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Abstract— We propose a machine learning (ML)-inspired
approach to estimate the relevant region of the problem during
the exploration phase of sampling-based path-planners. The
algorithm guides the exploration so that it draws more samples
from the relevant region as the number of iterations increases.
The approach works in two steps: first, it predicts if a given
sample is collision-free (classification phase) without calling
the collision-checker, and it then estimates if it is a promising
sample, i.e., if it has the potential to improve the current best
solution (regression phase), without solving the local steering
problem. The proposed exploration strategy is integrated to
the RRT# algorithm. Numerical simulations demonstrate the
efficiency of the proposed approach.

I. INTRODUCTION

Sampling-based motion planning algorithms need to incor-
porate efficient exploration strategies in order to gather in-
formation about the possibly high-dimensional search space.
Most exploration strategies implement a form of rejection
sampling in order to collect a large number of collision-
free configurations. Rejection sampling is used mainly owing
to its implementation simplicity. However, this approach is
redundant since not all collision-free configurations have the
potential to be part of the optimal solution at a given query.
In this paper, we propose to use machine learning ideas in
order to estimate the relevant region of the search space,
that is, the region where the optimal path is more likely to
be found. The result is that future samples are drawn from
the relevant region with increased probability, as the number
of iterations increases.

The idea of using machine learning fits naturally within
the framework of sampling-based algorithms since an incre-
mental dataset describing the topology of the configuration
space is readily available from previous samples. Robotic
motion planning can be interpreted as a form of learning
problem, since the high-dimensional configuration search
space is not known explicitly a priori. Therefore, its solution
inherently poses a fundamental problem, which is known
as the exploration versus exploitation dilemma. Specifically,
as the motion planner starts gathering more information
about the search space, it may favor exploitation of the
current knowledge in order to improve the best solution
which has been computed so far. This is mainly due to the

Oktay Arslan is a PhD candidate with the D. Guggenheim School
of Aerospace Engineering and the Institute for Robotics and Intelligent
Machines at the Georgia Institute of Technology, Atlanta, GA 30332-0150,
USA, Email: oktay@gatech.edu

Panagiotis Tsiotras is with the faculty of D. Guggenheim School of
Aerospace Engineering and the Institute for Robotics and Intelligent Ma-
chines at the Georgia Institute of Technology, Atlanta, GA 30332-0150,
USA, Email: tsiotras@gatech.edu

fact that the space requirements of an exact representation
of the configuration space grows very quickly with the
problem dimensionality and the number of obstacles and
hence exhaustive search is impractical (for example, it has
been proven in [22] that the general motion planning problem
is PSPACE-complete). Therefore, a motion planner needs
to devote some time for exploitation, i.e., to produce a
“good enough” solution based on the available information,
as exploration progresses. However, concentrating only on
improving the current best solution may cause the planner
to get stuck in a local minimum since potentially better so-
lutions may have not been explored yet. Therefore, a motion
planner should perform the exploration and exploitation tasks
in harmony, striking a balance between the two.

Despite the recent advances in the development of motion
planners for high-dimensional spaces using sampling-based
methods [16], [17], [15], [1], [20], [24], [11], efficient
exploration still remains a challenging issue for sampling-
based planners [19], [18]. However, for many problems an
admissible heuristic and an approximation of the optimal
cost-to-come (or cost-to-go) function is available during the
search. In such cases, one can characterize the relevant region
of the given task, i.e., the subset of the search space which
contains the optimal solution. In this context, exploration
can be viewed as a problem of learning the relevant region
associated with the given task. Interestingly, the authors of
this paper have shown that this region can be approximated
incrementally as a by-product of the RRT# algorithm [1].

In this work, we follow up on this insight and use machine
learning ideas in order to achieve better exploration of the
search space. This is based on the simple fact that since
incremental sampling-based algorithms collect a lot of data
about the planning problem as iterations progress, one can
utilize this information to provide informative labels of the
collected samples (obstacle or free) and to associate approx-
imate cost (utility) values with each sample. These labels,
collectively, can be used to guide the selection of future
samples. By employing active learning and by inferencing
based on the collected data, one can guide future samples
toward the favorable region of the search space without
invoking the computationally expensive collision checking
and local steering procedures [10], thus speeding up the
algorithm.

