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In this paper, the complete stability domain for both single- and multi-parameter dependent

LTI systems is synthesized by extending existing results in the literature. This domain is cal-
culated through a guardian map which involves the determinant of the Kronecker sum of a
matrix with itself. The single parameter case is easily computable, whereas the multi-parameter

case is more involved. The determinant of the bialternate sum of a matrix with itself is also
exploited to reduce the computational complexity of the results presented in this paper.

1. Introduction

In this paper we study the stability of linear time

invariant parameter-dependent (LTIPD) systems. The

need to determine the bounds on the parameters that

guarantee stability of a system perturbed by these

parameters has been the subject of intensive research

in the past. Methods based on Lyapunov function

theory have been proposed. Specifically, several

parameter-dependent Lyapunov functions have been

suggested in the literature to find such bounds

(Khargonekar and Rotea 1988, Bernstein and Haddad

1990, Haddad and Bernstein 1995, Helmersson 1999,

Iwasaki and Shibata 1999, Neto 1999). The use of

Lyapunov function methods typically gives rise to

stability conditions that are sufficient but not necessary.

Chilali and Gahinet (1996) and Chilali et al. (1999)

studied quadratic �-Hurwitz and D-stability and gave

robust stability conditions for parametric uncertainty.

For quadratic stability, Amato et al. (1996) and Lee

et al. (1996) gave necessary and sufficient conditions,

which are valid even for time-varying linear systems.

However, quadratic stability is, in general, more

conservative than robust stability (Rern et al. 1994,

Chilali et al. 1999). Saydy et al. (1988, 1990) defined a
particular guardian map and used it to study the
stability of LTIPD systems of the form:

_x ¼ Að�Þx, Að�Þ ¼
Xm
i¼0

�iAi ð1Þ

and

_x ¼ Að�1, �2Þx, Að�1, �2Þ ¼
Xi1þi2¼m

i1, i2¼0

�i11 �
i2
2Ai1, i2 : ð2Þ

The guardian map in Saydy et al. (1988) is the
determinant of the Kronecker sum of a matrix with
itself. Using this guardian map, they gave necessary
and sufficient stability conditions with respect to a
given parameter domain for the particular LTIPD
systems in (1) and (2). This method was later extended
in Barmish (1994) and Rern et al. (1994) to LTI systems
with many parameters of the form:

_x ¼ Að�1, �2, . . . , �mÞx,

Að�1, �2, . . . , �mÞ ¼ A0 þ
Xm
i¼1

�iAi: ð3Þ
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However, the stability conditions in Barmish (1994) and
Rern et al. (1994) are only sufficient. Fu and Barmish
(1988) gave the maximal stability interval around the
origin for LTIPD systems of the form (3) with m¼ 1
and A0 Hurwitz. Mustafa and Davidson (1995) studied
the robust stability problem of LTIPD systems using
the bialternate sum of matrices. The determinant
of the bialternate sum of a matrix A 2 R

n�n with itself
is not a guardian map. Nonetheless, it can be used in a
similar way (allowing for some minor changes) as the
Kronecker sum to guard Hurwitz matrices. The advan-
tage of the bialternate sum used by Mustafa and
Davidson is that it involves fewer calculations than the
Kronecker sum. This property is also explored in this
paper to reduce the computations required for the
derived stability tests.
The existing results, for example, Saydy et al. (1988,

1990) and Barmish (1994) give necessary and sufficient
stability conditions for an a priori given single- or
multi-parameter interval set. Furthermore, Rern et al.
(1994) provides a bounded interval, which is only
sufficient in guaranteeing the stability of LTIPD
systems. A question which arises naturally from this
research is how to find the entire stability domain for
single- or multi-parameter dependent systems. In many
cases, the complete stability domain may be composed
of one or several pieces of connected sets.
In this paper, we extend existing results in the litera-

ture to give the entire stability domain for single-para-
meter dependent LTI systems. We then generalize this
result to multi-parameter dependent LTI systems. In
order to reduce the computational complexity of the
derived stability conditions, the guardian map which
involves the determinant of the Kronecker sum of an
n� n matrix with itself is replaced by the determinant
of the bialternate sum of an n� n matrix with itself.
Specifically, the stability test requires the computation
of the eigenvalues of the inverse of an n2 � n2

matrix if the Kronecker sum is used. This reduces to
computing the eigenvalues of the inverse of an
1
2 nðn� 1Þ � 1

