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We consider the minimum-time path-planning problem for a small aircraft flying hor-
izontally in the presence of obstacles and regionally-varying strong winds. The aircraft
speed is not necessarily larger than the wind speed, a fact that has major implications in
terms of the existence of feasible paths. First, it is possible that there exist configurations in
close proximity to an obstacle from which a collision may be inevitable. Second, it is likely
that points inside the obstacle-free space may not be connectable by means of an admissible
bidirectional path. The assumption of a regionally-varying wind field has also implications
on the optimality properties of the minimum-time paths between reachable configurations.
In particular, the minimum-time-to-go and minimum-time-to-come between two points are
not necessarily equal. To solve this problem, we consider a convex subdivision of the plane
into polygonal regions that are either free of obstacles or they are occupied with obsta-
cles, and such that the vehicle motion within each obstacle-free region is governed by a
separate set of equations. The equations of motion inside each obstacle-free region are sig-
nificantly simpler when compared with the original system dynamics. This approximation
simplifies both the reachability/accesibility analysis, as well as the characterization of the
locally minimum-time paths. Furthermore, it is shown that the minimum-time paths con-
sist of concatenations of locally optimal paths with the concatenations occurring along the
common boundary of neighboring regions, similarly to Snell’s law of refraction in optics.
Armed with this representation, the problem is subsequently reduced to a directed graph
search problem, which can be solved by employing standard algorithms.

I. Introduction

We consider the problem of steering a partially controllable lightweight aircraft traveling horizontally in
the presence of obstacles and spatially varying (strong) winds. The aircraft’s mission is to reach the terminal
position among a finite set of goal destinations that is the “closest,” in terms of travel time, to the aircraft.
Our problem is essentially a variation of the Zermelo’s navigation problem, named after Zermelo who posed
the problem for the first time in 1931 [1]. A typical application of this problem is the minimum-time landing
of a small aircraft in an emergency situation. In such a situation, the time for the vehicle to initiate and
perform successfully a safe landing is limited. Knowledge of the closest landing site among a number of
landing sites/airports in the vicinity of the vehicle, as well as the route to the closest landing site are of
paramount importance. The problem is complicated by that fact that the vehicle is partially controllable
because the vehicle’s forward speed is not necessarily larger than the wind speed. Such a situation typically
arises when, for example, a small, lightweight aircraft operates within an area with locally strong winds
and/or when the aircraft’s ability to steer towards the desired route is diminished owing to, say, a mechanical
failure (e.g., loss of thrust).

Path-planning problems with spatially-varying parameters are known in the literature as weighted re-
gion problems .2–5 The weighted region problem, first introduced by Mitchell in Ref. [2], and Mitchell and
Papadimitriou in Ref. [3], deals with the characterization of the shortest paths from an initial point to a
terminal point (or set of terminal points) within a polygonal subdivision of the configuration space with
respect to a weighted Euclidean distance function. The authors of Refs. [2, 3] assume that the distance
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weight (cost per unit distance) is homogeneous within each cell of the subdivision. Thus the solution paths
of the problems posed in Refs. [2, 3] can be interpreted as the minimum-time paths of a light beam that
travels through different isotropic media (where the media are the polygonal cells of the subdivision). The
optimal paths of the weighted region problem are concatenations of regionally optimal paths, where the
concatenations occur along the boundaries of neighboring regions according to Snell’s law of refraction.3, 6

The paper by Rowe and Alexander4 presents a generalization of the results presented in Ref. [3] regarding
the characterization of the synthesis of optimal paths to a specific goal destination for the weighted region
problem, therein stated as a map of optimal paths.

The characterization of minimum-time paths for planning problems where the travel speed depends on the
direction of motion (anisotropic problems) are, in general, more challenging compared to isotropic problems,
mainly due to the fact that the time of travel in anisotropic problem does not qualify as a distance function
(it does not enjoy the symmetry property and/or it does not satisfy the triangle inequality). Consequently,
standard techniques from the well-studied isotropic problems may not apply to the anisotropic problems.
An example of a path planning problem with respect to a distance function that is both regionally and
directionally weighted is presented in Ref. [7]. The approach of Ref. [7] is limited in scope to the specific
problem treated therein, and thus it does not propose a framework to address more general problems. An
analytic solution to a more general class of anisotropic path planning problems than the one treated in Ref. [7]
(albeit non-regionally weighted) was first presented in Ref. [8]. In particular, in Ref. [8] it is demonstrated
that the solution to the anisotropic path planning problem in the absence of obstacles is composed of a
concatenation of at most two line segments. All the results in Ref. [8] however, are limited to the distance
weight being a piece-wise linear function of the direction of motion while the solution for general weight
functions was only conjectured.