The proposed adaptive sampling strategy is integrated in
the RRT# algorithm to guide the future exploration of the
search space. We give a detailed explanation of the proposed
adaptive sampling strategy in the subsequent sections. Our
numerical simulations demonstrate that the proposed adap-



tive sampling strategy can reduce the number of vertices
in the underlying search graph significantly, yet the path-
planner is able to produce high quality paths.

II. RELATED WORK

A plethora of approaches have been developed in order to
guide the sampling strategy toward a specific part of the con-
figuration space. A comparative study of these approaches
can be found in [19], [12]. The majority of these methods
try to address the so-called “narrow passage problem,” which
deals with drawing more samples from difficult and complex
parts of the configuration space [14], [13].

In [6], the authors have proposed an entropy-guided
exploration strategy to guide sampling toward the regions
that would yield maximal expected information gain. The
approach is elegant but owing to the computations involved
it appears to be more appropriate for an off-line construction
of the graph, which is the case for multi-query algorithms,
such as PRM. In [9] the authors keep a history of extension
attempts for each state and the results (success or fail),
which are used to compute the utility of each state in an
information-theoretic sense. This algorithm guides explo-
ration in a way so as to increase the overall utility. In [23]
the authors presented an exploring/exploiting tree (EET)
planner that tries to achieve a balance between exploration
and exploitation. The proposed algorithm has an adaptive
behavior and gradually shifts to exploration when it cannot
find a solution in difficult regions of the configuration space.

Most closely related to our work is the work in [7], [8] and
[21]. In [7], [8] the authors propose an approximate approach
based on machine learning ideas for multi-query algorithms
that attempts to reduce collision-checking time. However, the
current work differs from this approach in several ways.
First, the authors of [7], [8] only focus on adapting the
sampling strategy to collect more collision-free samples, not
for learning the relevant region. Their exploration strategy
is tailored to reduce the variance of an approximated model
of the configuration space. Although active sampling gen-
erates useful samples which yield an accurate model, these
configurations are not necessarily related to the solution of
the task of interest. This is mainly due to the fact that
the approach in [7], [8] , similarly to [6], is designed for
multi-query algorithms, i.e., the task is not known a priori.
Second, our approach is built on fundamentally different
assumptions even when only the “learning the configuration
space problem” (classification) is considered. In [8] it is
assumed that the feature vector and its label (x, y) are
jointly Gaussian, and the prediction algorithm is developed
by utilizing the nice properties of Gaussian distributions (i.e.,
conditional distribution of multivariate Gaussian distribution
is also a Gaussian). Also, the domain of the class labels y is
relaxed and considered to be a continuous variable between
[−1, 1]. The prediction is made by computing the mean
µy|x ≥ 0 of the conditional distribution p(y|x) for a query
point x and mapping this value to {−1, 1}, i.e., if µy|x ≥ 0
then the point x is classified as collision-free, and in-collision
otherwise. These assumptions seem to be reasonable for

typical classification problems when there is no information
about the underlying structure. However, in the context of
sampling-based motion planning, we do have some extra in-
formation. For example, when rejection sampling is used, we
know that the underlying class conditional distribution is a
uniform pdf which is defined over a bounded domain and has
support which is unknown but can be explored. The use of
Gaussian distributions, which do not have compact support,
conflicts with the underlying structure of the problem. In
our approach, we leverage this key observation and estimate
the class conditional distributions directly by estimators on
a bounded domain, without resorting to the relaxation of y
being continuous.

In [21], the authors proposed an approach which im-
proves performance of sampling-based algorithms by using
instance-based learning techniques. Their approach stores
previous local planning queries, and their outcomes (in-
collision or collision-free) in a table. Then, a k-NN density
estimator computes the probability of a given query point to
be in-collision without calling the actual collision checker.
The exact collision checking processes is postponed, and is
performed only for those points that have a small probability
of being in-collision. This idea is also used in our work
and can be considered as an alternative way of estimating
the posterior distribution. However, it is known that k-NN
density estimators have several drawbacks, e.g., they are
prone to local noise, yield an estimate distribution with heavy
tails, etc; also, the resulting density estimate is not a true
pdf since its integral over the whole configuration space
diverges [5]. Our approach, on the other hand, does not have
any such problems thanks to the nice properties of kernel
density estimators.

Finally, we should mention the work of Bialkowski et.
al [3], [4] where an adaptive sampling distribution that
provably converges to a uniform distribution over the free
space is also proposed. However, the approach in [3], [4]
does not guide future samples towards the relevant region
of a given specified task. Instead, the focus is on utilizing a
new spatial data structure to learn the boundary of the free
space and draw samples from a distribution induced by this
data structure.

