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Abstract—Motivated by the fact that linear controllers can Cooperative control of multiple rigid bodies has been
stabilize the rotational motion of a rigid body, we propose addressed recently by many authors [3], [12], [4]. While
in this paper a control strategy that exploits graph theoretic  {hage papers use distributed consensus algorithms to achieve
tools for cooperative control of multiple rigid bodies. The - . .
control objective is to stabilize the system to a configuration the de_S|red objectlve,.they are not directly relatgd tq the al-
where the rigid bodies will have a common orientation and g€braic graph theoretic framework encountered in this work.
common angular velocity. The control law respects the limited Specifically, here we equip each rigid body with a control law
information each rigid body has with respect to the rest of the that is based on the Laplacian matrix of the communication
team. Specifically, each rigid body is equipped with a control o551 \Which encodes the limited communication capabilities

law that is based on the Laplacian matrix of the communication bet the t b Similarlv to the li
graph, which encodes the limited communication capabilities etween he ieam members. Similarly 1o e linear case,

between the team members. Similarly to the linear case, the the convergence of the mu]ti—ggent system relies on the
convergence of the multi-agent system relies on the connectivity connectivity of the communication graph. The results are

of the communication graph. also extended to the case when each rigid body converges
to a desired—not necessarily zero—orientation with respect to
|. INTRODUCTION each of the agents with which it can communicate. We should

Cooperative distributed control of multiple vehicles had0te that similar results to the ones presented in this paper,
gained increased attention in recent years in the contr$fere derived at aimost the same time in the recent paper [6].
community, due to the fact that it provides feasible solu- The rest of the paper is organized as follows: Section Il
tions to large-scale multi-agent problems, in terms both gfescribes the system and the three problems treated in this
complexity and computational load. paper. Assumptions regarding the communication topology

Among the various specifications the control design aim@étween the agents are also presented, and modelled in
to impose on the multi-agent team is the state-agreemdffMS Of an undirected graph. Section Iil begins with some
or consensus problem, i.e. convergence of the multi-agefckground on algebraic graph theory that is used in the
system to a common configuration. This design objective h&§duel, and proceeds with the development of the proposed
been extensively pursued in the last few years. In most casgéStributed feedback control strategy. This strategy drives
vehicle motion is modelled by a single integrator [5],[1]'the multl-a}gent team 't.o a common configuration. In the
while double integrator models have also been consider&@Me section the stability analysis for each of the problems
[9]. A recent review of the various approaches for solving thétroduced in Section Il is given. Computer simulations
consensus problem when the underlying dynamics are lined€ included in Section I.V to |Ilustrate_ the success of thg
is found in [7]. A common analysis tool that is frequenﬂyproposed a_pprpach. Section V summarizes the results of this
used to model these distributed systems is algebraic grapfiPer and indicates some current research efforts.
theory [2].

Motivated by the fact that linear controllers can stabilize a

rigid body [11], in this paper we propose a control strategy Consider a team ofV rigid bodies (henceforth called

that exploits graph theoretic tools for cooperative control ogents) indexed by = {1,..., N}. The dynamics of agent
multiple rigid bodies. The control objective is to stabilize the; are given by [11]:

system to a configuration where all the rigid bodies have a

common orientation and common angular velocity. When the Jiw; = 8 (w;) Jiwi +uy, 1 €N, Q)
desired angular velocity is set to zero for all agents, all the

satellites end up at relative orientations which can be defind¢herew; € R? is the angular velocity vector in each satel-
a priori (and which can also be zero for the case of thi€’s body fixed framey; € R? is the acting torque vector,
same desired orientation for all the satellites). The propos@id-J/; is the symmetric inertia matrix of agentThe matrix
control law for each agent respects the limited informatiof? () denotes a skew-symmetric matrix representing the cross

each rigid body has with respect to the rest of the team. Product between two vectors, i.8(v1)vz = —v1 X va.
In this paper, the orientation of the rigid bodies with
Dimos Dimarogonas and Kostas Kyriakopoulos are with the Contrafespect to the inertial frame are described in terms of
University. of Athens. © Heroon Polytechniou Sureet, Zogratou 157800, Modified Rodriguez Parameters (MRPS)[8], [10]. The
iversity , yi iou , u " . . . .
Greece{ddimar,kkyria@mail.ntua.gr }. Panagiotis Tsiotras Okmematlcs of agent in terms of the MRPs, are given by:

is with the School of Aerospace Engineering, Georgia Institute of Tech-
nology, Atlanta, GA 30332-015Q).tsiotras@ae.gatech.edu ;=G (o) w;, 1€EN, 2

