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Abstract— This paper summarizes some recent developments
on a new motion planning framework for autonomous vehicles.
The main novelties of the current work include: a provably
complete multi-resolution path planning scheme using wavelet-
based workspace cell decompositions; a general technique for
incorporating vehicle dynamic constraints in the geometric path
planner; and a local trajectory generation scheme based on
model predictive control.

I. I NTRODUCTION

The traditional “sense-plan-execute” hierarchical architec-
ture for autonomous mobile vehicles is being reevaluated by
the robotics community (cf. [1], [2]) to ensure compatibility
between the different levels in the hierarchy. Currently, the
navigation and sensing systems seem independent of the mo-
tion planning system [3]. Within the motion planning system
itself, the high-level discrete path planners often ignore(or
capture inadequately) the vehicle dynamical constraints [1].

References [4]–[6] address multi-resolution path planning
for vehicles with limited on-board computational resources,
whereas Ref. [7], addresses the issue of incorporating vehicle
kinematic and dynamic constraints in the high-level motion
planning phase. In the current paper, we integrate these
results and develop a new motion planning framework that
is “multi-resolution” both in the sense of representing the
environment with high accuracy only locally,and in the
sense of considering the vehicle dynamical constraints for
path planning only locally. The various inter-related aspects
of the proposed framework are introduced as follows.

Wavelet-based multi-resolution path planning:Multi-
resolution path planning involves representing the vehicle’s
environment with different levels of accuracy to construct
an overall representation that allows for efficient online
path planning. Examples of such path planning schemes
appear, for instance, in Refs. [8] (quadtree-based cell de-
compositions); Ref. [9] (multi-resolution estimates of object
locations); and Ref. [10] (hierarchy of spheres for collision
avoidance). References [4]–[6], [11] discuss path planning
using multi-resolution cell decompositions, where high res-
olution cells (i.e. cells of small sizes) are used in the vehi-
cle’s immediate vicinity and larger cells approximating the
environment are used in regions farther away. This approach
relates to two alternative perspectives on path planning: (a)
multi-resolution cell decompositions significantly reduce the
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number of vertices in the cell decomposition graphs, thereby
compressingtoo much informationabout the environment to
enable efficient online computation, and (b) the associated
path planning scheme requires accurate environment infor-
mation only locally, thereby addressinguncertainty or partial
knowledgeabout the environment in regions farther away
from the vehicle’s location.

The discrete wavelet transform is a powerful and compu-
tationally efficient tool widely used in multi-resolution signal
processing [12]. Several recent works have investigated the
applications of wavelet transforms to vision-based naviga-
tion and vision-basedSLAM: see, for instance, Ref. [13]
(appearance-based vision-onlySLAM); Refs. [14] and [15]
(wavelet analysis for local feature extraction); and Ref. [16]
(stereo image processing). With the plethora of available sen-
sors, and in light of the fact that multiple sensors are typically
used for autonomous navigation [3], the wavelet transform
may soon become the common standard of the representation
and analysis of signals [17]. In this context, several recent
works address wavelet-based data representation: see, for
instance, Ref. [18] (occupancy grids); Ref. [19] (standardized
representation of road roughness characteristics); Ref. [20]
(image registration using wavelets); and Ref. [21] (wavelet-
based approximations of a terrain map).

History-based costs in motion planning:Motion planning
for autonomous vehicles often involves a hierarchy consisting
of a high-levelgeometric path plannerthat uses a discrete
representation of the vehicle’s workspace (such as cell de-
compositions) and deals with the satisfaction of the task
specifications (such as obstacle avoidance), and a low-level
trajectory planner that deals with the vehicle’s kinematic
and dynamic constraints. In order to ensure “consistency”
between the two planners, i.e., to ensure that the geometric
path remains feasible when vehicle dynamical constraints
are considered at the trajectory planning level, we have
introduced in [7] a motion planning framework based on
assigning costs tomultiple edge transitions – the so-called
H-costs – in the graphs associated with cell decompositions.
These costs are assigned by solving the so-calledtile motion
planningproblem.

The main contribution of this paper is a new motion
planning framework that combines the efficiency of multi-
resolution path planning of [6] with the guarantee of consis-
tency provided by theH-cost motion planner of [7].

The rest of the paper is organized as follows. In Section II,
we summarize the wavelet transform-based multi-resolution
path planning scheme. In Section III, we discuss the notion
of H-cost path planning. In Section IV, we discuss a tile



motion planning scheme based on model predictive control.
In Section V, we discuss the integration of the preceding
results to develop a multi-resolution,H-cost motion planning
framework, and we provide simulation results of implemen-
tation of this framework. Finally, we conclude the paper with
comments about its generality and possibilities for future
extensions.