The main limitation of all the aforementioned methods is that they do not provide a sufficiently powerful
methodology for addressing more general path-planning problems for vehicles with complex dynamics. By
contrast, the theory of optimal control offers a powerful theoretical framework and a plethora of numerical
techniques to deal with any path-planning problem, at least in principle. It turns out, however, that in
many cases the solution of the path-planning problem formulated as an optimal control problem may be
computationally expensive. One technique to relax the optimal control problem is to assume that the vehicle
obeys multi-regional dynamics, that is, the vehicle’s motion is governed by different and simpler equations
of motion within each region of a given partition of its state space. Since the dynamics of the vehicle
within each region are simpler, it is likely that the path-planning problem in this multi-regional formulation
admits either an analytic solution, or the construction of the solution by means of numerical schemes is a
more tractable problem compared to the original problem’s formulation. In particular, the optimal solution
depends on n parameters, and it is a concatenation of n + 1 locally optimal paths, where n is the number
of times the vehicle crosses the common boundary of any two neighboring regions during its progression
to the goal destination. These parameters determine essentially the behavior of the optimal path on the
boundary of neighboring regions, where the dynamics of the system switch during the progression of the
vehicle towards the goal destination.9 It turns out that standard techniques from the calculus of variations10

furnish conditions that suffice for the characterization of optimal paths that traverse different regions. The
theory of optimal hybrid systems9, 11 provides an alternative solution to this problem. Examples where the
approach of hybrid optimal control for systems with multi-regional dynamics is employed can be found in
Refs. [12, 13].

In this work we follow the multi-regional optimal control approach while some ideas and techniques from
the solution of weighted region problem are also employed in order to address the path planning problem
in the presence of strong winds. In particular, given a convex, polygonal subdivision of the state space into
a number of regions (cells), we assume that the wind field inside each cell is constant and is equal to the
average wind velocity in that region. Consequently, the vehicle dynamics, which depend explicitly on the
wind flow in the vicinity of the vehicle, undergo discontinuous jumps as the vehicle travels though different
regions. Next, we associate this polygonal subdivision with a connectivity graph G. The connectivity graph
turns out to be insufficient to describe accurately the reachability/accessibility properties of the vehicle.
Specifically, winds that are locally stronger than the vehicle’s forward speed restrict the directions of motion
to a pencil of directions. Consequently, adjacent nodes of G may not correspond to system configurations
that are necessarily connected by means of an admissible bidirectional path. Furthermore, it is possible that
in case the aircraft flies close to a physical obstacle (for example, a hill), locally strong winds may force the
vehicle to crush. Thus, the obstacle space needs to be expanded appropriately so that it contains not only
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the positions occupied by physical obstacles but also the locations from which a collision of the vehicle may
be inevitable. After a number of node and edge deletions the graph G is transformed to a directed graph ~G,
which describes more accurately the system topological properties compared to G. Finally, we assign a cost
to each arc of this directed graph, which is the minimum travel time required for steering the aircraft from
some position inside the cell that corresponds to the first node of the arc to some position inside the cell that
corresponds to the last node of the arc (this position is, for example, the centroid of each cell). We show that
the minimum-time path between these two points is a concatenation of at most two line segments with the
path concatenation taking place along the common boundary of the two neighboring regions. The previous
problem formulation reduces the original steering problem to the shortest path problem over a weighted
graph, the solution of which can be obtained by using any of the standard graph search algorithms.14

The rest of this paper is organized as follows. In Section II, we formulate the path planning problem as a
multi-regional optimal control problem. In Section III we solve a special case of the path-planning problem,
which we use as an archetype for reducing the original problem to a directed network minimization problem
in Section IV. Section V presents simulation results, and finally Section VI concludes the paper with a
summary of remarks.

II. The Zermelo’s Navigation Problem with Obstacles and its Formulation as

a Multi-Regional Optimal Control Problem

In this section we formulate the path planning problem as an optimal control problem. In particular, we
consider a lightweight aircraft whose motion is described by the following equation

ẋ = u+ w(x), (1)

where x
△
= (x, y) denotes the cartesian coordinates of a reference point of the vehicle, u

△
= (u1, u2) is the

control input and w
△
= (µ, ν) is the velocity field induced by the winds. We assume that the state space of

the system, denoted as M, is a subset of R
2 while the admissible input set, denoted as U , is comprised of

all piecewise continuous functions that take values over the input value set U = {(u1, u2) : u2
1 + u2

2 ≤ 1}.
Furthermore, we assume that the state space can be partitioned into two disjoint sets, namely the free space
F and the obstacle space O. Additionally, the space F is assumed to be open and connected, which implies
that there always exists a path between two arbitrary points in F (though such a path may not always be
admissible for the system (1)).

