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Abstract— This paper summarizes some recent developments humber of vertices in the cell decomposition graphs, thereb
on a new motion planning framework for autonomous vehicles.  compressingoo much informatiorabout the environment to
The main novelties of the current work include: a provably  on5pje efficient online computation, and (b) the associated

complete multi-resolution path planning scheme using wavet- th ol - h - ¢ . tinf
based workspace cell decompositions; a general techniquerf path planning scheme requires accurate environment infor-

incorporating vehicle dynamic constraints in the geometre path ~ mation only locally, thereby addressingcertainty or partial
planner; and a local trajectory generation scheme based on knowledgeabout the environment in regions farther away

model predictive control. from the vehicle’s location.

The discrete wavelet transform is a powerful and compu-
tationally efficient tool widely used in multi-resolutioigsal

The traditional “sense-plan-execute” hierarchical amshi processing [12]. Several recent works have investigated th
ture for autonomous mobile vehicles is being reevaluated pplications of wavelet transforms to vision-based naviga
the robotics community (cf. [1], [2]) to ensure compatilyili tion and vision-basedLAM: see, for instance, Ref. [13]
between the different levels in the hierarchy. Currenthg t (appearance-based vision-orgyAm); Refs. [14] and [15]
navigation and sensing systems seem independent of the ni@avelet analysis for local feature extraction); and R&6][
tion planning system [3]. Within the motion planning systen{stereo image processing). With the plethora of availadte s
itself, the high-level discrete path planners often ign@me sors, and in light of the fact that multiple sensors are giyc
capture inadequately) the vehicle dynamical constraitits [ used for autonomous navigation [3], the wavelet transform

References [4]-[6] address multi-resolution path plagninmay soon become the common standard of the representation
for vehicles with limited on-board computational resosrce and analysis of signals [17]. In this context, several recen
whereas Ref. [7], addresses the issue of incorporatingheehi Works address wavelet-based data representation: see, for
kinematic and dynamic constraints in the high-level motiofnstance, Ref. [18] (occupancy grids); Ref. [19] (standzed
planning phase. In the current paper, we integrate thes@presentation of road roughness characteristics); R6éf. [
results and develop a new motion planning framework thdtmage registration using wavelets); and Ref. [21] (watsele
is “multi-resolution” both in the sense of representing théased approximations of a terrain map).
environment with high accuracy only locallgnd in the History-based costs in motion planninigtotion planning
sense of considering the vehicle dynamical constraints fé@r autonomous vehicles often involves a hierarchy coimgjst
path planning only locally. The various inter-related agpe Of @ high-levelgeometric path plannethat uses a discrete
of the proposed framework are introduced as follows. representation of the vehicle’s workspace (such as cell de-

Wavelet-based multi-resolution path planningdulti- ~ compositions) and deals with the satisfaction of the task
resolution path planning involves representing the veticl SPecifications (such as obstacle avoidance), and a low-leve
environment with different levels of accuracy to construct@jectory plannerthat deals with the vehicle’s kinematic
an overall representation that allows for efficient onlinénd dynamic constraints. In order to ensure “consistency”
path planning. Examples of such path planning schem&§tween the two planners, i.e., to ensure that the geometric
appear, for instance, in Refs. [8] (quadtree-based cell dgath remains feasible when vehicle dynamical constraints
compositions); Ref. [9] (multi-resolution estimates ofett  aré considered at the trajectory planning level, we have
locations); and Ref. [10] (hierarchy of spheres for cafiisi introduced in [7] a motion planning framework based on
avoidance). References [4]-[6], [11] discuss path plagnin@ssigning costs tenultiple edge transitions — the so-called
using multi-resolution cell decompositions, where high-re 7-costs — in the graphs associated with cell decompositions.
olution cells (i.e. cells of small sizes) are used in the vehiThese costs are assigned by solving the so-célednotion
cle’s immediate vicinity and larger cells approximating th Planningproblem.
environment are used in regions farther away. This approachThe main contribution of this paper is a new motion
relates to two alternative perspectives on path planniay: (Planning framework that combines the efficiency of multi-
multi-resolution cell decompositions significantly redute resolution path planning of [6] with the guarantee of consis

tency provided by thdf-cost motion planner of [7].
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motion planning scheme based on model predictive control
In Section V, we discuss the integration of the preceding
results to develop a multi-resolutioA,-cost motion planning
framework, and we provide simulation results of implemen- |
tation of this framework. Finally, we conclude the papetwit
comments about its generality and possibilities for future
extensions.