III. MACHINE LEARNING GUIDED EXPLORATION

A. Problem Formulation

Let X denote the configuration space, which is assumed
to be an open subset of Rd, where d ∈ N with d ≥ 2. Let
the obstacle region and the goal region be denoted by Xobs

and Xgoal, respectively. The obstacle-free space is defined by
Xfree = X \Xobs. Let the initial configuration be denoted by
xinit ∈ Xfree. Let G = (V,E) denote a graph, where V and
E ⊆ V ×V are finite sets of vertices and edges, respectively.
We will use graphs to represent the connections between a
(finite) set of configuration points selected randomly from
Xfree. Given a vertex v ∈ V , the function g : v 7→ r returns
a non-negative real number r, which is the cost of the path
to v from a given initial state xinit ∈ Xfree. We will use
g∗(v) to denote the optimal cost-to-come value of the vertex



v which can be achieved in Xfree. Given a vertex v ∈ V , and
a goal region Xgoal, the heuristic function h : (v,Xgoal) 7→ r
returns an estimate r of the optimal cost from v to Xgoal; we
set h(v) = 0 if v ∈ Xgoal. The function h is an admissible
heuristic if it never overestimates the actual cost of reaching
Xgoal. In this paper, we always assume that h is an admissible
heuristic. We wish to solve the following motion planning
problem:

Optimal motion planning problem: Given a bounded
and connected open set X ⊂ Rd, the sets Xfree and Xobs =
X\Xfree, an initial point xinit ∈ Xfree and a goal region
Xgoal ⊂ Xfree, find the minimum-cost path connecting xinit
to Xgoal.

In the framework of sampling-based algorithms, the plan-
ning algorithm avoids exhaustive discretization of the search
space by randomly drawing configurations which are incor-
porated into a tree or a graph. The method of random gen-
eration of these configurations is called a sampling strategy.
A good sampling strategy should adapt to the topology of
the search space and provide information that can improve
the computed solution.

Learning problem: Let x∗goal ∈ Xgoal be the point in the
goal region that has the lowest optimal cost-to-come value
in Xgoal, i.e., let x∗goal = argminx∈Xgoal

g∗(x). The relevant
region of Xfree is the set of points x for which the optimal
cost-to-come value of x, plus the estimate of the optimal cost
moving from x to Xgoal is less than the optimal cost-to-come
value of x∗goal, that is,

Xrel = {x ∈ Xfree : g
∗(x) + h(x) < g∗(x∗goal)}. (1)

Points that lie in Xrel have the potential to be part of the op-
timal path starting at xinit and terminating in Xgoal. Our goal
is to learn Xrel and develop a sampling strategy that draws
samples only from Xrel. This problem can be formulated as
a combination of a classification and a regression problem.
First, we need to predict the label of a given arbitrary point
x ∈ X , and then its cost-to-come value needs to be computed
approximately, using some regression technique to check if
inequality (1) is satisfied.

B. Approach

Before explaining our approach, some terminology needs
to be introduced. Let X and Y denote the space of input
and output values, respectively. Let x(i) ∈ X be the feature
vector of the ith example, also called “input” variables, and
let y(i) ∈ Y be its label, also called the “output” or target
variable. A pair

(
x(i), y(i)

)
is called a training example.

The training set is a list of m training examples of the
form D =

{
(x(1), y(1)), . . . , (x(m), y(m))

}
. In a supervised

learning framework, given the training set D, a learning
algorithm seeks a function ŷ` : X 7→ Y so that ŷ`(x) is
a “good” predictor for the corresponding value of y. The
function ŷ` is called a hypothesis, for historical reasons. The
target variable that needs to be predicted can be continuous
or it may take a finite number of discrete values. The learning
problem is a regression problem when Y is continuous, and
is a classification problem if Y is a discrete set.

Two problems arise in the context of sampling-based
algorithms: a classification problem, i.e., the prediction of the
label of an unobserved sample x, and a regression problem,
i.e., the prediction of the optimal cost-to-come value of the
sample x.