2 nðn� 1Þ matrix if the bialternate sum is
used.
It should be pointed out that the derived conditions

in this paper can also be used to determine the stability
of ‘‘slow’’ linear parameter varying (LPV) systems.
As shown in Guo and Rugh (1995), given the system

_x ¼ ðA0 þ �ðtÞAgÞx, ð4Þ

where A0,Ag 2 R
n�n, �ðtÞ 2 ½�, ���, _�ðtÞ 2 ½ _�, �_��, and

€�ðtÞ 2 ½ €�, �€�� for all t � 0, with _�, �_�, €�, �€� being sufficient
small, then the following conditions are equivalent:

(i) The system (4) is asymptotically stable.
(ii) Re½�iðA0 þ �AgÞ� < 0, 8� 2 ½�, ���, i ¼ 1, 2, . . . n.

This implies that stability of the ‘‘slowly-varying’’
LPV system in (4) can be inferred from the stability of
the LTIPD system _x ¼ ðA0 þ �AgÞx where � is unknown
but constant in the interval ½�, ���.

The paper has eight sections and is arranged as
follows: x 2 gives some preliminaries and the main
mathematical tools used in this paper. Section 3
introduces two methods for computing the maximal
open stability interval on R which includes zero,
such that the single parameter-dependent system
matrix will be Hurwitz if the parameter is within
this interval. This result is the same as the one in
Fu and Barmish (1988) and is included here for
completeness, albeit with an alternate proof. The
methods in x 3 have the limitation that the system
matrix must be Hurwitz when the parameter is zero.
The guardian map induced by the Kronecker sum
and the map induced by the bialternate sum are
then exploited to compute the maximal interval of
stability. Section 4 extends the results of x 3 and
gives two algorithms for computing the complete
stability domain for a single parameter-dependent
system matrix. This domain may be an open interval
or a union of several open intervals. When the
parameter is zero, the system matrix is not required
to be Hurwitz in order to apply these
two algorithms. Section 5 generalizes these results to
multi-parameter dependent LTI systems. Section 6
gives some numerical examples. Some comments
on the numerical complexity of the proposed
algorithms are provided in x 7, while x 8 presents the
conclusions.

The notation used in this paper is as follows:

� � Kronecker product and sum
? Bialternate product

�i(A) ith eigenvalue of the matrix A 2 R
n�n

In Identity matrix of dimension n� n
(also denoted I when the dimension
is clear from the context)

intðDÞ Interior of the set D
@D Boundary of the set D
A Set of Hurwitz matrices A 2 R

n�n

�A A� A, A 2 R
n�n

~A A ? In þ In ? A ¼ 2A ? In, A 2 R
n�n

mspecðAÞ Multispectrum of matrix A 2 R
n�n,

i.e. the set consisting of all the
eigenvalues of A, including repeated
eigenvalues

I n Index set f1, 2, . . . , ng
I 0
n Index set f0, 1, 2, . . . , ng
�[ Ordered union of two sets, taking only

one occurrence of repeated members
D# Cardinality of the set D

detðAÞ or jAj Determinant of the matrix A
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2. Preliminaries

2.1 The guardian map

Our results rely heavily on the concept of a guardian
map for the set of Hurwitz matrices (Barmish 1994,
Rern et al. 1994, Saydy et al. 1988, 1990). A guardian
map transforms a matrix stability problem to a non-sin-
gularity problem of an associated matrix. The most
common guardian map is the one that involves the
Kronecker sum of a matrix with itself. The definitions
of the Kronecker product and Kronecker sum of two
matrices may be found in several standard references
(see Brewer (1978) for example).
The following mathematical results will be used in

this paper.

Lemma 1 (Zhou et al. 1996): Let A 2 R
n�n and B 2

R
m�m. Then mspecðA� BÞ ¼ f�i þ �j: �i 2 mspecðAÞ,

�j 2 mspecðBÞ, i ¼ 1, 2, . . . , n and j ¼ 1, 2, . . . ,mg.