II. MULTI-RESOLUTIONPATH PLANNING USING THE
DISCRETEWAVELET TRANSFORM

Multi-resolution analysis using the wavelet transform][12
involves the construction of a hierarchy of approximatiohs Fig. 1. Example of an image and its approximation using in (1)
a scalar function by projecting it onto a sequence of nested
linear spaces. These linear spaces are the spans of teghslat
and scaled versions of two functions called, respectitbly, Z — N be a “window” function that specifies, for each level
scaling functionand themother waveletThe 2-D discrete of resolution, the vicinity of the vehicle’s location in vfi
wavelet transfornof a function F € £2(R2) refers to two the detail coefficients at that level are considered siganific
collections of scalars, called, respectively, #pproximation Then the setd of significant detail coefficients is given by
coefficients and théetail coefficients, defined, respectively, _ i . .
as the inner products df with translated and scaled versions N {dg’k’f +mo < m <0, fn_ 12,3,
of the scaling function and the mother wavelet. [2"@0] = o(m) < k < [2Mx0] 4 o(m),

We define arimageas a pair(R, '), whereR C R? is [2™yo] — o(m) < €< |2™yo] + o(m)}, (1)
a compact, square region, afid¢d(R) > F : R — R is
an intensity map. We assume that= [0,27] x [0,27],
with D € Z, and that the image intensity map is
known at a finite resolutionns > —D, i.e., the function (o0, 0) = (390, 449), ando(m) = 4 for eachmy < m < 0.

F is piecewise constant over each of the square regiorhsln_[23]'V_V_e prowdeaproc_edure to dete_rmme the Iocatlong,
g — [27™k, 2™ (k4 1)] x [2™, 2 (0 4 1)] the intensities, and the adjacency relations of the cells in

me ke = | : ; D oy o ; ;
Qmr At each iteration, the path planning algorithm searches

fork,0=0,1,...,2P~™ —1. Without loss of generality, we , . .
’ o . Y the graph associated with™, then advances the vehicle’s

may assumen; = 0. For path planning, the intensity map . .
F may represent, for instance, the terrain elevation [21], I%cauton bytﬁne Cel:t.'n thel ?ath thﬁsdfound, an?_ then con-
risk measure [4], or a probabilistic occupancy grid [18]. structs another multi-resolution cell decomposition vi3 (

We assume that the smallest cell size2is™ — 1. We USiNg the vehicle’s new location. The results of experirakent

define a cell decompositidn consisting of uniformly spaced gvaluatlon of this scheme on a UAV platform are available

cells, each of sizé. Whereas we intend to find a path in the" Ref_. [5]. In [6], we discuss modifications to this sche_rr_1e
graph associated witk, the number of cells i) is 227 and rigorously proved the completeness of the modified

which makes the graph search inefficient whienis large. schemel.l I(;] [6], we _?Iso discuss fa(\js_,t retcomgutatlon (.)f E[Ee
To alleviate this difficulty, we construct multi-resoluticell hew cell decomposition corresponding 1o advances in the

decompositions that have significantly fewer cells. vehicle location.

Let am, ke @ndd;, , , be, respectively, the approximation |1} M oTiON PLANNING BASED ON H-COST PATHS
and detail coefficients of the 2-D discrete wavelet tramafor

of the functionF', wherem, € Z is pre-specified. Le#d be

(a) Original image (b) Approximation

wherem, € Z is pre-specified. An example of an approx-
imation using (1) is shown in Fig. 1, withng = —10,

Single-edge transition costs in workspace cell decomposi-

a set of triplets of integers, and |éin ., be defined as tion graphs_cannot capture adequate_ly the vehicle’s k_iltiema
_ . and dynamic constraints [7], [24]. In light of this obseigat

g ,7 { dppe ©=1,2,3, and(m, k, £) € A, we formalize in [7] the idea of defining transition costs on
mokl 0 otherwise. multiple successive edges. We denote Gy= (V, E) the

