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The problem of the time evolution of the angular velocity of a spinning rigid
body� subject to torques about three axes� is considered� An analytic solution
is derived that remains valid when no symmetry assumption can be made�
The solution is expressed as a �rst�order correction to a previous solution�
which required a symmetry or near�symmetry assumption� Another advan�
tage of the new solution �over the former� is that it remains valid for large
initial conditions of the transverse angular velocities�

� Introduction

In recent years a considerable amount of e�ort has been devoted to the development of
a comprehensive theory that will allow a better understanding of the complex dynamic
behavior associated with the motion of rotating bodies� A cornerstone in this e�ort is the
development of analytic solutions that can describe � at least qualitatively � the problem
dynamics� The system of the associated equations� the celebrated Euler�s equations of
motion for a rigid body� consists of three nonlinear� coupled di�erential equations� the
complete� general� solution of which is still unknown� Special cases for which solutions have
been found include the torque�free rigid body and the forced symmetric case� Solutions
for these two particular cases were known for some time and have been reported in the
literature �Golubev� ��	
� Leimanis� ���	� Greenwood� ��

�� The discovery of complete
solutions for those and other special cases� initially gave rise to optimism that a general
solution was in sight� however� since then progress has been remarkably slow� The conjecture
that studying several special cases would eventually lead to a comprehensive theory of the
problem proved to be false� In fact� a complete characterization of the motion of a rotating
solid body quickly turned out to be a formidable task� eluding the wit of some of the most
prominent mathematicians of our time� see for example Leimanis ����	� and Golubev ���	
�
and the references therein� Even today� it is still not clear that a complete solution even
exists� �It is well known� however� that for the closely related problem of a heavy rigid body
rotating about a �xed point� integrability is possible for only four special cases �Golubev�
��	
���
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Most attempts to generalize the previous results were con�ned to some kind of pertur�
bation approach of the known and well understood integrable� torque�free� and�or sym�
metry cases �Kraige and Junkins� ����� van der Ha� ��
�� Kane and Levinson� ��
�� Or�
������ Recently� signi�cant results made it possible to extend the existing theory to in�
clude the attitude motion of a near�symmetric spinning rigid body under the in�uence of
constant �Longuski� ����� Tsiotras and Longuski� ����� and time�varying torques �Tsiotras
and Longuski� ��������
� Longuski and Tsiotras� ���
�� The purpose of the present work
is to extend these results to a spinning body with large asymmetries� subject to large initial
angular velocities�

� Equations and Assumptions

We are mainly interested in the problem of spin�up maneuvers of a non�symmetric spinning
body in space� subject to constant torques and nonzero initial conditions� To this end� let
M�� M� and M� denote the torques �in the body��xed frame� acting on a rigid body� and
let ��� �� and �� denote the angular velocity components in the same frame� Then Euler�s
equations of motion for a rotating rigid body with principal axes at the center of mass are
written as�
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These equations describe the evolution in time of the angular velocity components ��� ���
�� in the body��xed frame� For consistency we will assume that the spin axis is the 
�axis�
corresponding to the maximum moment of inertia� and also that the ordering of the other
principal moments of inertia is given by the inequalities I� � I� � I��

We henceforth de�ne the spin�up problem of a rigid body rotating about its 
�axis� when
the following conditions are satis�ed�
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along with the condition that sgn�M�� � sgn�������� �Here sgn denotes the signum function
de�ned as usual by sgn�x� � �� for x � � and sgn�x� � �� for x � ��� This last
condition simply states the requirement for spin�up� whereas the inequalities in ��� restrict
the angles of the torque vector and the angular momentum vector at time t � � to be less
than or equal to �	 deg from the body 
�axis� This� according to the previous discussion�
implies that the transverse torquesM��M�� as well as the initial conditions ������ ������ are
considered as undesired deviations or perturbations from the pure spin case� namely when
M� � M� � �� � �� � �� In practical problems these unwanted deviations tend to remain
indeed small throughout the maneuver�

One more parameter needs to be introduced in order to describe the �relative e�ect� of
the two inequalities ��� in the solution� This parameter� de�ned by
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describes the angle of departure of the angular momentum vector from its initial state �the
angular momentum vector bias�� During a spin�up maneuver �Longuski et� al� ��
��� the
angular momentum vector traces out a spiral path about a line in inertial space having
an angle �� from the inertial 
�axis �see Fig� ��� The angle �� is small for cases where
the transverse torques are �small� compared with the quantity I��

�

�
���� The formula for

�� applies even for asymmetric bodies as long as the angle of departure is small and the
body is spinning about a stable principal axis� Throughout this work we assume that �� is
relatively small� an assumption that is usually true for most satellite applications�

� Analytic Solution

��� Assumptions

If we assume a near�symmetric �or symmetric� spinning rigid body with the spin axis being
its axis of near�symmetry �or symmetry�� then the near�symmetry assumption �I� � I��
allows one to neglect the second term on the right�hand side of ��c� and therefore safely
assume that the solution of �� is approximated very closely by
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�t� � �M��I�� t� ����� �
�

This allows the decoupling and complete integration of equations���� The use of complex
notation facilitates the analysis �Tsiotras and Longuski� �������������
� Longuski and Tsio�

tras� ���
�� Also introducing� for convenience� the new independent variable �
�
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then writes the di�erential equation for the transverse angular velocities �� and �� as
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Integrating ��� one obtains the solution for �� and �� from
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� ����� exp��i����� � and where ����� is the initial condition at

� � �� �t � ��� The function E��� in ��� represents the complex Fresnel integral of the �rst
kind �Abramowitz and Stegun� ����� Tsiotras and Longuski� ���
�� de�ned by
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The parameter � is de�ned by �
�
� �

p
���� �Here we obviously assume M� � �� so that

� � �� the case when � � � can be treated similarly �Tsiotras and Longuski� ���
���
Equation ��� gives the complete solution for the transverse components of the angular
velocity �� and �� in the body��xed frame� and for the symmetric case it provides the
exact solution� For the nonsymmetric case� the accuracy of solution ��� depends on the
�smallness� of the product ����� which will be discussed next�

��� The E�ect of Asymmetry

In order to have a measure of the body asymmetry� we introduce the following asymmetry
parameter

e
�
�

I� � I�
I�

Because of the well�known relationship I��I� � I� between the moments of inertia �Green�
wood� ��

� � for the assumed ordering of the principal axes � the parameter e takes
values in the range � � e � �� The case of e � � corresponds to complete symmetry
�about the 
�axis�� whereas the extreme case of e � � �not considered here� corresponds to
complete asymmetry �about the 
�axis�� For the latter case one has I� � I� and I� � ��
i�e� the body resembles a thin rod along the ��axis� �In the current work when we discuss a
non�symmetric problem we have in mind values of e greater than �	� and perhaps as high
as about �	���

We note in passing� that the validity of solution ��� is not con�ned to near�symmetry
cases� To understand this point� notice that the neglected term

g�t� �
I� � I�
I�

���t����t� ���

in equation ��c� is small not only for the near�symmetry case� i�e� when I� � I�� but also
when the transverse angular velocity components �� and �� are small� This is indeed the
case� for example� for a spin�stabilized vehicle �spinning about its 
�axis�� when �� and ��
tend to remain small for all times� For the pure spin case of a symmetric body we have of
course that �� � �� � �� This fact justi�es the often used terminology in the spacecraft
dynamics literature which refers to �� and �� as the angular velocity error components�
The previous assumption about the smallness of the term in equation ��� however does not
incorporate the case where the initial conditions ����� and ����� are large �compared to
the initial spin rate ������� As can be easily veri�ed in such cases� the initial error

g��� �
I� � I�
I�

����������

propagates quickly and renders the analytic solution inaccurate after a short time interval�
On the other hand� as can also be easily veri�ed through numerical simulations� analytic
solutions based on the near�symmetry assumption remain insensitive to large inertia dif�
ferences� as long as the initial conditions for �� and �� are zero� Therefore� the intent of
this paper is to extend the analytic solutions for a near�symmetric rigid body subject to
constant torques �Tsiotras and Longuski� ������ when both large asymmetries and nonzero
initial conditions for the transverse angular velocities are considered at the same time� In
such a case� the neglected term ��� may not be negligible and the exact solution for �� may
depart signi�cantly from the linear solution �
� for ���

�



��� General Theory

A �rst correction to the linear zero�order solution ��
�
��� is obtained as follows� Using solution

���� the di�erential equation for �� can be approximated by

��� � M��I� � e ��
�
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where the superscript zero denotes the zero�order solution of ��� �i�e� the solution with the
term ��� in ��c� neglected�� From ��� we can equivalently replace equation �
� with
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with respect to the independent variable � � ��
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and Im��� denotes the imaginary part of a

complex number� Under these assumptions and integrating ��� with respect to � � one gets
for the �rst�order correction for ���
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The �rst�order solution for �� and �� is then given by the solution of the di�erential equation
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Notice that this expression provides the general exact solution for ���� if knowledge of the
time history of �� is available a priori� Of course� this is not possible� in general� because
of the coupled character of equations ���� However� we will assume that equation ���� gives
a very accurate approximation of the exact ��� which can be used in �����

The zero�order solution ����� required in ���� is given in ���� From the asymptotic
expansion of the complex Fresnel integral one has that �Abramowitz and Stegun� �����
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Thus� the Fresnel integral appearing in ��� can be approximated by
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Substituting this expression in ��� and carrying out the algebraic manipulations� one ap�
proximates �������� by
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where rj �j � �� �� �� are complex constants given by
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The integral of �������� is then given by
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where bar denotes the complex conjugate and where
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is called the exponential integral �Abramowitz and Stegun� ������ The integrals of hj
�j � �� �� �� can be then computed as follows
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We therefore have that the integral of ����� required in ���� is given by
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Equation ��
� gives the �nal expression for the integral of ����� required in �����
In order to proceed with our analysis� we need to calculate the last integral in ����� Any

attempt to evaluate this integral by direct substitution of ��
� into
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is futile� Notice however� that because of the oscillatory behavior of the kernel of the
integral ���� one needs to know only the secular behavior of ��
� in order to capture the
essential contribution of ����� Thus� we next compute the secular e�ect due to the integrals
H����� � � �� and H����� � � ��� The integral H����� �� already has the required form�

From ���� and ��	� and the asymptotic approximation of the Fresnel integral ��
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can immediately verify that� within a �rst order approximation� the integral H����� � � ��
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Similarly� using ���� and ���� and the fact that limx��Ei�x� � �� one can show that the
integral H����� � � �� behaves� to a �rst order approximation� as
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Also writing the integral H����� �� in the form
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Unfortunately� the logarithmic term in ���� leads to an intractable form when substituted
into ���� and we therefore approximate the former expression by
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ln������ � � in equation ����� Since the logarithmic function is dominated everywhere by
any polynomial� we expect the error committed in passing from ���� to ��
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small� at least as � ��� Using ��
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��� Simpli�ed Analysis

The analysis of the previous subsection allows for a direct calculation of the solution ����
from ����� In most cases encountered in practice� however� a simpli�ed version of the
previous procedure is often adequate� For example� for the case when �� 	 � �see Fig� ��
the initial conditions have a more profound e�ect than the acting torques in solution ����
and we can take just the asymptotic contribution of the non�homogeneous part of ��� to
approximate the zero�order solution ������ Writing
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substituting this expression into ����� and approximating E��� by its asymptotic limit
E��� � ��� i���� as x��� we get for ����� that
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We can therefore write for the �rst�order solution ���� of the transverse angular velocities
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� ����� exp��i�h������ From equations �������� and ���� it is seen that the �rst�

order solution for the transverse angular velocities �� and �� may be obtained in the same






form as the zero�order solution� the initial condition of � � however� has to be modi�ed to
include ��� In other words� ���� can also be written in the more explicit form
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equation ��	� with ���� We see that the two equations have exactly the same form� but that
equation ��	� has a frequency shift which depends directly on 
�

� A Formula for the Error

In this section we derive an error formula for the zeroth order solution derived in ���� that
is� we seek an expression for the di�erence between the exact solution and the approximate
solution for the angular velocities� obtained by omitting the term �I�� I�������I� in equa�
tion ��c�� Throughout this section� for notational convenience� we rewrite equations ��� in
the form
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We also rewrite the equations that describe the reduced �zeroth order� system in the form
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Given any positive number T 
 ������ our aim is to compute the error between the solutions
of ���� and ��
� over the time interval � � t � T � We can rewrite equations ���� and ��
�
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We also assume that ���� and �
�� are subject to the same initial conditions� that is�
x��� � x����� Throughout the following discussion jj � jj will denote the usual Euclidean

norm �or ��norm� on IR�� namely� jjxjj �� �x�
�
� x�

�
� x�

�
�����

Lemma ��� The solution of the exact system ����� satis�es the inequality

jjx�t�jj � jjujjT � jjx���jj �� B

for all � � t � T � where u � �u�� u�� u���

Proof� Multiplying equation ���a� by x�� equation ���b� by x� and equation ���c� by x�
and adding� and since a� � a� � a� � �� one gets that

�x�x� � �x�x� � �x�x� � u�x� � u�x� � u�x�

In other words�
�

�

d

dt
jjxjj� �� u� x � �
��

where � 	� 	 � denotes the usual inner product on IR�� namely � x� y �
�
�
P

�

j�� xjyj � Using
the Cauchy�Schwarz inequality �
�� gives

�

�

d

dt
jjxjj� � jjujj � jjxjj �

�

The ��norm jj � jj is a di�erentiable function on IR�� so the di�erential inequality �

� can
be solved for jjx���jj �here u is constant� to obtain

jjx�t�jj � jjujj t� jjx���jj� � � t � T �
��

In particular� jjx�t�jj � sup
��t�T jjujj t� jjx���jj� B� as claimed� �

This result should not be surprising� If one looks carefully� ones sees that the vector
x de�ned in equation ���a� is the angular momentum vector 
H� which obeys the equation
d
H�dt � 
M� This di�erential equation for 
H requires that both 
H and 
M be expressed
in the same coordinate system and that di�erentiation be carried out with respect to an
inertial reference frame� In general� given the components M��M��M� of 
M in the body�
�xed system� does not provide any immediate information about the components of 
M
with respect to another �inertial� coordinate system� However the magnitude of 
M is
independent of the coordinate system� Equation �
�� simply states the relationship between
the magnitude of the acting torques and the time history of the magnitude of the angular
momentum vector 
H� With this observation in mind� one can easily re�derive �
�� starting
from Euler�s equation d
H�dt � 
M�

Lemma ��� Given a �xed positive number T � there exist positive constants M and L� such
that the following conditions hold for all � � t � T �

jjg�x�t��jj �M �
	a�

jjf�x�t��� f�x��t��jj � L jjx�t�� x��t�jj �
	b�

��



Proof� From Lemma ��� we have that for t 
 ��� T � all solutions of ���� satisfy jjx�t�jj � B�
In particular� jxj�t�j � B� j � �� �� 
� for all t 
 ��� T �� where j � j denotes absolute value�
Clearly�

jjg�x�t��jj� ja�j jx��t�j jx��t�j � ja�jB� �� M

Now let B�

�
� max��t�T fjx���t�j� jx���t�j� jx���t�jg� This number can be computed immedi�

ately� since the solution x���� of the system ��
� is known� If we de�ne B�

�
� maxfB�B�g�

then we have that all solutions of ���� and �
�� are con�ned inside the region fx 
 IR� �
jjxjj � B�g for all � � t � T � The partial derivatives of f are then bounded by

j�fi��xjj � R� � � i� j � 
� � � t � T� jjxjj � B�

where R
�
� maxfja�j� ja�jgB� and by the Mean Value Theorem �Boothby� ��
��� we have

jjf�x�t��� f�x��t��jj � 
R jjx�t�� x��t�jj

for all � � t � T � and therefore �
	b� is satis�ed with L
�
� 
R� This completes the proof�

�

Lemma ��� implies that over the time interval � � t � T the function g is bounded
by M and the function f is Lipschitz continuous with Lipschitz constant L� These two
results allow us� as the next theorem states� to �nd an explicit bound for the error of the
approximate solution�

Theorem ��� Let T be a given positive number and let M�L as in Lemma ���� Then� for
x��� � x����� the error between the solutions x��� and x���� over the time interval � � t � T

is given by

jjx�t�� x��t�jj � M

L
eLt� � � t � T

Proof� Subtract �
�� from ���� to obtain

�x� �x� � f�x�� f�x�� � g�x� �
��

By integrating �
�� and considering norms� we obtain the following estimate

jjx�t�� x��t�jj �
Z t

�

jjf�x�s��� f�x��s��jj ds�
Z t

�

jjg�x�s��jjds

Now� use of Lemma ��� implies that

jjx�t�� x��t�jj � L

Z t

�

jjx�s�� x��s�jj ds�Mt �
��

Now� applying Gronwall�s Lemma �Hille� ����� to �
�� gives �nally that

jjx�t�� x��t�jj � M

L
eLt �

�

This completes the proof� �

��



This error formula� involves only known quantities of the problem �time duration T of the
maneuver� inertias I�� I�� I�� acting torques M��M��M� and initial conditions x����� x����
and x����� and can be computed immediately once these data are given� For most of the
applications encountered in spacecraft problems it turns out however� that �

� provides a
very conservative estimate of the true error� but usually this is the most one can expect�
without resorting to the numerical solution of ����

Having established an error formula for the angular momentum� it is an easy exercise to
�nd a corresponding error formula for the angular velocity vector� using the simple relation
between the two� Thus� the following corollary holds�

Corollary ��� Let K
�
� maxf��I�� ��I�� ��I�g� The error between the exact and the zeroth

order solutions of the angular velocities over the time interval � � t � T is given by

jj��t�� ���t�jj � KM

L
eLt �
��

Proof� It follows immediately from the fact that

�
��
��
��
��

	

� �

�
��

��I� � �
� ��I� �
� � ��I�

	

�
�
��
x�
x�
x�

	

�

and therefore that

jj��t�jj � maxf��I�� ��I�� ��I�g jjx�t�jj� K jjx�t�jj

for all � � t � T � �

� Numerical Example

The analytic solution of Euler�s equations of motion for an asymmetric rigid body is applied
to a numerical example� The mass properties of the spinning body are chosen as I� �

	�� kg �m�� I� � ���� kg �m� and I� � ���� kg �m�� The constant torques are assumed
to be M� � ��	� N �m� M� � �		 N �m� M� � �
		 N �m and the initial conditions are set
to ����� � �	� r�s� ����� � ��	� r�s and ����� � �	

 r�s� Figure � shows the zero�order
solution versus the exact solution for ��� Figure 
 shows the �rst�order solution versus
the exact solution for ��� Notice the dramatic improvement of the �rst�order solution over
the zero�order solution for this problem� where the asymmetry parameter� e� is ��"� The
results for the �� component of the angular velocity are similar� Finally� Fig� � presents
the zero�order and the �rst�order solutions �given by �
� and ���� respectively� versus the
exact solution for ��� Note the bias between the zero�order and the �rst�order secular terms
�which is responsible for the frequency shift between Fig� � and Fig� 
�� We mention at this
point� although not demonstrated here� that the solution also remains valid for spin�down
maneuvers� as long as the initial conditions ����� and ����� are small and as long as the
spin rate �� does not pass through zero� These observations are in agreement with the
previous results of Tsiotras and Longuski �������

��



� Conclusions

Analytic solutions are derived for the angular velocity of a non�symmetric spinning body
subject to external torques about three axes� The solution is developed as a �rst�order
correction to previously reported solutions for a near�symmetric rigid body� The near�
symmetric solution provides accurate results even when the asymmetry is large� provided
the initial condition for the transverse angular velocity is near zero� The problem of the
asymmetry becomes apparent when the initial transverse angular velocities are not small�
It is shown that the �rst�order solution for the angular velocity takes a simple form and is
very accurate� at least for the cases when the e�ect of the transverse torques is not too large
compared with the e�ect of the initial conditions� The formulation of the problem therefore
allows for nonzero initial conditions in the transverse angular velocities� in conjunction
with large asymmetries� Finally� an explicit formula for the bound of the error of the
approximate solution is derived and a numerical example demonstrates the accuracy of the
proposed analytic solution�
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Figure �� Angular momentum behavior during spin�up �Longuski et� al� ��
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Figure �� Zero�order vs� exact solutions for ��
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Figure 
� First�order vs� exact solutions for ��
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Figure �� Zero�order and �rst�order vs� exact solutions for ��
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