II. M ULTI -RESOLUTIONPATH PLANNING USING THE

DISCRETEWAVELET TRANSFORM

Multi-resolution analysis using the wavelet transform [12]
involves the construction of a hierarchy of approximationsof
a scalar function by projecting it onto a sequence of nested
linear spaces. These linear spaces are the spans of translated
and scaled versions of two functions called, respectively,the
scaling functionand themother wavelet. The 2-D discrete
wavelet transformof a functionF ∈ L2(R2) refers to two
collections of scalars, called, respectively, theapproximation
coefficients and thedetail coefficients, defined, respectively,
as the inner products ofF with translated and scaled versions
of the scaling function and the mother wavelet.

We define animageas a pair(R,F ), whereR ⊂ R
2 is

a compact, square region, andL2(R) ∋ F : R → R is
an intensity map. We assume thatR =

[
0, 2D

]
×

[
0, 2D

]
,

with D ∈ Z, and that the image intensity mapF is
known at a finite resolutionmf > −D, i.e., the function
F is piecewise constant over each of the square regions
Smf ,k,ℓ := [2−mfk, 2−mf (k + 1)] × [2−mf ℓ, 2−mf (ℓ+ 1)],
for k, ℓ = 0, 1, . . . , 2D−mf −1. Without loss of generality, we
may assumemf = 0. For path planning, the intensity map
F may represent, for instance, the terrain elevation [21], a
risk measure [4], or a probabilistic occupancy grid [18].

We assume that the smallest cell size is2−mf = 1. We
define a cell decompositionΩ consisting of uniformly spaced
cells, each of size1. Whereas we intend to find a path in the
graph associated withΩ, the number of cells inΩ is 22D,
which makes the graph search inefficient whenD is large.
To alleviate this difficulty, we construct multi-resolution cell
decompositions that have significantly fewer cells.

Let am0,k,ℓ anddim,k,ℓ be, respectively, the approximation
and detail coefficients of the 2-D discrete wavelet transform
of the functionF , wherem0 ∈ Z is pre-specified. LetA be
a set of triplets of integers, and let̂dim,k,ℓ be defined as

d̂im,k,ℓ :=

{
dim,k,ℓ i = 1, 2, 3, and (m, k, ℓ) ∈ A,

0 otherwise.

The image(R, F̂ ), whereF̂ is obtained by the reconstruction
of am0,k,ℓ andd̂im,k,ℓ, is called theapproximationassociated
with A. The setA contains the indices of detail coefficients
that are “significant” for the approximation(R, F̂ ).

The cell decompositionΩmr associated with(R, F̂ ) is a
partition ofR into square cells of different sizes such thatF̂
is constant over each of the cells. Of interest in this work is
the approximation that retains detail coefficients only in the
immediate vicinity of the vehicle’s location and gradually
discards them in regions farther away, described as follows.
Let (x0, y0) ∈ R be the location of the vehicle, and let̺ :

(a) Original image (b) Approximation

Fig. 1. Example of an image and its approximation using in (1).

Z → N be a “window” function that specifies, for each level
of resolution, the vicinity of the vehicle’s location in which
the detail coefficients at that level are considered significant.
Then the setA of significant detail coefficients is given by

A =
{
dim,k,ℓ : m0 6 m < 0, i = 1, 2, 3,

⌊2mx0⌋ − ̺(m) 6 k 6 ⌊2mx0⌋+ ̺(m),

⌊2my0⌋ − ̺(m) 6 ℓ 6 ⌊2my0⌋+ ̺(m)} , (1)

wherem0 ∈ Z is pre-specified. An example of an approx-
imation using (1) is shown in Fig. 1, withm0 = −10,
(x0, y0) = (390, 449), and̺(m) = 4 for eachm0 6 m < 0.

In [23], we provide a procedure to determine the locations,
the intensities, and the adjacency relations of the cells in
Ωmr. At each iteration, the path planning algorithm searches
the graph associated withΩmr, then advances the vehicle’s
location by one cell in the path thus found, and then con-
structs another multi-resolution cell decomposition via (1)
using the vehicle’s new location. The results of experimental
evaluation of this scheme on a UAV platform are available
in Ref. [5]. In [6], we discuss modifications to this scheme
and rigorously proved the completeness of the modified
scheme. In [6], we also discuss fast recomputation of the
new cell decomposition corresponding to advances in the
vehicle location.