. - A . . graph associated with the cell decomposition, where each
The image( 17, E)' wherer" is obtained by the reconstruction obstacle-free cell corresponds to a unique verteX imnd

' ) A .
Oft?]mj’“#ﬁndd&kf’ ":‘ Ga”iﬁ th_e(ajpprOX||]:n§t|tor_1i’;tsso;:f|_a_tedt each pair of adjacent geometrically cells correspond to a
Wi - 1 he Seta contains the indices of detail coetricien Sunique edge inE. Next, for every intege > 0, we define

that are “significant” for the approximatiof?, £).
The cell decompositiof2™ associated with R, F') is a Vg = {(o,---ju): {Jk-1,Jk} €E, k=1,...,H,

_partmon of R into square cells of dlffer_ent sizes suc_:h tiiat _ e # jms for kym e {0,... H}, with k #m} .

is constant over each of the cells. Of interest in this work is

the approximation that retains detail coefficients onlyiet ~ An element of Vi1, which is a sequence off + 1

immediate vicinity of the vehicle’s location and graduallysuccessive edges i, is called aH-history. We define the

discards them in regions farther away, described as follow&/ -cost shortest path problems a shortest path problem on

Let (z0,y0) € R be the location of the vehicle, and lgt: G with transition costs defined oH-histories. This problem



Tile Motion Planning Algorithm

o ., w(H —
procedure TLEPLAN o s o
1: Determine if there existy € R and admissible control
input u such that{(- ; &, u) satisfies

x(f(t; £o, u)) c Uka1ce”([J]k)v te (0’ tf) ’ (2) Fig. 3. Schematic illustration of the idea of effective &trgets.

x(&(tr; o, u)) € cell([J] ) Neell([J] 1) 3)
2- if Jt; and Ju then (TILEPLAN) is any algorithm that determines if a given tile
3. Findt, such that may be feasibly traversed. A precise and general desamiptio

of TILEPLAN is given in Fig. 2.
x(£(t1; &0, w)) € cell([J];) Neell([J]o)  (4) In Ref. [23], we provide numerical simulation data that

4 Retum ty, up,, & = &(t;&.u), and A = demonstrates the supe_rlonty of tlﬁécost motion planning

ty Ot €0 ), u, ) dt approach over randomized sampling-based approaches (such
5. elsg 750, 5/ 5 as those based on RRTs [25] and its variants).
6: ReturnA = o IV. TILE MOTION PLANNING VIA MPC

The implementation of TLEPLAN is difficult mainly
because (2) imposes a non-convex constraint on the state
trajectory. To alleviate this difficulty, we use the idea of
effective target setmtroduced in [26], which enable the use
graph Gxr = (Vir, Exr), where the edge sdiy is defined of Mpc-based techniques for implementingLEPLAN by
as follows. Letl,J € V: then J is adjacent tol, i.e. transforming the constraint in (2) to a convex constraint
(I,J) € Ey, if [I], = [J],_,. for everyk =2,... H +1, defined over asingle cell. , ,
and [I], # [J];;.,. where[I], denotes the:*" element of Consider the tile associated with tlé-history (1, J) €
the (H + 1)-tuplz represented by, Ep. We define a sequendet;, } "' of subsets of the vehicle

The solution of the H-cost shortest path problem is state space called thedffective target setas follows. Let
computationally expensive because the number of vertites i x; .= (cell([.J];) N cell([J]z41)) X [—m, 7] x ©.
the lifted graphGy grows exponentially withH. In [7], we i )
present an algorithm that efficiently computes the shofflest For eachk = 1,..., H —1, we define the effective target
cost path. Crucially, this algorithm accepts a parametat thSet Xi as the set of all state§, € D such thatx(¢y) €
allows a trade-off between optimality and execution timeSe!l([/1;)Ncell([/],. ;) and such that there exists;, € R,

In [7], we also present a motion planning framework base@nd an admissible contral,, such that
on H-cost sh_orte_st paths; in _th|s framework, the transition x(E(t; & up 1)) € cell([T]p 1), £ € (0,th1), (5)
costs onH-histories are assigned by solving a low-level

