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Analytic Solutions for a Spinning 
Rigid Body Subject to Time-
Varying Body-Fixed Torques, Part 
II: Time-Varying Axial Torque 
In this paper we extend the methodology developed in Part I in order to accommodate 
the case of an axial time-varying torque (in addition to the two transverse time-
varying torques) acting on a rotating rigid body. The analytic solutions thus derived 
describe the general attitude motion of a near-symmetric rigid body subject to time-
varying torques about all three body-fixed axes. 

1 Introduction 
The problem of attitude motion of a rotating rigid body is 

a very difficult one, and no general solution is known to exist. 
This comes as no surprise since the equations of motion consist 
of a system of six nonlinear, coupled differential equations 
and one cannot expect to find solutions to these equations 
without some simplifying assumptions. Typically such as
sumptions include axial symmetry of the body (see the survey 
by Janssens, 1980), a torque-free body (Junkins et al., 1973; 
Cochran and Shu, 1983; Kane and Levinson, 1987), or a weakly 
perturbed torqued body (Kraige and Junkins, 1976). For the 
case of a self-excited rigid body (Leimanis, 1965; Longuski, 
1984), the general problem of forced motion is somewhat al
leviated because the acting torques do not depend on the body 
orientation. Considerable progress has been achieved in recent 
years in developing analytic and semi-analytic solutions for 
this particular problem. Up to now, only rigid bodies subject 
to constant torques have been considered (Longuski, 1980; 
Van der Ha, 1984; Tsiotras and Longuski, 1991a). Solutions 
like these can help us better understand the underlying behavior 
of the dynamics of rotating rigid bodies under the influence 
of external torques, but they do not address the more com
plicated problem when the external torques vary with time. 
The purpose of this paper is to extend previous solutions to 
include cases when the torques are no longer required to be 
constants. Part I examined the case when the transverse torques 
were modeled as polynomial functions of time. Part II extends 
these results to include a time-varying axial torque, as well. 
This study is complementary to the study by Tsiotras and 
Longuski (1991b), where the transverse torques are modeled 
as periodic functions or can be expressed in terms of Fourier 
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series. In such models, virtually all physically realizable torques 
can be accommodated. 

We outline the general analytic procedure as follows. In the 
case of an axial time-varying torque, with the two transverse 
time-varying torques, the same simplifying assumptions made 
in Part I are used to reduce the solution of the problem to 
quadratures. The integrals appearing, however, are much more 
complicated than those in the constant axial-torque case, and 
there is no a priori guarantee that one can evaluate these in
tegrals in closed form; the success of this task depends on each 
particular problem at hand. In many cases, a judicious choice 
of a new independent variable allows one to avoid much of 
the work involved in the evaluation of these integrals. When 
such a choice is not possible or difficult, a general method 
that allows approximate evaluation of a very large class of 
integrals is provided that can accommodate most of the cases 
of practical interest. The main difficulty of this method relies 
upon the construction of an explicit representation of the in
verse transformation between the new independent variable 
and the original independent variable, i.e. time. Sufficient 
conditions when this is possible are discussed and a method 
to find this inverse transformation in terms of series expansions 
is also presented. The method of analytic continuation is used 
to extend the solution for all times outside the initial interval 
of the convergence of the series. Numerical simulations provide 
an indication of the accuracy and the validity of the solutions 
for both the angular velocity vector and the Eulerian angles. 