Next, we formulate the problem of steering the system (1) from a given initial position xA to a terminal
point taken from a set of goal destinations {xj

f
, j ∈ J }, where J is a finite index set, in minimum time, and

such that the ensuing path lies inside F at all times. We refer to this problem as the Zermelo’s Navigation
Problem with Obstacles and Multiple Targets.

Problem 1 Given the system described by equation (1) determine the control u∗ ∈ U such that

1. The control u∗ minimizes the cost functional J(u)
△
= Tf where Tf is the free final time.

2. The trajectory x∗ : [0, Tf ] 7→ M generated by the control u∗ satisfies

(a) the collision free condition:
x∗(t) ∈ F , for all t ≥ 0, (2)

(b) the boundary conditions:

x∗(0) = xA, x∗(Tf) ∈ {xj
f
, j ∈ J }. (3)

Figure 1 illustrates Problem 1. In particular, the vehicle starting from point A has to reach the “closest,”
in terms of travel time, terminal point from the point-set {B,C,D,E,F}. The black arrows denote the wind
velocity field, whereas the plane is colored with respect to the elevation map of the terrain. Bright and dark
colors correspond to low and high elevation regions, respectively. Since we assume that the vehicle flies at
a constant altitude within the altitude zone that corresponds to bright green, for example, then each region
colored with the same or a brighter color corresponds to the free space F , whereas the dark green regions
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correspond to the obstacle space O. We observe in Fig. 1 that the terminal sites B and C, although they are
closer to the vehicle’s initial position, they may not be accessible from A due to locally strong winds.

We assume that the state space is decomposed into a given collection of non-overlapping convex, polyg-
onal, closed cells, denoted by C(M) = {ci, i ∈ I}, where I is a finite index set, such that the wind velocity

in each cell ci of this subdivision can be approximated by a constant vector, say w = wi, where wi
△
= (µi, νi)

and

wi
△
=

∫∫

ci
w̃i(x)dx

∫∫

ci
dx

, i ∈ I, (4)

where w̃i denotes the measured wind velocity at position x ∈ ci. Subsequently, the given polygonal subdivi-
sion of M induces a uniform (discontinuous) wind velocity distribution. Within each cell ci in the subdivision
C(M) we have the regional dynamics

ẋ = u+ wi, x ∈ ci. (5)

The dynamics change each time the vehicle crosses the face fij of two neighboring cells ci and cj . The system
dynamics jump only along fij , and when furthermore, the vehicle exits from cell ci and enters cell cj , or
vice versa, that is, the vehicle does not travel along fij . Note that the system can equivalently be described
using a hybrid model approach, similarly to the one adopted by Sanfelice and Frazzoli in Ref. [13]. To this
end, we formulate the Multi-Regional Zermelo’s Navigation Problem with Obstacles and Multiple Targets as
follows.

Problem 2 Given a polygonal subdivision of C(M) = {ci, i ∈ I} of M, solve Problem 1 for the system with
regional dynamics described by (5).

A

B

C D

E

F

Figure 1. The Zermelo Navigation Problem with Obstacles and Multiple Targets. The obstacle space corresponds to
dark green regions. The black arrows denote the wind velocity field.

III. Zermelo’s Navigation Problem Between Two Patches

Before we deal with Problem 2, we first address a simpler problem, the solution of which will provide us
with the archetypes for generating an approximation of the solution of Problem 2. In particular, let O = ∅

and M = F = R
2, and consider two distinct points xA and xB. Let us consider the bisector of xA and xB, that

is, the line which is equidistant from xA and xB and divides the Euclidean plane into two closed half-planes,
P1 and P2, respectively. Henceforth, we denote the bisector of A and B by ∂P12. We assume that both
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P1 and P2 are equipped with a constant wind velocity field w1 = (µ1, ν1) and w2 = (µ2, ν2) respectively.
Next, we consider the minimum-time problem from xA to xB. We call this problem the Zermelo’s Navigation
Problem between Two Patches whose formulation is as follows:

Problem 3 Find the control u∗ that solves Problem 2 in case M = R
2, C = {P1,P2} and the boundary

conditions x(0) = xA and x(Tf) = xB.

Figure 2 illustrates Problem 3. To simplify the presentation we consider a reference frame such that the
bisector ∂P12 coincides with the y-axis, and the points A and B have coordinates (−χ, 0) and (χ, 0), where
χ is positive constant, respectively. Before we proceed to the solution of Problem 3, we first examine the
existence of feasible solutions to the problem.