E(thr1; Ehy Ukt1) € X1 (6)

trajectory generation problem described next.
o ) ) ) The preceding definition of effective target sets allows a

A. Specifications for Tile Motion Planning simplification of the tile motion planning problem as follsw

We consider a vehicle model described as follows. LeBuppose there exist a tintg¢ and an admissible contral;
(z,y,0) € C := R? x S! denote the position coordinates ofsuch that the resultant state trajectgty ; &, u;) satisfies
the vehicle in a pre-specified Cartesian axis system, and let )
¢ denote any additional state variables required to describe X(&(t; €0, un)) € cell(jr), € (0,1), @)
the state of the vehicle. We assume tiiat ¥, whereV is &1 = &(t1; 60, u1) € 1. (8)

an-dimensional smooth manifold. The state of the vehicle i§ 1 that the conditions (7)-(8) imply the satisfaction of

thus¢ := (2,y,0,¢) € D:=Cx . LetU e R™ denote the 5y 3y tor 7 — 1. Continuing recursively the preceding
set of admissible control values. The evolution of the viehic argument (Fig. 3), it follows that, for eadlii > 2, there exist

state over a given time interval0, ¢¢] is described by the ter1 € R, and admissible inputs 1, fork = 1,..., H—1,

differential equatiort (t) = f(&(t), u(t)) for all t € [0,t],  gych that the admissible inputdefined by
wherew is a piecewise continuous function ¢ ¢¢] taking

Fig. 2. General form of the tile motion planning algorithm.

is equivalent to a standard shortest path problem otiftid

values inU (henceforth referred to as an admissible control), ui(t), tel0,11),
and f is sufficiently smooth to guarantee global existence u(t) = : : 9)
and unigqueness of solutions. We denotedfy ; &y, u) the up(t), t€ [Ty, TH]

state trajectory that is the unique solution to the preagdin

differential equation with initial conditio§(0) = &,. Finally, whereT}, = 25121 t., solves the tile planning problem.

we denote by (¢) the projection of a staté on R2. Thus, if the effective target setd), the corresponding
We define dile as the sequence of cells associated with aimes of traversat,,; and the control inputsi;.; in (9)

H-history (I, J), where(I, J) € Ey. A tile motion planner are known for eactk = 1,..., H — 1, then the tile motion
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planning problem is equivalent to the problem of finding

andt; as described above. Crucially, (7) constrains the posi- Mtircsofution e —
tion components of the state trajectory to lie within a conve Cell Decomposiion Dynamical Model Graph
set. Furthermore, we may repladg in (8) by an interior

convex approximating set; C X; thus transforming the 4 \

tile motion planning problem into the problem of finding Nl —

andt; subject to convex constraints.

The tile motion planning problem can now be expressed o avelebased | Disrete
. . . . el ecomposition al anner
in the following, standard, discrete-timerc form:

L |

fr 1 Environment Maj I
min {Mf(HP)) D> ag(m,u(k))}, T Mo
Fig. 4.

HpEN,(u(O),...,u(Hp))
k=0 Schematic illustration of the overall motion plamgpiframework.

subject tog(HP) c 221, g(k) c cell([J]l), (10) The hollow arrows indicate modification of a model by a methble bold
arrows indicate dependencies between the various mettaisnadels.
andu(k) € U, for eachk € {0,..., Hp — 1},

where Hp denotes the prediction horizoh,: D x U — .
R, denotes a pre-specified incremental cost function, arfd € {1,..., H —1}. For eachL € {1,..., H}, we define
the setU;, C Vi, by

As:D — R denotes a pre-specified terminal cost function.
Note that the state constraints in (10) are convex. Ur == {Go--,j1) € Vi : size(cell (i) < d,