2 Solution for the Angular Velocities and Eulerian 
Angles 

The analysis in Part I was based on the assumption that the 
axial torque Mz is constant. The case when Mz is a function 
of the independent variable is much more complicated and the 
ability to find closed-form expressions for the solution in such 
a case is not assured. To be more specific, using the near-
symmetry assumption Ix=Iy in the differential equation for 
the spin velocity o>z, one can readily find o>z by simple inte
gration as 
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Wz(0 - I ' Mz(u) 
du + wz(0). (1) 

In general, Mz in the above expression is not constant, but it 
is given as a prescribed function of time. According to the 
analysis presented in Part I, the transverse components of the 
angular velocity oix and oiy can be found by solving the following 
linear differential equation: 

d8 ., ~ 
— - iko>zU --
dt z M(t) (2) 

where the variables in the above expression have been intro
duced in Part I, and the forcing function M(t) is given by 
M(t)A(Mx(t)/Ix) \lky, + i(My(t)/Iy) \lkx. One then can eas
ily give the solution for the transverse angular velocities from 
(2) as 

Q(t) = fl0 exp ik \ uz(u)du 
Jo 

+ exp ik \ u>z(u)du 
Jo f' M(u) exp -ik uz(v)dv 

Jo 
du. (3) 

It is clear from (3), that although the calculation of fi and 
therefore for wx and uy has been reduced to quadratures, the 
practical applicability of the solution is limited by one's ability, 
ingenuity, or even luck to calculate these integrals in closed 
form. The same statement holds for the analytic solution of 
the Eulerian angles, as well. As shown in Part I, a small angle 
assumption reduces the problem of the kinematics to the so
lution of the two linear differential equations 4> = uz and 
4> + iuiz4> = b>, the solution of which can be given in terms of 
quadratures by 

•J -<W0= uz(u)du + 4>z(0) (4) 

0(0 = ^o exp 

+ exp 

— M o>z(u)du 
Jo 

o>z(u)du 1 u(«)exp i\ uz(v)dv 
o Jo Jo 

du (5) 

where 4>^4>x+i4>y and u>&wx+iG>y. For the special case when 
all three acting torques are constant, it can be shown that the 
evaluation of (3) can be performed exactly in terms of Fresnel 
integrals; the evaluation of (5) is more complicated, but very 
accurate approximations have been found by Tsiotras and 
Longuski (1991a). No general statements can be made however 
about the form of the solutions, when the acting external 
torques are arbitrary functions of time. Nevertheless, when o>z 

does not become zero, one can apply the methodology devel
oped in Part I for the constant Mz case, with a few modifi
cations, to develop solutions that approximate the angular 
velocity vector solution for the time-varying Mz case as ac
curately as one may wish. The case of a nonvanishing spin 
rate u>z could be, for example, the case of a spin-up maneuver 
(Mz>0) from a positive value of initial spin rate (co?(0)>0), 
or the case of a spin-down maneuver (Mz<0) from a negative 
value of initial spin rate (coz(0)<0). We proceed now to the 
development of the analysis for such a case. 

2.1 Transformation of Independent Variable. Assuming 
hereafter that o>z{t)^Q (for all t), we introduce the new inde
pendent variable T = T(() by 

coz(u)du. (6) 

In most instances we will suppress the explicit dependence of 
T on t, but one should always keep in mind Eq. (6). When for 

reasons of clarity we need to stress this dependence, we will 
do so. The previous expression implies in particular that 
dr/dt = wz. Therefore, one can write the differential Eq. (2) 
that governs the behavior for Q, in terms of the new inde
pendent variable T as follows: 

~-ikQ = F(T) 
dr (J) 

where now, however, the forcing function F has to be consid
ered in terms of the new independent variable, that is, 

W " CO^(T)) ' 
(8) 