III. M OTION PLANNING BASED ON H -COST PATHS

Single-edge transition costs in workspace cell decomposi-
tion graphs cannot capture adequately the vehicle’s kinematic
and dynamic constraints [7], [24]. In light of this observation,
we formalize in [7] the idea of defining transition costs on
multiple successive edges. We denote byG = (V,E) the
graph associated with the cell decomposition, where each
obstacle-free cell corresponds to a unique vertex inV and
each pair of adjacent geometrically cells correspond to a
unique edge inE. Next, for every integerH > 0, we define

VH := {(j0, . . . , jH) : {jk−1, jk} ∈ E, k = 1, . . . , H,

jk 6= jm, for k,m ∈ {0, . . . , H}, with k 6= m} .

An element ofVH+1, which is a sequence ofH + 1
successive edges inG, is called aH-history. We define the
H-cost shortest path problemas a shortest path problem on
G with transition costs defined onH-histories. This problem



Tile Motion Planning Algorithm

procedure TILEPLAN

1: Determine if there existtf ∈ R and admissible control
input u such thatξ(· ; ξ0, u) satisfies

x(ξ(t; ξ0, u)) ∈
⋃H

k=1cell([J ]k), t ∈ (0, tf) , (2)

x(ξ(tf ; ξ0, u)) ∈ cell([J ]H) ∩ cell([J ]H+1) (3)

2: if ∃tf and∃u then
3: Find t1 such that

x(ξ(t1; ξ0, u)) ∈ cell([J ]1) ∩ cell([J ]2) (4)

4: Return t1, u[0,t1], ξ1 := ξ(t1; ξ0, u), and Λ :=
∫ t1

0
ℓ(ξ(t; ξ0, u), u, t) dt

5: else
6: ReturnΛ = ∞

Fig. 2. General form of the tile motion planning algorithm.

is equivalent to a standard shortest path problem on thelifted
graph GH := (VH , EH), where the edge setEH is defined
as follows. Let I, J ∈ V ; then J is adjacent toI, i.e.,
(I, J) ∈ EH , if [I]k = [J ]k−1, for everyk = 2, . . . , H + 1,
and [I]1 6= [J ]H+1, where [I]k denotes thekth element of
the (H + 1)-tuple represented byI.

The solution of theH-cost shortest path problem is
computationally expensive because the number of vertices in
the lifted graphGH grows exponentially withH . In [7], we
present an algorithm that efficiently computes the shortestH-
cost path. Crucially, this algorithm accepts a parameter that
allows a trade-off between optimality and execution time.
In [7], we also present a motion planning framework based
on H-cost shortest paths; in this framework, the transition
costs onH-histories are assigned by solving a low-level
trajectory generation problem described next.

A. Specifications for Tile Motion Planning

We consider a vehicle model described as follows. Let
(x, y, θ) ∈ C := R2 × S1 denote the position coordinates of
the vehicle in a pre-specified Cartesian axis system, and let
ψ denote any additional state variables required to describe
the state of the vehicle. We assume thatψ ∈ Ψ, whereΨ is
an-dimensional smooth manifold. The state of the vehicle is
thusξ := (x, y, θ, ψ) ∈ D := C×Ψ. Let U ∈ Rm denote the
set of admissible control values. The evolution of the vehicle
stateξ over a given time interval[0, tf ] is described by the
differential equationξ̇(t) = f(ξ(t), u(t)) for all t ∈ [0, tf ],
whereu is a piecewise continuous function on[0, tf ] taking
values inU (henceforth referred to as an admissible control),
and f is sufficiently smooth to guarantee global existence
and uniqueness of solutions. We denote byξ(· ; ξ0, u) the
state trajectory that is the unique solution to the preceding
differential equation with initial conditionξ(0) = ξ0. Finally,
we denote byx(ξ) the projection of a stateξ on R2.

We define atile as the sequence of cells associated with a
H-history (I, J), where(I, J) ∈ EH . A tile motion planner

ξ0
u(0) u(H − 1)

X1 XH−1 XH

Fig. 3. Schematic illustration of the idea of effective target sets.

(TILEPLAN ) is any algorithm that determines if a given tile
may be feasibly traversed. A precise and general description
of TILEPLAN is given in Fig. 2.

In Ref. [23], we provide numerical simulation data that
demonstrates the superiority of theH-cost motion planning
approach over randomized sampling-based approaches (such
as those based on RRTs [25] and its variants).