Il. SYSTEM AND PROBLEM DEFINITION



where the matrixG; is given by Laplacianof G is the symmetric positive semidefinite matrix
L = A — A. The Laplacian matrixL captures many

;
G;(0;) = % (12%13 — S (03) +07;07T> , topological properties of the graph. Of particular interest
is the fact that for a connected graph, the Laplacian has a
and has the following properties [11] single zero eigenvalue and th_e) corresponding eigenvector is
1+ olo; the vector of ones, denoted by .
0,Gi (03)w; = (“) ojWis 3
4 B. Proposed Control Strategy-Problem 1

1+0]o; 2 For Problem 1 we propose the feedback control strategy
Gi(o:) Gi (o) = ( 1 > Is. 4 for agent; as follows:
Each agent is assigned a suhsétc A from the rest of ui=-Gi(0)) ¥ (oi—0;) = > (wi—wj). (6)
the team, called agerits communication setthat includes JEN; JEN;

the agents with which it can communicate in order to achievehjs control strategy respects the limited communication
the desired objective. The limited inter-agent communicatiofyling between the members of the multi-agent team. Under
is encoded in terms of @ommunication graph ~this control strategy the following theorem holds:

Defln_ltlon 1: The communlca_non graptg = {V,E} is Theorem 1:Assume that the communication graph is
an undirected graph that consists of a set of verticess  connected. Then the control strategy (6) is a solution to
{1,..., N} indexed by the team members, and a set of edgesyoblem 1.

E ={(i,j) € V. xV : j € Ni} containing pairs of nodes Proof: Letu,w,o € R3N be the stack vectors of all the
that represent inter-agent communication specifications. control inputs, the angular velocities and the orientations of

We assume that the formation graph is undirected, in thee multi-agent team, respectively. Then it is easily derived
sense that € N; & j € N;, Vi,j € N, i# j.ltis from (6) that
obvious that(i, j) € E if and only if i € ; & j € N;. .

The control law is of the form u=-G"(0)(L®lz)o— (L& L)w,

where

G (o) = blockdiag (G1 (01),...,Gn (0 ,
representing the limited communication capabilities of each (@) 8(G1() v (o))

agent. The three problems treated in this paper can now Béere L denotes the Laplacian of the associated communi-
stated as follows (denoted by P1, P2, P3): cation graph, anc denotes the standard Kronecker product

between two matrices. Let us now choose

u; = u; (Wi, 04,w;5,05), jE€N; %)

P1 Derive distributed control laws of the form (5) that drive
the team ofN rigid bodies to a common configuration N1 : 1,
with respect to both orientation and angular velocities. Vio,w) = Z (2“’7? ']i“’i) T30 (L®Is)0
P2 Derive distributed control laws of the form (5) that drive

the team ofN rigid bodies to a common zero angular@S @ candidate Lyapunov function. Functibhis positive

velocity and common orientation. semidefinite. _ _

P3 Derive distributed control laws of the form (5) that drive  1h€ level sets ofi” define compact sets in the product
the team ofN rigid bodies to a configuration where all spacg_of agents’ angular velocities anedhtive orientations.
rigid bodies have the same angular velocity, while theipPecifically, the sef). = {(w, o) : V(o,w) < ¢} for ¢ > 0
final relative orientations are prescribed a priori. is closed by continuity of’. For all (w, o) € Q2. we have