In such a case, the solution for Q(T) is given by 

0(T) = fi0 exp (ikr) + exp (ikr) \ F{ u) exp ( - iku) du. (9) 
Jo 

It should be mentioned that the integral in (9) is equivalent to 
the integral in (3); however, the integration, now performed 
with respect to the new independent variable r, has simplified 
the form of the integrand significantly. The difficulty of the 
aforementioned methodology relies, however, upon the explicit 
evaluation of the forcing term F(T) in Eq. (7), or equivalently, 
upon our ability to express M/oz as a function of the new 
independent variable r as in Eq. (8). This is, in general, not a 
trivial task and it is not assured that one can find such an 
analytic representation for F. There are cases, however, that 
such an expression is readily available by the nature of the 
problem. Hence, one can evaluate the complete solution of 0 
without the need to express t as a function of T, but one can 
use his intuition, or the physics of the problem in order to 
introduce, where possible, new variables that will simplify the 
problem considerably. For example, in a number of problems, 
the underlying behavior of the external torques is based on 4>z, 
so the choice of 4>z as our new independent variable can reduce 
the problem to the evaluation of elementary functions. In fact, 
as was shown by Bois (1986), in many cases involving spinning 
satellites the external torque depends upon the rotation angle 
of the satellite <j>z, or one can expand the dominating torque 
in terms of 4>z alone. For all these cases, the choice of <j>z as 
the new independent variable looks very promising. In general, 
however, it is not possible to express the acting torques as a 
function of the new independent variable directly, so a more 
general procedure is required that will encompass all the cases 
of practical interest. This will involve solving for t in terms of 
T from Eq. (6). Sufficient conditions that allow one to obtain 
such an expression are given by the Inverse Function Theorem, 
and are discussed later on. 

2.2 Angular Velocities. At this point, we will make the 
assumption that the external axial torques Mx, My, and Mz are 
analytic functions of time, that is, have convergent power series 
expansions about each point over their domain of definition. 
In other words, we assume that Mx, My, and Mz can be rep
resented by the power series expansions 

Mx(/) = £ > * . / ' ' My(t) =
 y£jMy,„t", Mz(t) = Y,Mz,„tn. 

n=0 n=0 «=0 

(10) 

In these expressions the variable t should be considered as 
a variable in the complex plane even though, physically, t 
represents the real variable time. This is necessary, because the 
singularities that determine the convergence properties of power 
series lie in the complex plane and thus, power series have to 
be introduced having a complex argument. From analytic func
tion theory (Knopp, 1956) it is known that the convergence of 
the above series is absolute and uniform. The importance of 
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the absolute convergence is the fact, that one can operate with 
absolutely convergent series for the most part, as with ordinary 
sums. That is, one can add, subtract, and take (Cauchy) prod
ucts, and rearrange the terms of absolutely convergent series 
without worrying about convergence, i.e., completely for
mally. On the other hand, uniform convergence of the series 
will imply, among other things, that one is allowed to integrate 
the series termwise, and the sum of the integrals will converge 
to the integral of the function that this series represents. 

Using Eqs. (1), (6), and (10) we have that 

o>z(t)=^zJ\ withwz,„ = - ^ (11) 

for n= 1,2,3, . . . and wZ:Q^oz(0) and 
oo 

r(t) = J^b„f, mthb„ = 

hn 

»z,n-l (12) 

for «= 1,2,3, . . . and b0AO. 

Of course, for the special case when Mz is a polynomial in t, 
the foregoing series terminate after a finite number of terms. 
In order to write F as a function of the new independent 
variable T, one has to invert Eq. (6) to write / a s a function 
of T and then compose this function into F. From the previous 
discussion, and Eqs. (8) and (10), it follows that one can rep
resent the function M/wz with a power series 

M(t) 

o>z(0 = F{t) = Yif»f f o r m < r (13) 

where r is the radius of convergence of the series. Inside the 
disk of radius r (t considered complex), the series converges 
absolutely and uniformly. It is clear that, in general, F will 
have a finite radius of convergence, since any zeros of oiz will 
be singular points of F in the complex plane. In fact, the radius 
of convergence equals the minimum distance to the origin of 
any zero of o>z. It is clear that because of the assumption that 
CO^OT^O, none of the singularities of Fcan lie on the real axis. 
This assumption is essential, because later we will allow the 
use of analytic continuation in order to extend the solution to 
arbitrary time intervals. Nevertheless, there are singularities 
on the complex plane and for the case when Mz is a polynomial 
of order n, there are exactly n + \ singularities of F in the 
complex plane, all of which are poles. In general, the inverse 
function of (6) does not exist globally, unless the function 
T = r{t) is bijective (one-to-one and onto). The Inverse Function 
Theorem states, however, that one is always able to invert a 
function in the vicinity of points where the derivative does not 
vanish. For our problem a sufficient condition for this to be 
true is that o>z does not change sign inside the domain of its 
definition. This implies that r(t) is monotonic, and thus (in 
fact globally) invertible. Therefore, inverting Eq. (12) we get 