IV. T ILE MOTION PLANNING VIA MPC

The implementation of TILEPLAN is difficult mainly
because (2) imposes a non-convex constraint on the state
trajectory. To alleviate this difficulty, we use the idea of
effective target setsintroduced in [26], which enable the use
of MPC-based techniques for implementing TILEPLAN by
transforming the constraint in (2) to a convex constraint
defined over a single cell.

Consider the tile associated with theH-history (I, J) ∈
EH . We define a sequence{Xk}

H+1
k=1 of subsets of the vehicle

state space called theeffective target setsas follows. Let

XH := (cell([J ]H) ∩ cell([J ]H+1))× [−π, π]×Ψ.

For eachk = 1, . . . , H − 1, we define the effective target
set Xk as the set of all statesξk ∈ D such thatx(ξk) ∈
cell([J ]k)∩cell([J ]k+1) and such that there existstk+1 ∈ R+

and an admissible controluk+1 such that

x(ξ(t; ξk, uk+1)) ∈ cell([J ]k+1), t ∈ (0, tk+1) , (5)

ξ(tk+1; ξk, uk+1) ∈ Xk+1. (6)

The preceding definition of effective target sets allows a
simplification of the tile motion planning problem as follows.
Suppose there exist a timet1 and an admissible controlu1
such that the resultant state trajectoryξ(· ; ξ0, u1) satisfies

x(ξ(t; ξ0, u1)) ∈ cell(j1), t ∈ (0, t1) , (7)

ξ1 := ξ(t1; ξ0, u1) ∈ X1. (8)

Note that the conditions (7)-(8) imply the satisfaction of
(2)-(3) for H = 1. Continuing recursively the preceding
argument (Fig. 3), it follows that, for eachH > 2, there exist
tk+1 ∈ R+ and admissible inputsuk+1, for k = 1, . . . , H−1,
such that the admissible inputu defined by

u(t) :=







u1(t), t ∈ [0, T1) ,
...

...
uH(t), t ∈ [TH−1, TH ] ,

(9)

whereTk =
∑k

m=1 tm solves the tile planning problem.
Thus, if the effective target setsXk, the corresponding

times of traversaltk+1 and the control inputsuk+1 in (9)
are known for eachk = 1, . . . , H − 1, then the tile motion



planning problem is equivalent to the problem of findingu1
andt1 as described above. Crucially, (7) constrains the posi-
tion components of the state trajectory to lie within a convex
set. Furthermore, we may replaceX1 in (8) by an interior
convex approximating set̃X1 ⊂ X1 thus transforming the
tile motion planning problem into the problem of findingu1
and t1 subject to convex constraints.

The tile motion planning problem can now be expressed
in the following, standard, discrete-timeMPC form:

min
HP∈N,(u(0),...,u(HP))

{

Λ̃f(ξ(HP)) +

HP−1∑

k=0

ℓ̃(ξ(k), u(k))

}

,

subject toξ(HP) ∈ X̃1, ξ(k) ∈ cell([J ]1), (10)

andu(k) ∈ U, for eachk ∈ {0, . . . , HP − 1},

whereHP denotes the prediction horizon,̃ℓ : D × U →
R+ denotes a pre-specified incremental cost function, and
Λ̃f : D → R+ denotes a pre-specified terminal cost function.
Note that the state constraints in (10) are convex.

For general nonlinear dynamical systems, the construction
of the effective target sets is difficult. However, in light of the
fact that the vehicle state includes the configuration(x, y, θ),
we may computegeometricallythe intersectionsCk := Xk∩C
of the effective target sets with the configuration spaceC.
In particular, for the vehicle dynamical model introduced in
Section III, it can be shown that the curvature of feasible
geometric paths is upper-bounded by

κmax := min
t∈[0,tf ]

max
u(t)∈U

∣
∣
∣θ̇(ξ(t), u(t))/v(t)

∣
∣
∣ . (11)

The setsCk for a given tile may then be computed by ana-
lyzing curvature bounded traversal of this tile. Accordingly,
we provide in [23] a procedure to determine the existence of
curvature bounded paths traversing sequences of rectangles.