C. Learning the Configuration Space

Given the training set D =
{
(x(i), y(i)) : i = 1, . . . ,m

}
where the pair

(
x(i), y(i)

)
denotes a randomly drawn point

and its label computed by the collision-checker at the ith
iteration, we wish to find a function ŷcs : X 7→ {−1, 1} that
gives a good prediction for determining if a given point x is
in the obstacle space or the free space.

This problem can be solved efficiently via a Bayesian
classifier, which makes decisions based on class conditional
distributions and priors. The approach computes two approxi-
mate probability density functions (pdf) in order to determine
where the obstacle-free and obstacle spaces lie in the search
space, based on the available data at any given iteration.
Then, the classifier uses the Bayesian rule to predict if a
given point x is in Xfree or Xobs. A real collision checking
is performed only for points which are classified as collision-
free. All of the samples, regardless if they are in collision
or not, are stored in a list which forms the training set D. A
kernel density estimator is used to learn the associated class
conditional distributions. The kernel density estimator f̂X(x)
for the estimation of the density value fX(x) at point x is
defined as

f̂X(x) =
1

m

m∑
i=1

KH

(
x− x(i)

)
, (2)

where H is the bandwidth matrix and KH : Rd 7→ R denotes
the multivariate kernel function which is defined as follows:

KH(x) =
1

det(H)
K(H−1x). (3)

We use a diagonal bandwidth matrix for the sake of simplic-
ity, i.e., H = diag(h, . . . , h) where the kernel function K
satisfies the following properties:

i) K is a density function, that is,
∫
Rd K(x) dx = 1 and

K(x) ≥ 0.
ii) K is symmetric, that is,

∫
Rd xK(x) dx = 0.

iii) K has a second moment (matrix), that is,∫
Rd xx

ᵀK(x) dx = µ2(K)Id×d where Id×d denotes the
identity matrix.

iv) K has a bounded norm, that is, ‖K‖2 =
∫
Rd K2(x) dx <

∞, which implies that lim‖x‖→∞K(x) = 0.

Typical kernel functions involve the Uniform kernel func-
tion

K(x) = 1

2d
I(xᵀx ≤ 1), (4)

the Gaussian kernel function

K(x) = 1

(2π)d/2
exp

(
−1

2
xᵀx

)
, (5)



and the Epanechnikov kernel function

K(x) = d+ 2

2ζd
(1− xᵀx)I(xᵀx ≤ 1), (6)

where I(·) is the indicator function and ζd is the measure
(volume) of the unit sphere in Rd.

D. Proposed Adaptive Sampling Strategy

The proposed adaptive sampling strategy is given in Al-
gorithm 1. First, the algorithm initializes the lists used to
store the collected samples with the empty set and initializes
the sampling pdf f̂X with a pdf which is uniform over
X . Then, the algorithm incrementally samples from f̂X
in Line 5. In the subsequent step, a collision-checking
operation is performed for the randomly generated sample
xrand. The sample xrand is stored in either Xfree or Xobs

based on the result of the collision-checking. In Lines 8
and 11, the DensityEstimator procedure implements a
nonparametric density estimation method. In this work, we
have implemented a kernel density estimator that uses the
multivariate Epanechnikov kernel with variable, but uniform
in all dimensions, bandwidth. In our implementation, the
bandwidth h is updated as a function of the size of the
training set D as follows

h ∝ (log(|D|)/|D|)1/d. (7)

The Epanechnikov kernel in (6) has been used instead of,
say, a Gaussian kernel because of its finite support. This
property makes querying the density value of a given point
tractable. For any kernel of finite support, the summation
in equation (2) needs to be performed for only the local
neighbors of the query point. This neighbor set can be
computed efficiently using specific spatial data structures,
such as, kd-trees [25]. Simply, the density value of point x
is computed using equation (2) and it predicts how likely is
for the point x to be in the obstacle-free or obstacle spaces. In
Line 12, the Classifier procedure implements a Bayesian
classifier and the label of a given point x is determined by
the following Bayesian decision rule:

ŷcs(x) =

{
1 if qfree(x) ≥ qobs(x),
−1 otherwise,

(8)

where qobs(x) := ηP (x|y = −1)P (y = −1) and qfree(x) :=
ηP (x|y = 1)P (y = 1), where η = 1/P (x) is a normalizing
coefficient. This classifier separates the configuration space
X into two approximate sets of obstacle X̂obs and obstacle-
free X̂free regions, i.e., X̂obs = {x ∈ X : ŷcs(x) = −1}
and X̂free = {x ∈ X : ŷcs(x) = 1}. At each iteration,
the class density functions are approximated by the kernel
density estimator based on the available data, as follows

bobs = P (x|y = −1) = 1

|Xobs|
∑

x′∈Xobs

KHo
(x− x′)

bfree = P (x|y = 1) =
1

|Xfree|
∑

x′∈Xfree

KHf
(x− x′)

where Ho = diag(ho, . . . , ho) and Hf = diag(hf , . . . , hf)
are computed according to equation (7) using the sizes of
Xobs and Xfree, respectively.