?(r)=f>„r" 

where the coefficients of the inverted series can be calculated 
recursively, from the relationships (Knopp, 1956) 

c, = l / 6„ c2=-b2/bl cl = {2bl~b{bl)/b\ 

c4 = (5M 2 6 3 -£ i&4-5^ ) /&i 

c5 = {btfibibt, + 3b2ibl + Ub4
2 - b\b5 - 2\blb

2
2b1)/b

9
l 

c6 = (7b\bibs + 7b]b3b4 + Ubfilh 

- b\b6 - 28bjb2
2b4 - 28b2b2bj - A2b\ )/b\x 

Notice that the choice of Z?0 = 0, which is arbitrary at this point, 
results in c0 = 0, a condition that will be explained in detail 
later. Substitution now of Eq. (14) into Eq. (13) results in the 
following power series of F in terms of the new independent 
variable T 

F{t{r)) = J]f,T" for \T\<R (16) 

where R is the .radius of convergence of the composed series, 
completely determined by r. 

A necessary and sufficient condition for the composition of 
t(r) into F in (16) is that \c0\ <r, where as mentioned earlier 
r is the radius of convergence of (13). We therefore see that 
the choice of c0 = 0 in (14) was more than a simple convenience, 
but rather it was imposed so that the method is well defined 
for every r. For a more complete analysis on the inversion and 
composition of power series as well as in general analytic func
tion theory, see Knopp (1956) and Hille (1973). 

Using Eq. (16) one can compute the required integral in (9) 
by 

F{u) exp(-iku)di exp(-iku) du. (17) 

Integrals of this form can be evaluated using the recurrence 
formula 

\u" exp ( - iu)du = iu" exp ( - iu) - in\u" ~' exp (-iu) du 

n = 1,2,3,. . . . (18) 

Therefore, the complete solution for fi is given by 
00 

fi(r) = % exp (OCT) + exp (/Arr)]>]/„/„(r;£) (19) 

where 

I„(r,k)A u"exp(-iku) du, n = 0,l,2 (20) 

2.3 Eulerian Angles. Using the transformation intro
duced in (6) and the relationship between to and fl established 
in Part I, one writes the solution for the Eulerian angles (5) 
in the form 

f "(") <HT) = (£0 exp ( - k) + exp ( - h) exp {iu)du 
Jo <»z(t(u)) 

= <f>o exp ( - ir) + exp ( - ir) 

+ k; 

kA HI n ZXp(M)du 
Jo o>£(u)) 

r o*(u) 
in n exp(m)du 

Jo W*('(M)) 
(21) 

where 

(I4) k^ Ufkx + ^fkA/2k and £ 2 4 (yJFx-yJFA/2k. 

Thus, the following two integrals need to be evaluated, 

r Q(u) 
exp(iu)du, 

T Q*(u) 

3 « * ( ' ( « ) ) 
exp(iu)du, (22) 

where the solution for 0 has been found from (19). Recall 
now, that according to the discussion for the solution for the 
angular velocities, l/coz(0 is analytic along the real line and 

(15) using Eq. (14) we can write its expansion in terms of T in the 
form of a power series 

— — - = 2 « ^ " for M<R. 
«z(rtT» tTn 

(23) 

If we substitute the above expression into (21) then after some 
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straightforward algebraic manipulation, we may write for the 
first integral in (22) 

—-——- cxp(iu)du = Q,ay\amI*lr,k+ 1) 

+ E Ti^^niTik) (24) 
n = 0 m = 0 

where 

r;;{r,k)k [V exp [i(k+ \)u\I„(u;k)du (25) 

and I*„{r,k+l) can be computed by Eqs. (18) and (20). Using 
also the recurrence formula for I„(r;k) given in (18) one gets 
for fixed m, a recurrence formula for J'"(r\k) as follows: 

J'n(r;k) = - u"+m sxp (iu)du 

k J0 
exp [i(k+ \)u]I„_i(u;k)du 

(26) = f^+B1(r;l)-/J/r,(T;*) 
k k 

for n= 1,2,3, . . . and m = 0,l,2, . . . . 