=1

2c

IIl. CONTROL DESIGN ANDSTABILITY ANALYSIS wlJw; < 2¢ = ||lwi|| < . (J})'
min 7

A. Tools from Algebraic Graph Theory

In this subsection we review some tools from algebrai€urthermore, we also have

graph theory [2] that we use in the sequel. 1
. . . . T 2

For an undirected grapi with n vertices, theadjacency o' (Lel3)o <2c= 3 Z Z |oi —oj]|” < 2¢=
matrix A = A(G) = (a;;) is then x n symmetric matrix i=1jEN;
given bya;; = 1, if (i,j) € E anda;; = 0, otherwise. If = |loi — oj|* <4¢, VY (i,j) € E.
there is an edge connecting two vertiges, i.e. (i,5) € F, - .
theni, j are callecadjacent A pathof lengthr from a vertex Connectivity ofG ensures that the maximum length of a path

. L . . ; connecting two vertices of the graph is at mést- 1. Hence
i to a vertex;j is a sequence of+ 1 distinct vertices starting low — 0| < 2+/c (N = 1), for all i, j € A

with ¢ and ending withj such that consecutive vertices IZD'ff J tati v "th ’jtt t'. ¢
are adjacent. If there is a path between any two vertices erentiating nowy: with respect to time, we ge

of G, then G is called connected(otherwise it is called . N ) )
disconnecteld Thedegreed; of vertexi is the number of its V(o,w) = Z (wiJiwi) + 0" (L@ I3) 0
neighboring vertices, i.el; = {#j : (i,j) € E} = |N|. Let e

A be then x n diagonal matrix ofd;’s. The (combinatorial) =uw+o (L®IL)G(0)w.



With the choice of the control law in (6) we get

V(o,w) = -w (L®I3)w <0.

By LaSalle’s invariance principle, the system converges to

the largest invariant set inside the set

M={(o,w) : w" (LR I3)w=0}.

Since L ® I3 is positive semidefinite, if follows that
(L ® I3)w = 0 which implies that
Lw! = Luw?

= Lw? =0, (7

The fact that the communication graph is undirected implies

S Y6

i=1jEN;

_Uj 7

and hence

N N
Zw:Zw =0=w*=0.
=1 =1

It follows that the common angular acceleration of the rigid
bodies is zero, and therefore the common angular velocity
for all agentsw*, is in fact, constant. This, in turn, implies
thatw; = 0 for all € A/ and from equation (1) the control

wherew',w?,w? € R are the stack vectors of the threejnputs of each rigid body must also be zero. Hence we have
coefﬁments of the agents’ angular velocities, respectively, — ¢ for all trajectories inside the sét/, which implies

Connectivity of the communication graph implies ttiat@)s
a simple zero eigenvalue with corresponding eigenvedtor
Equation (7) now implies that®, w?, w? are eigenvectors of
L correspondlng to the zero e|genvalue thus they belong
spafq 1} Hencew,; = w; for all i, j € AV, implying that all
w;'s converge to a common value at steady state.

We next proceed to show that this common valueis
constant. Inside the sét/, we have(L ® I3)w = 0 hence
also (L ® I3) & = 0, which yields Lt = La? = La® = 0
and following the same argument as before, thiati?, 0? €
Span{T}. As a result, we have shown that = «&* for
all 7 € N, that is, the angular accelerations converge to
common value as well. Inside the skf, we also have

:>wlT Jiw; + G (O’,) Z (Ui—O'j) =0,
JEN;
or in stack vector form,
W (Jw+ G (o) (L®I3)0) =0,

WhereJ blockdiag (J1, . . ., Jy). Now sincew!, w? w? €
span{ 1} the last equa‘uon implies that

N
Z Jiw; + G ( )Z(ai—aj) =0,

i=1 JEN;
or
N -1 N
LZ)Z‘ - <ZJ1> ZG Uz Z 70']'),
i=1 JEN;
N —1
L =A
for all i € A/. UsingJ = (Z Ji> we now have
=1