O

(0, ψ)C

(−χ, 0) (χ, 0)

y

x

P1 P2

ey

ex

A B

u1

u1

V1w1

u2

u2 V2

w2

w1 w2

Figure 2. The Zermelo navigation problem between two patches.

III.A. Reachability Analysis for the Zermelo Navigation Problem between Two Patches

One of the distinctive characteristics of Zermelo’s navigation problem is the dependence of the controllabil-
ity/reachability properties of the original system (1) on the strength of the local flow induced by the winds
in the vicinity of the vehicle (for more details see [15]). In particular, as we demonstrate shortly afterwards,
the system is completely controllable, that is, the vehicle can be steered everywhere from an arbitrary initial
position, if and only if the local wind speed is less than the vehicle’s forward speed (normalized to unit).
The situation is illustrated in Fig. 3. In particular, Fig. 3(a) illustrates that if the wind speed is less than
or equal to one, then the vehicle can move to every direction except from −w in the case ‖w‖ = 1. On the
contrary, as it is illustrated in Fig. 3(b), if the wind speed is greater than the forward speed of the vehicle,
then the vehicle’s inertial velocity V = w + u, is constrained to lie for all u ∈ U and for all t ≥ 0 within
a pencil of directions, to which we shall henceforth refer to as the cone of admissible directions of motion,
denoted as K. It follows readily from Fig. 3(b) that K is defined as

K(w)
△
= {v ∈ R

2 : |∠(w, v)| ≤ arcsin(1/‖w‖)}, (6)

where ∠(a, b) : R
2×R

2 7→ [−π, π] denotes the angle from a to b and R
2 is the set of two-dimensional vectors.

Note that K(w) is a right (non-oblique) cone of angle ϑ
△
= 2 arcsin(1/‖w‖), whose apex is x (current position

of the vehicle) and its axis is parallel to w.
To this end, let us consider the restriction on P1 of the reachable set from point A ∈ P1, which is given

by

RP1
(xA)

△
= {x ∈ P1 : x = xA + sv, for all v ∈ K(w1) and s ≥ 0}. (7)

Let ℓ1
△
= RP1

(xA) ∩ ∂P12, then the point B is reachable from A if and only if

xB ∈
⋃

xC∈ℓ1

RP2
(xC), (8)
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(a) Local controllability analysis for the Zer-
melo’s navigation problem when ‖w‖ ≤ 1.
The vehicle can move to every direction ex-
cept from −w when ‖w‖ = 1.

O
ϑ

α

V4

V1

u4
u1

w

V3

V2

u3
u2

(b) Local controllability analysis for the Zer-
melo’s navigation problem when ‖w‖ > 1. The
vehicle is constrained to move within a cone whose
apex is O, its axis is parallel to w and its angle ϑ
equals 2 arcsin 1/‖w‖.

Figure 3. Local controllability analysis for the Zermelo’s navigation problem.

where RP2
(xC) denotes the restriction on P2 of the reachable set from point C ∈ ∂P12. The situation is

illustrated in Fig. 4.
A more efficient way to verify the reachability of B from A, and thus the feasibility of Problem 3 is to

characterize the intersection of the restriction of the accessibility set of B on P2, that is, the set of points in
P2 from which B can be reached, with ℓ1. More precisely the restriction of the accessibility set of B on P2

is given by

AP2
(xB)

△
= {x ∈ P2 : x = xB − sv, for all v ∈ K(w2) and s ≥ 0}. (9)

Let ℓ2 = ∂P12 ∩AP2
(xB), then the point B is reachable from A if and only if the following condition holds

ℓ12
△
= ℓ1 ∩ ℓ2 6= ∅. (10)

The situation is illustrated in Fig. 5.
Condition (10) can furnish an explicit characterization of the feasibility of Problem 3. In particular, let

ℓ1 = Γ∆ and ℓ2 = Γ′∆′ as it is illustrated in Fig. 5. It follows readily that the coordinates of the points Γ,
∆, Γ′, and ∆′ are given by

xΓ = (0, χ tan(∠(w1, ex) − arcsin(1/‖w1‖))), x∆ = (0, χ tan(∠(w1, ex) + arcsin(1/‖w1‖))), (11)

xΓ′ = (0, χ tan(∠(w2, ex) − arcsin(1/‖w2‖))), x∆′ = (0, χ tan(∠(w2, ex) + arcsin(1/‖w2‖))). (12)

Therefore, condition (10) implies that B is reachable from A, or, equivalently, the Problem 3 is feasible, if
and only if