For n = 0 and for some fixed integer m, the first term of the 
sequence of the integrals J"'(r,k) is computed by 

J%(r,k)= umexp[i(k+l)u]I0(u;k)du 
Jo 

= £ [/,?,(r;l)-/,?,(T;/c+l)], /w = 0,l,2, . . . (27) 

because from (20) we have 

•In 
Io(r;k) = \ exp ( - iku )du = - [exp ( - ikr) - 1 ]. (28) 

J0 k 

It is not difficult to show that the second integral in (22), 
required for the solution of the Eulerian angles, is given sim
ilarly by 

V Q*(") ^ 
, , , „ n

 e xP( '")du = Q0* VamI*,(T;k- 1) J0 wz(t(u)) £?Q 

CO CO 

+ 2 ^ B ^ T ; - * ) ' (29) 
n = 0 m = 0 

Equation (21) along with Eqs. (22), (24), and (29) give the 
solution to the Eulerian angles. In practice, one has to ap
proximate the solution by truncating the infinite series in (24) 
and (29); however, because of the established absolute con
vergence of these series, the approximation can be made as 
accurately as one wishes. For most practical applications this 
will suffice. 

3 Extension of the Solution 
As mentioned at the beginning of the present analysis, the 

series representation of F i n (13) has in general a finite radius 
of convergence r, which is determined by the zero of wz closest 
to the origin in the complex plane. It is therefore clear that 
one cannot expect the previous methodology to still be valid 
for time t>r. In fact, as we approach this value t = r the rate 
of convergence of the series (16) becomes slower and slower, 
and therefore more and more terms are needed in order to 
achieve the same accuracy. One way to circumvent this dif
ficulty is to use the principle of analytic continuation for F in 
order to find F(t) for all t. 

In short, the methodology goes as follows. Since, by as
sumption, wz has no zero on the real axis, one can choose a 

time t\<r and expand Fabout t=t\. The resulting series has 
a radius of convergence rx and therefore we can choose time 
h such that t\<t2<ti + r\ and expand F about t = t2, etc. In 
general, given an expansion of F about a'point /„ with radius 
of convergence r„, we can find a point tn + i such that 
t„<tn+i< tn + rn and such that if we expand F in a power series 
about this point, the series will have a radius of convergence 
rn+l which will be determined by the closest zero to t„+\ of wz 

in the complex plane. 
Formalizing the method, we assume that given a time T, we 

seek the value of the solution (2) for all ^€[0, T], It is obvious 
from (3) and (9) that the solution merely consists of evaluating 
the integral in (17) 

R(T)£ F(u)exp(-iku)du (30) 

where T = T(0- AS a first step, we partition the interval [0, T] 
into N subintervals [t„, tn+l], n = 0, 1, 2, . . ., N- 1, such that 
to = 0 and tN= T. The time points tu t2, . . ., fo-i have been 
chosen by the procedure explained in the previous paragraph. 
Now given ?e[0, T], let <€[?„, tn+i] for some n. Then we can 
write R(T) as follows: 

i; R(T) = R(T„)+\ F(u)exp(-iku)du 

where T„ = T(/„). If we now let T = T „ + AT, we can write 

(31) 

R(T) = R(T„)+\ F(T„ + u) exp [ - ik(rn + u)}du 

-R(T„) + exp( - ikr„) 
•>n 

F(T„ + u) exp ( - iku) du, (32) 

It is easy to show that AT is related to At=t-t„ by 

( Ar 

b>z(t„ + u)du. (33) 