The class priors are computed as the ratio of the samples
in each class according to the expression P (y = −1) =
|Xobs|/|X| and P (y = 1) = |Xfree|/|X|. Finally, having the
X̂obs and X̂free sets, the Classifier procedure returns the
following pdf which is uniform over X̂free:

f̂X(x) =

{
1/µ(X̂free) if x ∈ X̂free,

0 if x ∈ X̂obs.
(9)

Algorithm 1: Adaptive Sampling Algorithm #

1 AdaptiveSampling(X )
2 Xobs ← ∅; Xfree ← ∅;
3 f̂X(·)← puniform(·|X );
4 for i = 1 to N do
5 xrand ← Sample(f̂X);
6 if OnObstacle(xrand) then
7 Xobs ← Xobs ∪ {xrand};
8 bobs ← DensityEstimator(Xobs);

9 else
10 Xfree ← Xfree ∪ {xrand};
11 bfree ← DensityEstimator(Xfree);

12 f̂X ← Classifier(bobs, bfree);

13 X ← (Xobs, Xfree);
14 return X;

E. Learning the Cost-to-come (or cost-to-go) Value

Given the set of training data D ={
(x(i), y(i)) : i = 1, . . . ,m

}
where the pair

(
x(i), y(i)

)
denotes a randomly drawn point along with its lmc-value
(see Ref. [1]) computed by the replanning procedure at the
ith iteration, we wish to find a function ŷcv : X 7→ R that
gives a good estimate of the cost-to-come value of a given
point x.

Due to the incremental setting of the sampling-based
algorithms, we consider locally weighted learning based
methods [2], which are a form of lazy learning, to solve
the aforementioned regression problem owing to their easy
training. In this method, the training data is stored in memory
and only a small subset is retrieved to answer a specific
query. Relevance of the data is measured by using a distance
function (e.g., nearby points look alike or have similar
features). For regression problems, the method fits a surface
to nearby points using a distance weighted regression as
follows:

ŷcv(x) =

∑
i y

(i)w(x, x(i))∑
i w(x, x

(i))
. (10)

The weighting function w(x, x′) measures the relevance
of two points and can be defined by using a kernel func-
tion, for example, w(x, x′) = KHv

(x − x′) where Hv =
diag(hv, . . . , hv) is computed from equation (7) according
to size of vertex set V . In the proposed approach, whenever
a new sample is examined for inclusion in the graph, first



its cost-to-come value is estimated using the lmc-values of
the neighbor vertices according to equation (10). Then, the
new sample is included in the graph if its approximate cost-
to-come value satisfies the following inequality, which is a
relaxed version of (1)

X̂rel = {x ∈ X̂free : ĝ(x) + h(x) < lmc(x∗goal)}. (11)

F. Integration to the RRT# Algorithm

The proposed approach can be seamlessly integrated to
the RRT# algorithm. In fact, the proposed approach can be
used with any single-query sampling-based motion planning
algorithm, as long as it provides information of the cost-to-
come (or cost-to-go) values for all the vertices. However,
it is essential for the planning algorithm to provide accurate
estimates of these cost values to achieve a good performance.
In this paper we have chosen the RRT# algorithm to
leverage its fast convergence properties, which is the result
of using a relaxation step for the local rewiring of the graph.
Details of the RRT# algorithm can be found in [1].

Instead of implementing a uniform sampling strategy, the
Sample procedure of the RRT# algorithm is replaced with
the proposed adaptive sampling strategy. The details of the
Sample procedure is given in Algorithm 2.