Γ′ ∈ Γ∆, and/or ∆′ ∈ Γ∆. (13)

In light of (11)-(12) and after some algebraic manipulation, it follows that condition (13) is satisfied if and
only if at least one of the following inequalities hold

∣

∣

∣
∠(w2, ex) − ∠(w1, ex) − arcsin(1/‖w2‖)

∣

∣

∣
≤ arcsin(1/‖w1‖), (14)

∣

∣

∣
∠(w2, ex) − ∠(w1, ex) + arcsin(1/‖w2‖)

∣

∣

∣
≤ arcsin(1/‖w1‖). (15)
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Figure 4. Reachability analysis of Problem 3.
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Figure 5. Feasibility of Problem 3.

III.B. Characterization of the Solution to the Zermelo’s Navigation Problem between Two

Patches

The solution of Problem 3 has a simple structure, which is illustrated in Fig. 2. In particular, the optimal
path within P1 is the minimum-time path x∗1 : [0, Tf,1] 7→ P1 from A to some point C along the line segment
ℓ12, provided that ℓ12 6= ∅ (that is, Problem 3 is feasible), with coordinates (0, ψ). Furthermore, the path
that lies in P2 is necessarily the minimum-time path from C to the point B. Thus, the minimum-time path
from A to B is a continuous path, which is the concatenation of two locally optimal paths, namely x∗1 and
x∗2, that is

x∗(t;ψ) =







x∗1(t;ψ), for t ∈ [0, Tf,1],

x∗2(t;ψ), for t ∈ [Tf,1, Tf ].
(16)

Therefore the solution of Problem 3 belongs necessarily to a family of paths that depend on one parameter,
namely ψ.

There are two tools at our disposal to characterize ψ∗ such that time of travel along the composite
path from A to C and subsequently to B is minimized when ψ = ψ∗. The first approach is to apply the
Maximum Principle for hybrid optimal control problems,16 which will provide us the additional equation
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Figure 6. Constructing the composite optimal path of Problem 3.

(transversality condition) required for the characterization of ψ∗. The second technique is to mimic the
solution of the minimum-time path planning problem through two different isotropic media (a problem
whose solution is known to obey the Snell’s law of refraction). In the latter approach it suffices to express
the sum of the time of motion along the locally optimal paths from A to C and the path from C to B as
functions of ψ, and subsequently determine the value of ψ at which the total travel time assumes its minimum
value (unconstrained optimization problem). Although the first approach provides a more general framework
to address similar problems, it turns out, however, that the second technique admits a much simpler answer
to Problem 3, mainly due to the fact that the time of travel of Problem 3 enjoys the convexity property,
which allow us, in turn, to apply standard optimization tools.

First, we characterize the minimum-time path from A ∈ P1 to a point C ∈ ℓ12. Because the Zermelo’s
navigation problem is a well studied problem in the literature (see for example Refs. [15, 17]), we shall give
only some of the results from the solution, which are necessary for our analysis without providing all the
details. In particular, the optimal path x∗1(t) from A to C is given by

x∗1(t) = xA + tv1, t ∈ [0, Tf,1], (17)

where Tf,1 is the minimum time from A to C, and v1
△
= (xC − xA)/Tf,1 is the velocity vector (constant) with

which the vehicle traverses the minimum-time path. Furthermore, the minimum time Tf,1 from A to C is
given by

Tf,1(ψ) =







T+
1 (ψ;χ), if ψ ∈ D+

C,1

T−
1 (ψ), if ψ ∈ D−

C,1,
(18)

where

T±
1 (ψ) =

ν1ψ + µ1χ±
√

∆1(ψ)

1 − ‖w1‖2
, ∆1(ψ) = (1 − ν2

1 )χ2 + (1 − µ2
1)ψ

2 + 2µ1ν1χψ, (19)

and where

D±
C,1

△
=

{

ψ :
(

∆1(ψ) ≥ 0
)

∧
(

0 ≤ T±
1 (ψ) ≤ T∓

1 (ψ) if T∓
1 (ψ) ≥ 0) or 0 ≤ T±

1 (ψ) otherwise
)}

.