N N N
Zwl—Zw = NJZZGi(UI)Z(O'Z oj)
i=1 i=1 i=1 JEN;
N /N N
= Zw =-NJ (Z G, (07)> Z Z (07 —0j).
i=1 i=1 i=1 jEN;

G () (L®l)c=0=G(0)G (o) (L®I3)c=0

or
to

(8)

ERL)(LeIl)o=(XL®I3)c=0,
where
Y= diag<<

) ()
It follows from (8) that

YLo! =%YLo? =X Lo® =0,

®hereo!, 02,0 € RN are the stack vectors of the three
coefficients of the agents’ orientations, respectively. The
spectral properties af are retained under the multiplication
with the positive definite diagonal matriX. Hence thes;’s
converge to a common value as welltas> co. [ ]

Remark 1:It should be noted at this point that while the
control law (6) guarantees that the agents will converge to
a configuration wherev, (t) .= wn(t) = w*, with
w* constant, andry(t) = ... = on(t) = o*(¢), ast —
oo, it is nonetheless not guaranteed thdt will be equal
to zero. Consecutively, it is not guaranteed thaft) will
reach a constant value. The latter is guaranteed if we add the
additional constraint that* = 0. This is achieved with the
treatment of Problem 2, which is discussed in the sequel.

1+ o0jo1
4

1+oyon
4

C. Proposed Control Strategy-Problem 2

Theorem 1 guarantees that the team of rigid bodies will
converge to a common constant angular velocity, while their
orientations will eventually have a common value, which
may not remain constant. In fact, it will not be constant un-
less the common, final angular velocity all satellites converge
to is zero (see Remark 1). In order to ensure that all agents
converge to the same constant orientation, in this section
we show that it is sufficient that one agent has a damping
element on the angular velocity. Without loss of generality,
we assume that this is agentThe following theorem is the
main result of this section:

Theorem 2:Assume that the communication graph is con-
nected. Then the control strategy

—Gi (o) > (oi—0j) = Y (wi —wj) —awi, (9)

JEN; JEN;



wherei = 1,...,N anda; = 1, if i = 1, anda; = 0, as a candidate Lyapunov function. We then have
otherwise, is a suitable solution to Problem 2.

N N
. ; . 1
Proof: We choose again — T T 4 = iy
g V(o,w) = Zwilez + 5 Z V7,6.
N 1 1 i=1 =1
V(o,w) = Z (leTJiwi) + §JT (L®I3)0 With a slight abuse of notation we rewrite the last term in
i=1 the previous equation as
as a candidate Lyapunov function. Differentiating with re- Vi = [@ @}
? 0o *tt Oon |

spect to time and after some manipulation we get
. ) where,
V(io,w)=—-w" (L®I3)w—|w]” <0. p S
. o - djen, (0i —0j) +ofi,  i=1,
It follows thatw remains bounded. By LaSalle’s invariance 871 = —0i+0;+0d, jEN:, j#i,
principle, the system converges to the largest invariant set 99; .
P 0, j ¢ Ni.
inside the set

where we have defined, = — ", . of;. Hence,
M=A{(o,w) : (W (L& I5)w=0)A (w1 =0)}. '

N
. .. 0 0v; i
Similarly to the proof of Theorem 1, the condition 28% :%Jr Z 8%
w' (L ® Is)w = 0 guarantees that alb;’s converge to a =1 °%4 997 jex, 99
common value. Sincey; = 0, this common value is zero. d d
g g = o;—0;)+ 05+ —0;+ 0+ 05
Furthermore, the orientations of the agents converge to a Z (05 = 00) + 03, Z( i+ +oy)

common value, which is constant, due to the fact that 0 N lejf
for all i ¢ V. [ | :22%*22‘”*2%&
€N €N