Therefore, if we expand M(t)/wz(t) about t=tn and use the 
series inversion formula for (33) we can write F(T„ + AT) in 
terms of AT, that is, we obtain an expansion of F(T) about T„. 
Substitution of this expansion in (9) will give for the solution 
of Q 

Q(T) = [fl0 + R(T„)] exp (ikr) 

J ar 
F„(u) exp(- iku)du 

o 
(34) 

where the explicit dependence of T on t has been suppressed 
and F„ represents the series expansion of F(T) about T„, that 

is, F(T„ + AT) = F „ ( A T ) = ^F„im(AT)m'. It is important to keep 

in mind that for t„<tst„+i, or equivalently for 0< 
A T < T „ + I - T „ the independent variable in (34) is AT. In order 
to stress this point we can rewrite (34) in the equivalent form 

I AT 

F„(u)exp(-iku)du 
n 

CO 

= fi0,« exp ( * A T ) + exp (ikAr) 2]F„,„,/„,(AT;A:) (35) 
m = 0 

where !lo,„4[tlo + ̂ W ] e x p ( / h „ ) is constant for td[t„, t„+i]. 

The last equation is of the same form as Eq. (19). The explicit 
representation of the solution for Q in terms of AT has an 
advantage that will become clear shortly, when we seek analytic 
solutions for the Eulerian angles. 

In accordance with the previous discussion, it is necessary 
to extend also the solution for the Eulerian angles for all t 
using analytic continuation, since the expansion (23) is limited 
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by the singularities of l/oiz in the complex plane. To be more 
precise, given a time T, we are interested in the evaluation of 
the integral (36) for all /6[0, T[: 

J0 wz(t(u)) 
exp(iu)du. (36) 

The methodology to compute Q(T) is along the same lines used 
for the evaluation of R(T). Since the singularities of Fin (13) 
are completely determined by the singularities of l/coz, it will 
suffice to use the same partition of the interval [0, 7] into N 
subintervals [t„, t„+l], n = 0; 1,2, . . . , N— 1, as before. Now 
given ti[t„, t„+l], for some n, one writes Q(j) as follows: 

2(T) = Q(r„) + exp(/T, 
U}z{t(T„ + U)) 

exp(iu)du. (37) 

By expanding oiz about t=t„ and using (33) we get the fol
lowing expansion of l/wz about r„ 

1 °° 
————-= 2««,™(Ar)m (38) 
a>z(t(Tn + Ar)) ^ 

where the subscript n denotes expansion about T„. Using the 
previous equation along with Eqs. (37) and (35) we get that 

»(T„ + tt) 

0>z(t(T„ + U)) 
exp (iu) du = $}„,„ 2 an,nJm(^T;k + 1) 

00 00 

+ E 2X^»,«^(AT;fc). (39) 
p = 0 m = 0 

This expression is of the same form as the one in (24) and 
can be computed using the recursive formulas (18) and (26). 
We mention in passing that for the second integral in (22) one 
has, similarly, 
rAr Q*(T„ + U) 

Jo W*MT,, + «)) 
exp (iu)du = Q0*,„ ][] «„,,„/,* (AT;£ - 1) 