Algorithm 2: Sample Procedure #

1 Sample(X)
2 xrand ← Sample(f̂X);
3 (Xobs, Xfree)← X;
4 if OnObstacle(xrand) then
5 Xobs ← Xobs ∪ {xrand};
6 bobs ← DensityEstimator(Xobs);

7 else
8 Xfree ← Xfree ∪ {xrand};
9 bfree ← DensityEstimator(Xfree);

10 f̂X ← Classifier(bobs, bfree);
11 X ← (Xobs, Xfree);
12 return (X,xrand);

The Extend procedure of the RRT# algorithm is also
modified, and relevancy of a new sample is checked by the
proposed approach before invoking any collision checker
or before solving the local steering problem. If the new
sample is predicted to be part of the relevant region, then
the typical operations of the RRT# algorithm are performed
for the inclusion of the new sample in the current graph.
The relevancy of the new sample is checked in Algorithm 3.
Lines 2-12 implement the Bayesian classifier and compute
the posterior distribution of the new sample. If the new
sample is predicted to be in the obstacle-free space, then
the locally weighted regression is applied in Lines 14-20 to
determine if the new information has the potential to improve
the current best solution.

IV. SIMULATION RESULTS

We have performed several simulations in order to confirm
the efficiency of the proposed approach. Here we present
the results for a two-link robot moving in the plane to
demonstrate that the proposed adaptive sampling strategy

Algorithm 3: Relevancy Check Procedure#

1 IsRelevant(G, X , xnew)
2 (V ,E)← G; (Xobs, Xfree)← X;
3 Pp,obs = |Xobs|/|X|; Pp,free = |Xfree|/|X|;
4 Sobs ← Near(Xobs, xnew, |Xobs|); Pc,obs = 0;
5 foreach x′ ∈ Sobs do
6 Pc,obs = Pc,obs +KHo(xnew − x′);

7 Sfree ← Near(Xfree, xnew, |Xfree|); Pc,free = 0;
8 foreach x′ ∈ Sfree do
9 Pc,free = Pc,free +KHf (xnew − x′);

10 Pc,obs = Pc,obs/|Sobs|; Pc,free = Pc,free/|Sfree|;
11 qobs(xnew) = Pc,obs · Pp,obs;
12 qfree(xnew) = Pc,free · Pp,free;
13 if qfree(xnew) ≥ qobs(xnew) then
14 ĝ(xnew) = 0; wtotal = 0;
15 Xnear ← Near(G, xnew, |V |);
16 foreach x′ ∈ Xnear do
17 w(xnew, x

′) = KHv (xnew − x′);
18 ĝ(xnew) = ĝ(xnew) + lmc(x′)w(xnew, x

′);
19 wtotal = wtotal + w(xnew, x

′);

20 ĝ(xnew) = ĝ(xnew)/wtotal;
21 Key(xnew) = (ĝ(xnew) + h(x), ĝ(xnew));
22 return Key(xnew) ≺ Key(v∗goal);

23 return False;

is capable of generating a high-number of collision-free
samples. The workspace and configuration space of the two-
link robot are shown in Figure 1. Objects are intentionally
placed in the workspace to form narrow passages in the
configuration space. The sampling strategy has also been
integrated to the RRT# algorithm to solve a path planning
problem in 2D environment in order to visualize the growth
of the search tree.

A. 2D-link Robot

We first tested if the proposed adaptive sampling strategy
generates a large number of collision-free configurations.
Both uniform and adaptive sampling strategies were used to
generate 100,000 samples. In order to demonstrate that the
proposed approach eventually draws samples from difficult
parts of the configuration space, e.g., narrow passages, all
points on the boundary of obstacles were sampled offline
and used to initialize the obstacle list Xobs of the classifier.
By doing so, all narrow passages are blocked at the start of
the algorithm.

Figure 2 compares the ratio of the collision-free samples
over the total number of samples (r = |Xfree|/|X|) in a trial
for uniform and adaptive sampling strategies, respectively.
It is seen that this ratio converges to one for the proposed
approach, whereas it lingers around r = µ(Xfree)/µ(X) for
a uniform sampling strategy.

The distribution of samples drawn by the uniform and
sampling strategies is shown Figure 3. The proposed adaptive
sampling strategy significantly reduces the number of points
drawn from the obstacle space and generates samples inside
the narrow passages shown, whereas the uniform sampling
strategy results in a large number of points on the obstacle



space, depending the measure of µ(Xobs).
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Fig. 1: Workspace and configuration space of a 2-link robot.
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Fig. 2: Ratio of the number of collision-free samples over the
total number of samples starting from intermediate iterations:
(a) is with i = 1, and (b) is with i = 50, 001. The ratio plots
for adaptive and uniform sampling strategies are shown in
green and blue colors, respectively. The ratio of the measure
of the free space and overall space r = µ(Xfree)/µ(X ) is
shown in red color.