V. DESCRIPTION OF THEOVERALL MOTION PLANNER

The overall motion planner searches forH-cost short
paths, enabled by theMPC-based TILEPLAN algorithm, on
the graphs associated with the multi-resolution cell decom-
positions described in Section II. However, it is unnec-
essary to considerH-costs on the entire multi-resolution
cell decomposition graph because (a) large cells inΩmr

correspond to coarse information about the environment in
the regions associated with those cells, and hence trajectories
passing through large cells will need to be refined and/or
replanned in future iterations, (b) curvature-constrained paths
are guaranteed to exist in rectangular channels wider than
a certain threshold width [27], and (c) searches forH-
cost short paths are computationally expensive because the
numbers of vertices in the lifted graph are large.

Keeping with the multi-resolution idea of using high-
accuracy information only locally, the proposed motion
planner searches forH-cost short paths on a “partially”
lifted graph, such that the vehicle dynamical constraints are
considered (viaH-costs) only locally. More precisely, for
each J = (j0, . . . , jH) ∈ VH , we define theprojection
PL(J) of J ontoVL, byPL(J) := (j0, . . . , jL) ∈ VL, where

Models

Methods

Multi-resolution

Cell Decomposition

Graph

Vehicle

Dynamical Model

“Partially” Lifted 

Graph

Wavelet-based

Cell Decomposition TILEPLAN
Discrete

Path Planner

Environment Map
Control

Fig. 4. Schematic illustration of the overall motion planning framework.
The hollow arrows indicate modification of a model by a method. The bold
arrows indicate dependencies between the various methods and models.

L ∈ {1, . . . , H − 1}. For eachL ∈ {1, . . . , H}, we define
the setUL ⊆ VL by

UL :=
{
(j0, . . . , jL) ∈ VL : size(cell(jk)) < d̄,

for k = 0, . . . , L− 1, and size(cell(jL)) 6 d̄
}
, (12)

whered̄ is pre-specified, andsize(cell(jk)) denotes the size
of the cell corresponding to the vertexjk in the multi-
resolution cell decomposition graph. This definition alludes
to the previously stated notion of including in the “partially”
lifted graph only the cells small enough for the curvature
constraints to be significant. The “partially” lifted graph
G̃H = (ṼH , ẼH) is then defined by

ṼH := ∪H
L=1UL\PL(UH), (13)

ẼH := ∪H
L=1

{
(I, J) : I ∈ UL, [I]

L
1 = J ∈ UL−1

}
.(14)

As an example clarifying the definitions of̃VH and ẼH ,
consider the graph associated with the cell decomposition
shown in Fig. 5, and let̄d = 2 units (the various sizes of
the cells shown in Fig. 5 are1, 2, and4 units). LetH = 2.
According to the above definitions,

U1 = {(3, 2), (3, 5), . . . , (8, 7), . . . , (9, 6), . . . , (10, 8)},

U2 = {(3, 9, 8), (3, 9, 6), . . . , (8, 9, 3), (8, 9, 2), . . . ,

(9, 8, 10), (9, 8, 7), . . . , (10, 3, 5), . . .}

Note that elements such as(1, 2), (1, 5), (2, 3), (4, 7), etc.
that are inV1 do not appear inU1. Similarly, elements
such as(3, 2, 1), (3, 5, 10), etc. that are inV2 do not appear
in U2. The projectionP1 of U2 onto V1 is P1(U2) =
{(3, 9), (3, 10), (8, 9), (8, 10), . . . , (10, 3), (10, 8)}. By (13),

Ṽ2 = {(3, 9, 8), . . . , (10, 3, 5), . . . (3, 2), (3, 5),

(8, 6), (8, 7), (9, 2), (9, 6), (10, 5), (10, 7)},

and by (14), the edge set̃E2 is

Ẽ2 = {

edges common withE2

︷ ︸︸ ︷

((3, 9, 8), (9, 8, 6)) , ((3, 9, 8), (9, 8, 7)) , . . .,

((3, 9, 6), (9, 6)) , ((3, 10, 7), (10, 7)) , . . .
︸ ︷︷ ︸

edges(I,J) of the typeI∈U2,J∈U1

}
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Fig. 5. A sample multi-resolution cell decomposition.