D. Proposed Control Strategy-Problem 3 =2d;0; — 2 Z o, + ngj‘

In the discussion thus far, it has been assumed that it iEN;
is desirable that all rigid bodies converge to the samg follows that
orientation. For some applications (i.e., Earth monitoring , N
or stellar observation using a satellite cluster with a large Vi = Z [gi 8877]
baseline) it may be necessary for the rigid bodies to acquire;—{ L N
and maintain a certain (perhaps nonzero) relative orientation S ,
among themselves. The relative orientation for each pair of — 2[dior -+ dyon] -2 [jgf\:ﬁ 7 jgf\:@v OJ}

rigid bodies may be different, and can be dictated by the +2 [U‘ﬁ U%N]
mission requirements. In this section, we thus impose the
specification that for each pait,j) € E, there exists a and finally,

desired relative orientation;-’j € R3 to which we wish the N
pair of rigid bodies to converge. Next, we show how to ZV% =2((L®3)o+c), (12)
modify the control law (6) in order to achieve this objective. i=1

Throughout this section, we assume that there are Noherec, —
conflicting inter-agent objectives. Hence, we assume that )
ol = —0Y;, Vi,jeN,i+# j The nexttheorem proposes Vio,w)=uw+ (L®I3)o+c) G (0)w.
a control law to achieve the objective stated previously.

Theorem 3:Assume that the communication graph is con-

[0, -+ o] Using (11),V can be written as

From (10) it can be easily derived that

nected. Then the control strategy u=—-G (o) (L®I3)o+c) — (L ®I3)w.
u; = —Gl (03) Z (0; —0j — Ugj), Z (wi — w;), (10) With the previous choice of the control law we get
JEN JEN: V(o,w) = -w (L®I3)w <0.
wherei =1,..., N is a suitable solution for Problem 3.

By LaSalle’s invariance principle, the system converges to
the largest invariant set inside the set

M={(o,w) :w" (LR I3)w=0}.

Proof: For each agent, we define the “cost function”

1
W)= 2 iy ot
JEN;

2
)

The conditionw™ (L ® I3)w = 0 guarantees again that all
and we introduce w;'s converge to a common value. Following the proof of
Theorem 1, we deduce that the invariance Mf along

N
VW“’)Z(l“’I iwi>+12%(g) with w = 0 implies that G" (o) (L ® Is)o +¢r) =
—\2 2= 0 or G(o)G" (o) ((L®I3)0+¢) = 0, which yields



E®I)(LeIs)o+c) = 0. Finally, it follows that
(L ® Is) o + ¢, = 0 due to the positive definiteness Bf
For all i € \V, let o denote the desired orientation of
agent: with respect to the global coordinate frame. It is
then obvious that;, = of — o¢ for all (i, ) € E for all
possible desired final orientations. Defiag— o; — ol =

¥
oi —0; — (08 —0}) = 6, — 5;. Then we have

Angular Velocity Norms

(LeL)o+c=0=(L®I;)6 =0=
-1 -9 -3 Time
Lo =L =Lc°> =0,

whereg', 52,63 are the stack vectors of each of the three
coefficients ofg of the agents’ orientations, respectively.
The fact that the communication graph is connected implies
that L has a simple zero eigenvalue with corresponding
eigenvector the vector of one4,. This guarantees that each
one of the vectorg!, 52, 53 are eigenvectors af belonging ol 1 A
to spad 1 }. Therefore alls; are equal to a common vector
value, sayc. Hences; = ¢ for all i € A/ which implies that Time
0; — 0 :U% j €N;, Vi, j. We conclude that the agents _ L Plots of th it velodit 4 orientations the four riaid bodi
converge to the desired, specified configuration of relatw\'}%ﬁh réspe?:tstg timeei”ngd”efrﬂ‘]’: ?gééiz gf Ia‘\:v”?g)f"ons € fourrigid bodies
orientations. [ ]

Remark 2: Similarly to Remark 1, it should be noted that

while the control law (10) guarantees that the agents will |, the second simulation we add a damping element to the
converge to a configuration whetg () = --- = wn(t) =  controller of agent 1, as in the feedback strategy (9). Figure
w*, wherew* is a constant value, and;(t) — 0;(t) = oi; 2 shows the plots of the angular velocities and orientations of
for all (i, j) € E, it is not guaranteed that* will be equal  he four rigid bodies with respect to time under the feedback
to zero. Consecutively, it is not guaranteed that eagh) |5 (9). We observe that all angular velocities converge to

will reach a constant value. The latter is guaranteed if Wgerq \while the corresponding body orientations converge to
add the additional constraint that tends to zero. This iS 5 common. and constant this time. zero value.

accomplished with the extension of Theorem 2 in this case.
The treatment is straightforward and is omitted here.