We immediately observe that T±
1 can be written as the sum of convex functions of ψ with functions, which

are, in turn, compositions of convex functions with affine functions of ψ (all the previous operations preserve
convexity). Therefore T±

1 is a convex function of ψ.
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Furthermore, the optimal control input u∗1 = (cos θ∗1 , sin θ
∗
1), where θ∗1 ∈ [−π, π] is determined unambigu-

ously from the following equations

cos θ∗1 = −µ1 + χ/Tf,1, sin θ∗1 = −ν1 + χ/Tf,1. (20)

Similarly, the expressions for the minimum time and the optimal control for the minimum-time problem
from C to B are given by (17)-(20) after replacing ψ and the subscripts A, C and 1 by −ψ and C, B and 2
respectively. It follows that the total time from A to B is given by

Tf(ψ) =



























T+
1 + T+

2 , if ψ ∈ D+
C,1 ∩ D+

C,2

T−
1 + T+

2 , if ψ ∈ D−
C,1 ∩ D+

C,2

T+
1 + T−

2 , if ψ ∈ D+
C,1 ∩ D−

C,2

T−
1 + T−

2 , if ψ ∈ D−
C,1 ∩ D−

C,2

(21)

Note that both T±
1 and T±

2 are convex functions of ψ, and therefore each sum of the form T±
1 + T±

2 is also
a convex function of ψ (the sum of two convex functions is also convex). Thus the total time of travel from
A to B, which is given by (21), is a piecewise convex function of ψ, and therefore the characterization of the
global minimum within each of the four domains D±

C,1 ∩D±
C,2 can be achieved by standard tools from convex

optimization (e.g., gradient descent methods). Alternatively, and because the problem is one dimensional, it
suffices to compute the unique root of the equation ∂Tf/∂ψ = 0 within each of the four domains D±

C,1 ∩D±
C,2.

The analytic expression of the equation ∂Tf/∂ψ = 0, when, say xC ∈ D+
C,1 ∩D+

C,2 is given by

(1 − ‖w2‖
2)ν1 − (1 − ‖w1‖

2)ν2
(1 − ‖w1‖2)(1 − ‖w2‖2)

+

2
∑

i=1

(−1)i+1µiνiχ+ (1 − µ2
i )ψ

(1 − ‖wi‖2)
√

∆i(ψ)
= 0, (22)

where the equations for the three other domains can be derived similarly.
Fig. 6 illustrates the scheme for the generation of the minimum-time composite path from A to B. In

particular, for each point Σ ∈ ℓ12 = Γ∆′, there exists a velocity V1 ∈ K(w1) that drives the vehicle from A

to Σ in minimum time. In Fig. 6 we observe that the route from A to ∆′ corresponds to the minimum-time
path from A to the segment ℓ12, whereas the minimum-time path from ℓ12 to B is the path from Γ to B,
since along both of these two paths the vehicle travels with the maximum speed in P1 and P2, respectively.
It turns out, however, that the composite minimum-time path is the concatenation of the segments AΣ1 and
Σ1B, and therefore, the composite minimum-time path does not contain neither the segment A∆′ nor ΓB.

IV. Reducing the Multi-Regional Zermelo Problem to a Weighted Directed

Graph Search Problem

In this Section we demonstrate how Problem 2 can be reduced to a shortest path problem over a weighted
directed graph. The first step of this reduction process, is to transcribe a simple graph G to C(M). This
requires, in turn, a rule to assign each cell of C(M) to a node of G, and subsequently determine the adjacency
relations between the nodes of G based on the proximity relations of their corresponding cells. In particular,

a cell ci ∈ C(M) is characterized as free if ci ∩ O = ∅ and as full if ci ∩ O 6= ∅. We denote as Ce(M)
△
=

{ci ∈ M, i ∈ Ie} and Cf (M)
△
= {ci ∈ M, i ∈ If} the collections of free and full cells respectively, where

I = Ie ∪ If and Ie ∩ If = ∅.
Furthermore, two cells ci, cj in C(M), with i 6= j, are characterized as neighboring if and only if they

share a common face, which is denoted as fij . We furthermore denote as Ne(i) and Nf (i) the index sets of
the respectively free and full cells that are neighboring to the free cell ci. We subsequently associate Ce(M)
with a topological (simple) graph G, known in the literature18 as the connectivity graph, as follows:

(i) A free cell ci ∈ Ce(M) is associated uniquely with a node vi; we write vi ∼ ci.

(ii) Two nodes vi and vj are adjacent if and only their corresponding free cells ci and cj share a common
face fij .
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The vertex set of G, denoted as V = V (G), is the set {vi : vi ∼ ci, i ∈ Ie} and the edge set of G, denoted
as E(G), is comprised of all the (unordered) pairs (vi, vj), where vi and vj are adjacent. Note that E(G)
corresponds to the adjacency relationships of V (G), as usual. Furthermore, we may associate each node
vi ∈ V (G) with any point xi ∈ ci, i ∈ Ie. We write xi = cellG(vi). Finally, if xi ∈ ci we write vi = nodeG(xi),
where vi ∼ ci.