For general nonlinear dynamical systems, the construction . . -
of the effective target sets is difficult. However, in lighitthe fork=0,....L —1, andsize(cell(jr)) < d} » (12)
fact that the vehicle state includes the configuratiory, ),  whered is pre-specified, aneize(cell(j;)) denotes the size
we may computgeometricallythe intersectionsy, := AxNC  of the cell corresponding to the verte in the multi-
of the effective target sets with the configuration spdce resolution cell decomposition graph. This definition a#ad
In particular, for the vehicle dynamical model introduced i to the previously stated notion of including in the “pattjal
Section ll, it can be shown that the curvature of feasibléifted graph only the cells small enough for the curvature

geometric paths is upper-bounded by constraints to be significant. The “partially” lifted graph
. = (Vy, Fg) is then defined b
R min max [0, u(e)ote)]. @y 97T (Vi En) s then defined by
el unen Vi = UL Ur\Pr(Un), (13)
The set<C;. for a given tile may then be computed by ana- g, ._ U {1, 0): T e U, [F =T eU,,}.(14)

lyzing curvature bounded traversal of this tile. According
we provide in [23] a procedure to determine the existence of As an example clarifying the definitions éf; and Ey;,
curvature bounded paths traversing sequences of recganglnsider the graph associated with the cell decomposition
shown in Fig. 5, and letl = 2 units (the various sizes of
V. DESCRIPTION OF THEOVERALL MOTION PLANNER the cells shown in Fig. 5 arg 2, and4 units). Let H = 2.
The overall motion planner searches féf-cost short According to the above definitions,
paths, enabled by thepc-based TLEPLAN algorithm, on

the graphs associated with the multi-resolution cell decom/t = {(3:2),(3,5),...,(8,7),...,(9,6),...,(10,8)},
positions described in Section Il. However, it is unnec-U> = {(3,9,8),(3,9,6),...,(8,9,3),(8,9,2),...,
essary to considef-costs on the entire multi-resolution (9,8,10),(9,8,7),...,(10,3,5),...}

cell decomposition graph because (a) large cellsQir

correspond to coarse information about the environment fNote that elements such ds,2), (1,5),(2,3), (4,7), etc.

the regions associated with those cells, and hence trajesto that are inV; do not appear inU;. Similarly, elements

passing through large cells will need to be refined and/§uch as(3,2,1), (3,5, 10), etc. that are i, do not appear

replanned in future iterations, (b) curvature-constrdipaths N U2. The projection; of U, onto V; is P1(Uz) =

are guaranteed to exist in rectangular channels wider thafs,9). (3,10),(8,9),(8,10),...,(10,3), (10,8)}. By (13),

a certain threshold width [27], and (c) sea_trches for v — ((3,9,8),...,(10,3,5),...(3,2), (3,5),

cost short paths are computationally expensive because the

numbers of vertices in the lifted graph are large. (8,6),(8,7),(9,2),(9,6),(10,5), (10, 7)},
Keeping. with th.e multi-resolution idea of using hig.h—and by (14), the edge sé, is

accuracy information only locally, the proposed motion

planner searches fof/-cost short paths on a “partially”

lifted graph, such that the vehicle dynamical constrainés a F, = {((3,9,8),(9,8,6)),((3,9,8),(9,8,7)),. ..,

considered (viaH-costs) only locally. More precisely, for

eachJ = (jo,...,jm) € Vu, we define theprojection ((3,9,6),9,6)),((3,10,7), (10. 7)) .. }

Pr(J) of JontoVy, by Pr.(J) := (o, - - -,jr) € Vi, where edges(1,J) of the typeleU,,JeU,

edges common withs
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Fig. 5. A sample multi-resolution cell decomposition.

]
0 20 40 60 80 100 120

The overall motion planner, schematically illustrated in
Fig. 4, _then operates as TQHOV\_/S- At each iteration, a mum:ig. 6. Result of motion planning simulation using the aftnavigational
resolution cell decomposition is first constructed using thmodel. The channel of cells in black is the result of exegufit algorithm
wavelet-based scheme outlined in Section 1l and discuss?g’thout vehicle dynamical constraints). The initial gasi is at the top
. . . . o eft corner of the map. The units for theandy axes are kilometers.
in detail in [6], [23]. The cells in this decomposition may
be categorized according to their sizes into two classes,

namely, cells with sizes at most, and cells with sizes and the bank angle € [émin, dmax], Where the bounds for
greater thand. We define boundary cellsin the multi- 1o sdmissible control inputs are pre-specified.