Orientation Norms

0018

IV. SIMULATIONS
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0014

To verify the results of the previous section we provide
next computer simulations of the proposed control designs.
The first simulation involves four rigid bodies evolving under
the control strategy (6). The Laplacian of the communication
graph encoding the static communication ruling has been
selected to be of the form

2 -1 -1 0
-1 1 0 0
=11 0o 2 4

0 0 -1 1
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0008 2

0008 4

0.004
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0.002

000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time

0035

The initial conditions on the angular velocities and orien-
tations were chosen as;(0) = [0.01,—-0.01,0]", 02(0) =
[—0.01,0.03,0]", 03(0) = [0.01,0.01,0]", 04(0) = [0,0,0],
w1(0) = [0.02,0,0]", wy(0) = [0,0.01,0]", w3(0) =
[0,0,0.01]", w4(0) = [0,0,—0.01]". The inertia matrix of
the four rigid bodies was chosen ds= diag (20, 15, 10).
Figure 1 shows the plots of the angular velocities andig. 2. Plots of the angular velocities and orientations the four rigid bodies
orientations of the four rigid bodies with respect to timewith respect to time under the feedback law (9).
under the feedback law (6). We observe that the system
behaves as expected. The angular velocities converge toThe third simulation involves four rigid bodies evolv-
a common non-zero value. Consequently, the orientatiomsg under the control strategy (10). The same Laplacian
converge to a common value which varies with time. matrix and the same initial conditions for the angular ve-

Orientation Norms
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locities as in the previous simulations were used, while
the initial conditions for the orientations were chosen as
01(0) = [0.046, —0.1,0.018]", 72 (0) = [0,0.21,0], 03(0) =
[0,0,—0.1]7, 04(0) = [0, —0.026,0.1]". The desired relative
orientations between the members of the team were chosen
aso?, = [0,0,0]", 0¢3 = [0,0,0.02]", 0§, = [0,—0.03,0]".

Note that these specifications correspond to the following
desired configurationsi = oi = 03 = o}, 0 = 03 =

03 =03 —0.03, 03 = 03, 03 = 03 ando? = o3 + 0.02.

Figure 3 shows the plots of the angular velocities along
with the and the “cost functions¥; for each rigid body
evolving under the control law (10). We observe that the
angular velocities converge to a common value, while the
~; of each rigid body tend to zero. Therefore, the desired
relative orientations between each agent with the other agents
belonging to its communication set are achieved. This is also
verified in Figure 4 where the relative orientation coefficients
converge to the desired values.

Angular velocity norms

0000

Time

Fig.

Cost Functions

(1]

[2]

Time [3]

Fig. 3. Plots of the angular velocities and the cost functiprof the four 4]
rigid bodies with respect to time under the feedback law (10).

(5]

V. CONCLUSIONS

We proposed a distributed control strategy that exploit§6]
graph theoretic tools for cooperative control of multiple rigid [7]
bodies. The control objective was the stabilization of the
overall system to a configuration where all the rigid bodiesyg
have a common orientation and common angular velocity.
Similarly to the linear case, the convergence of the multi-{°]
agent system was shown to rely on the connectivity of thgq;
communication graph. We also extended our results to the
case where each rigid body aims to converge to a des"ﬁﬂ]
(not necessarily zero) orientation with respect to each of the
agents with which it can communicate. Further research dft2]
forts involve the cases of switching interconnection topology,
as well as the case of unidirectional communication ruling.

1st Orientation coefficient

Time

2nd Orientation coefficient

Time

3rd Orientation coefficient

Time

4. Plots of the orientations of the four rigid bodies with respect to

time for each of the three coefficients under the feedback law (10).
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