B. Path Planning in 2D Environment

In this problem, our aim is to find an optimal path that
connects a given initial point to the goal region, while min-
imizing the Euclidean path length in a square environment.
The Euclidean distance from a given state to the goal set was
used as an admissible heuristic for that state. The growth
of the tree at different stages is shown in Figure 4. The
initial state is plotted as a yellow square and the goal region
is shown in dark blue with (upper middle). The minimal-
length path is shown in yellow. As shown in Figure 4, the
lowest-cost path computed by the algorithm converges to the
optimal solution. Note that in these simulations we have used
a slightly different implementation of the algorithms, namely,
the tree is rooted to the goal set instead of the initial state
and the growth of the tree is reversed.

It is seen that once an initial solution is computed,
exploration is prevented from going toward the unfavorable
regions of the configuration space. This helps to greatly
reduce the number of vertices kept in the graph, yet it
computes high quality solutions.

The learned configuration space at different stages of the
process are shown in Figure 5. These plots show how the

(a) (b)

(c) (d)

Fig. 3: The distribution of samples randomly drawn by
uniform and adaptive sampling strategies is shown in (a)-(b)
and (c)-(d), respectively. The dataset (a), (c) is with 2,500
samples, and (b), (d) is with 100,000 samples. The free space
and configuration space obstacles are shown in white and red,
respectively. The samples that are free of and on collisions
are shown in green and black, respectively.

configuration space looks like from the classifier’s perspec-
tive. The configuration space is densely gridded and all points
are queried to the Bayesian classifier. The results are plotted
based on the predicted labels. As seen in Figure 5-(b), the
classifier builds an almost exact model of the configuration
space, at least in the neighborhood of the relevant region.

The approximate f-value function (heuristic value plus
cost-to-go) at different stages is shown in Figure 6. This
function is used to determine if a candidate sample is
promising or not.

The approximate relevant region at different stages is
shown in Figure 7. In Figure 7-(a), the exact relevant region
is plotted based on the true cost-to-go values, which are com-
puted off-line. Since a solution has not been found yet, the
algorithm considers initially the whole configuration space
as the relevant region. As seen in the next figures, however,
the algorithm progressively computes an approximation of
the actual relevant region. In these plots the purple and
green regions denote the incorrect and correct predictions,
respectively.

V. CONCLUSION

We have proposed a novel adaptive sampling strategy and
have integrated it to the RRT# algorithm, an asymptoti-
cally optimal sampling-based path-planning algorithm. The
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(a) 100 iterations
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(c) 5,000 iterations
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(d) 20,000 iterations

Fig. 4: Evolution of the tree shown. The goal region and
obstacles are shown in dark blue and dark red colors,
respectively, and the lowest-cost path is shown in yellow
color.

(a) 100 iterations (b) 20,000 iterations

Fig. 5: Learned configuration space. The correctly predicted
free space is shown in white color, the correctly predicted
obstacle space is shown in dark red, the incorrectly predicted
obstacle and free spaces are shown in black color, and the
unexplored regions (no prediction is available) are shown in
gray color.

proposed adaptive sampling strategy utilizes the history of
computed information, specifically, the label of the samples
and their cost-to-come (or cost-to-go) values, to guide the
exploration towards the region of the search space where
samples having a great potential to improve the existing
solution are more likely to be found. The approach utilizes
ideas from machine learning to make predictions about how
likely is for a new sample to be part of the free space
and improve the current solution, without calling the com-

(a) 100 iterations (b) 20,000 iterations

Fig. 6: Approximate f-value function (cost-to-go plus heuris-
tic value). Low and high values of the f-value function
are shown in blue and red colors, respectively, and the
intermediate values are shown using gradient colors.

(a) 100 iterations (b) 2,500 iterations

(c) 5,000 iterations (d) 20,000 iterations

Fig. 7: Approximate relevant region. The true relevant and
approximate regions are shown in blue and purple colors,
respectively, and their intersection is shown in green color.

putationally expensive collision checking and local steering
procedures. Simulations demonstrate the effectiveness of the
proposed approach, both in terms of reducing the number
of samples lying in the obstacle space, and exploring the
relevant region efficiently.
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