resolution cell decomposition as the cells of sizes at Most \\ consider the motion of the aircraft in the horizontal

that have at least one neighboring cell in each of the tWBIane i.e.(t) = 0 and+(t) = 0, and to this end we set
previously defined classes (see Fig. 7(a)). A multiple-seur T '

single-goal implementation of the*Aalgorithm is used to CL(t) =mg/(q(v(t)) cos (t)).

determine the costs of optimal paths in the multi-resotutio Figure 6 shows the result of simulating the proposed
cell decomposition graph from the vertices associated Witrrr]mtion planner for the aircraft navigational model with the
each of the boundary cells to the goal vertex. These costs %(ﬁo iNg parametersCn « — 0.02. Kk — 0.04. S — 30 m2
then used as terminal penalty costs in the execution offthe o Vﬂ 958 KN. and UD’O__ 8'5 ;’n/s _THe ’airc:aft spe,ed
cost motion planning algorithm (outlined in Section Il andwgS ;ssumed ’to be CC(;ns_tant and .the (asymmetric) bounds
discussed in detail in [7], [23]) on the “partially” liftedrgph '

: e
previously discussed. ThiF-cost motion planner returns a on the bank angle control input werg,, 457 and

sequence of cells from the current location to one of the™#* :.20 - The ije_ct|ve s to minimize a cost d_efln.ed.on
boundary cells, along with an admissible vehicle contra e environment (indicated by regions of different intési

input that enables the traversal of this sequence of cell§ Fig. 6; the darker regions correspond to higher costsg. Th

The vehicle state is advanced by traversing one cell, an&talls of the implementation ofITEPLAN for this vehicle

the process is repeated until the vehicle reaches the goal model are provided in Ref. [23].
P P goal. Figure 7 illustrates an intermediate iteration in this dawu

tion example. Figure 7(a) shows the cells of size at napst

) ) . o with the boundary cells indicated in red. The sequence of
We consider a point-mass aircraft navigational modelgs outlined in blue and the blue-colored curve withirsthi

described by sequence are the results of thecost motion planner (the

yellow-colored cells indicate the vertices explored dgrin

A. Simulation Results and Further Discussion

z(t) v(t) cosy(t) cos(t), ) )

. . the H-cost search). Figure 7(b) shows the overall multi-

y(t) = wv(t)cosy(t)siny(t), resolution cell decomposition at the same iteration; thebl

2(t) = w(t)sin~y(t), colored cells indicate the optimal path to the goal from

0 = - q(t)CL(t) the boundary cell chosen by thE-cost motion planner.
mu(t) cosy(t)’ The blue-colored curve in Fig. 7(b) indicates the geometric

o(t) = (T(t) - qu(t))Cpo — KCE(t)) /m, path traversed by the vehicle in previous iterations. Iis thi
1 simulation example, we choge= 2 km.

() = ——=(av()CL(t) cos §(t) — mg cos(t)),

mu(t) VI. CONCLUSIONS ANDFUTURE WORK

wherex, y, and z denote the inertial position coordinates, We presented a new motion planning framework that com-
denotes the speed, denotes the aircraft heading,denotes bines the efficiency of a wavelet-based multi-resolutiolh ce
the flight path angleg(v) := %pvQS denotes the dynamic decomposition scheme with the guarantee of compatibility
pressurem denotes the mass of the aircraft, aftglp and X with vehicle dynamical constraints offered by ttié-cost

are pre-specified constants. The control inputs are thetthrumotion planning scheme. The proposed framework makes
T € [Timin, Tmax), the lift coefficientCy, € [CL, min, CL.max],  Clear distinctions between the models used for path- and
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(a) Local perspective: the vehicle’s configuration is
indicated by the red-colored marker and arrow.
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Fig. 7. lllustration of an intermediate iteration of the mlémotion planner.
The x andy axes indicate inertial position coordinates, in kilomster
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motion planning and the algorithms interacting with these
models, and its generality is due to the fact that we specifyg

only these interactions (e.g., the specification afElPLAN),

and not the details of the methods themselves. Whereas

provide specific algorithms to demonstrate the efficacy ef th

overall framework, in the future these algorithms can gasil

be replaced to suit specific applications.
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