 282.28 units.

For the mixed strategy, there are five rendezvous segments during the first stage, which
are all completed within T (1) = 9.59 units. The optimal time distribution for each of the five
rendezvous segments and the corresponding fuel consumption are given in Table 6. The six
satellites refueled by s0 have fuel 55.53 units each before performing the P2P refueling part. The
available times for the P2P maneuvers as well as the corresponding fuel consumption are given
in Table 7. The final fuel content of the satellites are f1(T+) = f10(T+) = 23.50, f2(T+) =
f11(T+) = 23.04, f3(T+) = f12(T+) = 22.45, f4(T+) = f7(T+) = 21.74, f5(T+) = f8(T+) =
20.71, f6(T+) = f9(T+) = 19.35. The average amount of fuel in the constellation is 21.80 units.
The total amount of fuel burnt using the mixed refueling strategy is 490 − 12 × 21.80 = 228.4
units, which is about 19% less than the amount of fuel burnt if the satellites are refueled by a
single spacecraft. Clearly, the mixed scenario outperforms the single service vehicle option in
this case.

CONCLUSIONS

In this paper, we have studied peer-to-peer (P2P) satellite refueling scenarios in circular orbit
constellations. P2P refueling strategies have been proposed recently as a viable, competitive
alternative to single-satellite refueling. Although pure P2P strategies are rather unlikely for
constellations with similar satellites, P2P refueling arises naturally as a second stage in mixed
refueling strategies. For such mixed strategies we show via numerical examples that an unequal
time distribution of the forward and return trips for each satellite pair, along with an asyn-
chronous implementation of the P2P rendezvous sequence, result in more efficient refueling
than previous synchronous P2P/mixed or single-spacecraft implementations.
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Table 5: Optimal Fuel Consumption the Refueling with a Single Service Vehicle;

Twelve Satellite Constellation.

Segment tij ∆Vij Fuel Expense
i = 1, j = 2 1.9084 0.1821 35.9746
i = 2, j = 3 1.9084 0.1821 32.1287
i = 3, j = 4 1.9084 0.1821 28.5604
i = 4, j = 5 1.9084 0.1821 25.2497
i = 5, j = 6 1.9084 0.1821 22.1779
i = 6, j = 7 1.9084 0.1821 19.3278
i = 7, j = 8 1.9084 0.1821 16.6834
i = 8, j = 9 1.9084 0.1821 14.2299
i = 9, j = 10 1.9084 0.1821 11.9535
i = 10, j = 11 1.9084 0.1821 9.8414
i = 11, j = 12 0.9163 0.3805 15.8334

Table 6: Optimal Fuel Consumption for First Step of Mixed Refueling Strategy.

Twelve Satellite Constellation.

Segment t
(1)
ij ∆Vij Fuel Expense

i = 1, j = 2 1.9174 0.1822 33.2517
i = 2, j = 3 1.9174 0.1822 26.8369
i = 3, j = 4 1.9174 0.1822 20.8556
i = 4, j = 5 1.9174 0.1822 15.3643
i = 5, j = 6 1.9174 0.1822 10.2419
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