The overall motion planner, schematically illustrated in
Fig. 4, then operates as follows. At each iteration, a multi-
resolution cell decomposition is first constructed using the
wavelet-based scheme outlined in Section II and discussed
in detail in [6], [23]. The cells in this decomposition may
be categorized according to their sizes into two classes,
namely, cells with sizes at most̄d, and cells with sizes
greater thand̄. We define boundary cells in the multi-
resolution cell decomposition as the cells of sizes at mostd̄
that have at least one neighboring cell in each of the two
previously defined classes (see Fig. 7(a)). A multiple-source,
single-goal implementation of the A∗ algorithm is used to
determine the costs of optimal paths in the multi-resolution
cell decomposition graph from the vertices associated with
each of the boundary cells to the goal vertex. These costs are
then used as terminal penalty costs in the execution of theH-
cost motion planning algorithm (outlined in Section III and
discussed in detail in [7], [23]) on the “partially” lifted graph
previously discussed. ThisH-cost motion planner returns a
sequence of cells from the current location to one of the
boundary cells, along with an admissible vehicle control
input that enables the traversal of this sequence of cells.
The vehicle state is advanced by traversing one cell, and
the process is repeated until the vehicle reaches the goal.

A. Simulation Results and Further Discussion

We consider a point-mass aircraft navigational model
described by

ẋ(t) = v(t) cos γ(t) cosψ(t),

ẏ(t) = v(t) cos γ(t) sinψ(t),

ż(t) = v(t) sin γ(t),

ψ̇(t) = −
q(t)CL(t)

mv(t) cos γ(t)
,

v̇(t) =
(
T (t)− q(v(t))CD,0 −KC2

L(t)
)
/m,

γ̇(t) =
1

mv(t)

(
q(v(t))CL(t) cosφ(t) −mg cos γ(t)

)
,

wherex, y, andz denote the inertial position coordinates,v
denotes the speed,ψ denotes the aircraft heading,γ denotes
the flight path angle,q(v) := 1

2ρv
2S denotes the dynamic

pressure,m denotes the mass of the aircraft, andCD,0 andK
are pre-specified constants. The control inputs are the thrust
T ∈ [Tmin, Tmax], the lift coefficientCL ∈ [CL,min, CL,max],
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Fig. 6. Result of motion planning simulation using the aircraft navigational
model. The channel of cells in black is the result of executing A* algorithm
(without vehicle dynamical constraints). The initial position is at the top
left corner of the map. The units for thex andy axes are kilometers.

and the bank angleφ ∈ [φmin, φmax], where the bounds for
the admissible control inputs are pre-specified.

We consider the motion of the aircraft in the horizontal
plane, i.e.,γ(t) = 0 and γ̇(t) = 0, and to this end we set

CL(t) = mg/
(
q(v(t)) cosφ(t)

)
.

Figure 6 shows the result of simulating the proposed
motion planner for the aircraft navigational model with the
following parameters:CD,0 = 0.02, K = 0.04, S = 30 m2,
mg = 50 kN, and vcr = 85 m/s. The aircraft speed
was assumed to be constant, and the (asymmetric) bounds
on the bank angle control input wereφmin = −45◦ and
φmax = 20◦. The objective is to minimize a cost defined on
the environment (indicated by regions of different intensities
in Fig. 6; the darker regions correspond to higher costs). The
details of the implementation of TILEPLAN for this vehicle
model are provided in Ref. [23].

Figure 7 illustrates an intermediate iteration in this simula-
tion example. Figure 7(a) shows the cells of size at mostd̄,
with the boundary cells indicated in red. The sequence of
cells outlined in blue and the blue-colored curve within this
sequence are the results of theH-cost motion planner (the
yellow-colored cells indicate the vertices explored during
the H-cost search). Figure 7(b) shows the overall multi-
resolution cell decomposition at the same iteration; the blue-
colored cells indicate the optimal path to the goal from
the boundary cell chosen by theH-cost motion planner.
The blue-colored curve in Fig. 7(b) indicates the geometric
path traversed by the vehicle in previous iterations. In this
simulation example, we chosēd = 2 km.

VI. CONCLUSIONS ANDFUTURE WORK

We presented a new motion planning framework that com-
bines the efficiency of a wavelet-based multi-resolution cell
decomposition scheme with the guarantee of compatibility
with vehicle dynamical constraints offered by theH-cost
motion planning scheme. The proposed framework makes
clear distinctions between the models used for path- and
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(a) Local perspective: the vehicle’s configuration is
indicated by the red-colored marker and arrow.
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(b) Global perspective.

Fig. 7. Illustration of an intermediate iteration of the overall motion planner.
The x andy axes indicate inertial position coordinates, in kilometers.

motion planning and the algorithms interacting with these
models, and its generality is due to the fact that we specify
only these interactions (e.g., the specification of TILEPLAN ),
and not the details of the methods themselves. Whereas we
provide specific algorithms to demonstrate the efficacy of the
overall framework, in the future these algorithms can easily
be replaced to suit specific applications.
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