The next step is to update the adjacency relations of the graph G so that they reflect the local accessi-
bility/reachability properties of the system (1). In particular, given two adjacent nodes vi and vj , we have
to investigate whether it is possible to steer the system (1) from xi = cellG(vi) to xj = cellG(vj), and vice
versa. In particular, given a node vi ∈ V (G), then vj ∈ V (G), with j ∈ Ne(i), is said to be connected from
vi if and only if

ℓij
△
= ℓi ∩ ℓj 6= ∅, ℓi

△
= Rci

(xi) ∩ fij , ℓj
△
= Acj

(xj) ∩ fij , (23)

where Rci
(xi), and Acj

(xj) denote the restrictions of the reachable set from xi to ci and the accessible set
of xj to cj , respectively. In light of (23), it follows that if (vi, vj) ∈ E(G), then a path from xi = cellG(vi) to
xj = cellG(vj), and/or vice versa, may not exist in general. Figure 7 illustrates how the wind field can affect
the accessibility/reachability properties of the system (1) in contrast to the connectivity of the topological
graph G. In particular, Fig. 7(a) illustrates a case where the wind conditions do not alter the adjacency
relations between two adjacent nodes vi and vj in V (G), whereas Fig. 7(b) illustrates the case when vi is
connected to vj but it is not connected from vj . Finally, Fig. 7(c) illustrates the case when vi is neither
connected to nor connected from vj . Therefore the topological graph G is insufficient to reflect whether points
that lie within neighboring cells are connectable by bidirectional, admissible paths of the system (1) in the

presence of locally strong winds. Therefore, we need to replace graph G with a directed graph (digraph) ~G.

We initially take the vertex set of ~G, denoted by V (~G), to be equal to V (G), and we subsequently examine
whether every pair of adjacent nodes of G corresponds to points of the system (1) that are reachable from
and/or to each other. In particular, given a node vi, we examine whether for each j ∈ Ne(i) the point

xj = cellG(vj) satisfies the condition (23). In the affirmative, then the arc −−→vivj belongs to E(~G), where

E(~G) denotes the edge set of the directed graph ~G. By repeating this process for every node vi ∈ V (G),

we characterize completely the edge set of the directed graph ~G. Henceforth, given a node vi ∈ V (G) with
vi ∼ ci, where ci is a free cell, we denote as N+

e (i) and N−
e (i) the index set of the adjacent to vi nodes that

are connectable from and to vi, respectively. If for some node vi ∈ V (G), both N+
e (i) and N−

e (i) are free,

then we remove this node from V (~G).
As we have already mentioned, it is likely that strong winds in the vicinity of the vehicle can force the

latter to a collision with an obstacle. In particular, if the vehicle reaches a point xi = cellG(vi) ∈ ci, then a
collision of the vehicle may be inevitable if and only if the following condition holds:

(

N−
e (i) = ∅

)

∧
(

N−
f (i) 6= ∅

)

∧
(

Rci
(xi) ∩ cj 6= ∅, j ∈ N−

f (i)
)

. (24)

Condition (24) implies that a collision may be unavoidable if and only if the vehicle reaches a (free) cell ci
from which no other free cell is reachable, in the sense of condition (23), but only full cells, and furthermore
the vehicle is constrained to move along directions that will lead eventually to a collision due to locally
strong winds. Therefore the obstacle space needs to be expanded in accordance to (24) so that it includes
not only the locations occupied by physical obstacles but also configurations that may lead to a collision.
We characterize a cells ci for which xi = cellG(vi) satisfies (24) as an artificially full cell. All nodes vi that

correspond to artificially full cells have to be deleted from V (~G). The process of “expanding” the obstacle
space O to contain artificially full cells as well is illustrated in Fig. 8.

The final step for reducing Problem 2 to a digraph search problem is to assign to each arc in E(~G)

an appropriate transition cost, and thus render ~G a weighted directed graph. In particular, given an arc
−−→vivj ∈ E(~G) we attach to it the cost J(−−→vivj) = Tf(ψ), where Tf is the solution of a variation Problem 3. In
particular, Tf is the minimum time required to steer the system (1) from xi = cellG(vi) to xj = cellG(vj) such
that the ensuing path remains inside the two cells during the whole progression of the vehicle towards xj .
The latter problem can be associated with Problem 3 by replacing w1 and w2 with wi and wj , the points
xA and xB with x1 and x2, respectively, and the bisector ∂P12 with the common face fij of the two cells ci
and cj. Note that the solution ψ∗ of this variation of Problem 3 equals either the solution of Problem 3,
when the minimum-time path of the unconstrained Problem 3 intersects the line segment fij , or it equals
one of the values of ψ that correspond to the end points of the line segment fij otherwise. After a transition
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wi
wj

vi vj

ci cj

−−→vivj

−−→vjvi

(a) The configuration xi = cellG(vi) is
reachable from xj = cellG(vj), and vice
versa.

wi

wj

vi vj

ci cj

ϑj

ϑi

−−→vivj

(b) The configuration xj = cellG(vi) is
reachable from xj = cellG(vj) but not vice
versa.

wi

wj

vi vj

ci cj

ϑj

ϑi

(c) The configurations xj = cellG(vi) and xj = cellG(vj)
are not reachable from and to each other.