m = 0 

00 Oo 

p = 0 m = 0 

4 Criticism of the Analytic Solutions 
We have described a methodology that gives the solution 

for the angular velocity components in a body-fixed frame, 
and the solution for the Eulerian angles, for the case when 
arbitrary transverse and axial torques act simultaneously on 
the body. The sole hypothesis made is that the rotating rigid 
body be nearly symmetric about its spin axis; an additional 
mild assumption is that the acting torques are analytic func
tions of time. In practice, one usually approximates the acting 
torques with polynomials, or equivalently, by truncating the 
power series expansions until a desired degree of accuracy is 
achieved. Therefore, the model of polynomial torques for the 
acting torques encompasses a large class of applications. The 
methodology consists of introducing a new independent vari
able in order to simplify the arising integrals. In many cases, 
a judicious choice of the new independent variable will elim
inate most of the tedious calculations, however, in general one 
will require the use of the inverse transformation (14) to express 
the forcing function in (7) in terms of the new independent 
variable. For the case when the spin rate wz does not vanish, 
one can introduce o>z as the new independent variable. Then 
the inverse transformation is given in the form of an infinite 
power series, and this is true even when the actual torques are 
exact polynomials. Because in practice one has to truncate the 
infinite series (14) an error is always present in the solution. 
Even worse, since the series representation of the function F 
has a finite radius of convergence, one cannot expect to obtain 
a globally valid solution for all t. However, the theory of 
analytic continuation can be used to circumvent this difficulty 

and extend the previous analytic solution for all t, as dem
onstrated above. Moreover, because the series in (35), (39), 
and (40) converge absolutely and uniformly, the general pro
cedure allows one to approximate the solution as accurately 
as one desires. 

Next we shall demonstrate with a numerical example the 
accuracy of the derived analytic solutions, for a typical prac
tical application involving a spinning spacecraft subject to 
external disturbing torques about all three axes. 

5 Numerical Example 
We consider the simplest case when the axial torque Mz is 

linearly increasing with time from Mz(0) = 0 to Mz(tf) =28 
N - m for tf= 200 s. That is, it is assumed that 

Mz(t) =0.1273 f N - m . (41) 
The transverse torques Mx and My, are assumed to be the same 
as for the constant axial torque example, and are given in Part 
I. The rigid-body mass properties, as well as the initial con
ditions for the angular velocity vector, remain the same as for 
the constant axial torque case. Under these assumptions, one 
can compute r(t) by Eq. (12), and t(r) and F(f) from (14) and 
(16). (In other words, we begin with MXi„, My<n and MZi„ from 
Eqs. (10), we find bn from Eqs. (11) and (12), /„ from Eq. 
(13), c„ from Eqs. (14) and (15) and ultimately/,, from Eq. 
(16).) For the given values, wz is a quadratic polynomial which 
has two conjugate imaginary roots at approximately ± /147. 
Therefore, the method of analytic continuation has been used 
to extend the solution beyond the bound of 147 s, as described 
earlier in the paper. Three points have been chosen in the 
interval 0<^<200; at ?i = 60, t2=H0, and ?3=160 seconds, 
respectively. The operations with the power series were per
formed using the symbolic language manipulation software 
package MAPLE (Char et al., 1991). The results of the nu
merical simulations are depicted in Figs. 1 and 2. Only the oix 
(Fig. 1) and <j>x (Fig. 2) solutions are shown here, since wy and 
(j>y exhibit similar behavior. It is clear that upon the construc
tion of the analytic solutions, a compromise must be made 
between the number of the terms kept in the power series in 
(16) and (23) and in the number of partition intervals for the 
analytical continuation of the solution. It is an unfortunate 
fact that decreasing the number of intervals required for con-
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tinuation of the solution beyond the bound determined by the 
singularities of l/oiz comes at the expense of increasing the 
number of terms in the series expansion of F and l/u>z. In the 
example presented here, the first six terms were kept in the 
expansions of Fand \/o>z about each t,„ for n = Q, 1,2,3. 

6 Conclusions 
Approximate analytic solutions have been derived for the 

attitude motion of a near-symmetric spinning rigid body, under 
the influence of transverse and axial time-varying torques, 
expressed as polynomial functions of time. In essence, the 
theory of Part I has been extended to include cases when all 
three components of the external torque vector vary with time. 
The difficulty of the method relies on expressing the external 
torques as functions of a new independent variable. Since the 
external torques are known functions of time, this involves the 
construction of the inverse transformation between the two 
independent variables. This is achieved using a series inversion 

lemma. As a consequence, the evaluation of the required in
tegrals is always approximate, but because of the established 
convergence of the series, the approximation can be made 
arbitrarily accurate. 
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