Figure 7. Graph connectivity in the presence of winds. The cone of admissible directions K(wk), k ∈ {i, j} is denoted
by (light) blue color. Additionally, the tip of the vehicle’s forward velocity tracks a black circle.

cost is assigned to every arc of ~G, Problem 2 is reduced to a shortest path problem over a weighted directed
graph, which can be solved by employing any of the standard shortest path algorithms over graphs that are
available in the literature (e.g., Dijkstra’s algorithm). In particular, given the initial node v0 = nodeG(x0)
and a set of goal nodes Vg = {vj

f
= nodeG(xj

f
), j ∈ J } we can characterize a shortest path P , if such a path

exists, where
P = (v0, v1, · · · , vf),

and where vf ∈ Vg is the node that renders the total transition cost from v0 to Vg minimum. The path P
corresponds to a sequence of points, namely (x0, x1, . . . , xn, xf), where xk = cellG(vk), k ∈ {1, . . . , n}, are the
way-points to be visited by the vehicle during its progression towards the goal destination xf ∈ {xj

f
, j ∈ J }.

V. Simulations

In this section we present simulation results to illustrate the previous developments. In particular,
we consider the problem of steering a small airplane to its closest final destination among a set of three
airports/landing sites. We assume that we are given a polygonal decomposition of the environment which
is induced, in turn, by the Voronoi diagram of a finite set of Voronoi generators. Each cell of this Voronoi
diagram can be interpreted as the region from which a sensor, located at the corresponding Voronoi generator
of this cell, can measure accurately the local wind conditions. The wind velocity field is assumed to be
constant within each Voronoi cell. The situation is illustrated in Fig. 9(a). In particular, black, grey, and
white Voronoi cells correspond to full, artificially full and free cells, respectively. Figure 9(b) illustrates the

directed graph ~G induced by the polygonal decomposition C after the artificial cells have been characterized
and the adjacency relationships between nodes that correspond to neighboring cells have been updated to
account for the restriction of the admissible directions motion, which is induced, in turn, by locally strong
wings. Finally Fig. 9(c) illustrates the minimum-time path from the starting point A to its “closest”, in terms
of time of travel, goal destination from the set {B,C}. We observe that the optimal path is a polygonal line,
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vi vj

ci cj

ϑi

ϑj

−−→vivj

(a) Cells in the vicinity of physical obstacles may con-
tain points from which a collision of the vehicle with an
obstacle may be inevitable.

(b) The obstacle space is expanded in accordance with
condition (24).

Figure 8. The obstacle space of Problem 2 consists of both full and artificially full cells.

where the change of the direction of motion as the vehicle traverses the common face of neighboring free cells
follows a pattern which can be interpreted as a non-trivial variation of the Snell’s law of refraction through
isotropic media (where, in our case, the free cells behave as anisotropic media).

VI. Conclusions

We have addressed the problem of steering a small lightweight airplane traveling in the presence of
obstacles and strong spatially-varying winds to a given set of goal destinations in minimum time. We
assume that we are given a polygonal subdivision of the environment such that the wind velocity field is
constant within each cell in this subdivision. Due to the discontinuous distribution of the wind velocity field
the motion of the vehicle within each cell is described by a different set of equations, where the vehicle’s
dynamics undergo discontinuous jumps every time the vehicle transverses the common boundary of two
neighboring cells. It is shown that the minimum-time paths of our problem are polygonal lines, where
the number of curve concatenations equals the number of the cells that the vehicle traverses during its
progression towards the goal destination. Additionally, the direction of motion of the vehicle changes every
time it transverses the common boundary of two neighboring cells with a pattern similar to Snell’s law of
refraction from optics with the main difference being that each cell in our problem behaves as an anisotropic
medium. Finally, we demonstrate that the multi-regional representation of the vehicle dynamics allow us to
reduce the original path-planning problem to a shortest-path problem over a weighted directed graph, for
the solution of which efficient algorithms exist in the literature.
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