Corollary 1: Given a matrix A 2 R
n�n, define

�A :¼ A� A. Assume that A is Hurwitz. Then

(i) �A is Hurwitz.
(ii) det �A 6¼ 0.

Proof: Follows directly from the definition of �A and
Lemma 1. œ

The following definition is taken from Barmish (1994).

Definition 1 (Guardian Map): Let S � R
n�n an open

set. The map �: Rn�n
! R is said to guard the set S

if �ðAÞ 6¼ 0 for all A 2 S and �ðAÞ ¼ 0 for all A 2 @S.
The map � is called a guardian map for S.

Remark 1: The Kronecker sum induces the guardian
map �1:R

n�n
! R,

�1ðAÞ :¼ detðA� AÞ, ð5Þ

which guards the set A of Hurwitz matrices (Barmish
1994).

2.2 Bialternate sum

For A,B 2 R
n�n with elements aij and bij, let the index

function ~m be defined by:

~mðn, i, jÞ :¼ ð j� 1Þnþ i� 1
2 jð jþ 1Þ: ð6Þ

Then, the bialternate product of A and B is the matrix
F ¼ A ? B of dimension 1

2 nðn� 1Þ � 1
2 nðn� 1Þ, with ele-

ments as follows (Jury 1974, Magnus 1988, Mustafa
and Davidson 1995)

f ~mðn, p, qÞ, ~mðn, r, sÞ :¼
1

2

apr aps
bqr bqs

���� ����þ bpr bps
aqr aqs

���� ����� �
,

where p, r ¼ 2, 3, . . . , n; q ¼ 1, 2, . . . , p� 1 and
s ¼ 1, 2, . . . , r� 1. From this definition it is clear that
A ? B ¼ B ? A. For example, if

A¼

a11 a12 a13

a21 a22 a23

a31 a32 a33

264
375 and B¼

b11 b12 b13

b21 b22 b23

b31 b32 b33

264
375, ð7Þ

then

The bialternate sum ~A of matrix A with itself is defined
as (Fuller 1968, Jury 1974, Mustafa and Davidson 1995)

~A ¼ A ? In þ In ? A ¼ 2A ? In: ð9Þ

If ~aij denotes the ijth element of ~A then, clearly,

~a ~mðn, p, qÞ, ~mðn, r, sÞ ¼
apr aps
�qr �qs

���� ����þ �pr �ps
aqr aqs

���� ����, ð10Þ

where �ij is the Kronecker delta
�
�ij ¼ 1, if i ¼ j,

�ij ¼ 0, if i 6¼ j
�
and p, r ¼ 2, 3, . . . , n; q ¼ 1, 2, . . . , p� 1

and s ¼ 1, 2, . . . , r� 1. Clearly, if A 2 R
n�n, then

~A 2 R
1
2nðn�1Þ�1

2nðn�1Þ. For example, using (10), we have

A1 ¼
a11 a12
a21 a22

� �
, ~A1 ¼ a11 þ a22 ð11Þ

and

A2 ¼

a11 a12 a13

a21 a22 a23

a31 a32 a33

264
375,

~A2 ¼

a11 þ a22 a23 �a13

a32 a11 þ a33 a12

�a31 a21 a22 þ a33

264
375: ð12Þ

A ? B ¼
1

2

a22b11 þ a11b22

�a12b21 � a21b12

� �
a11b23 þ a23b11

�a21b13 � a13b21

� �
a12b23 þ a23b12

�a22b13 � a13b22

� �
a11b32 þ a32b11

�a12b31 � a31b12

� �
a11b33 þ a33b11

�a13b31 � a31b13

� �
a12b33 þ a33b12

�a13b32 � a32b13

� �
a21b32 þ a32b21

�a22b31 � a31b22

� �
a21b33 þ a33b21

�a23b31 � a31b23

� �
a22b33 þ a33b22

�a23b32 � a32b23

� �

2666666664

3777777775
: ð8Þ
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From the definition of the bialternate sum of a matrix
with itself, it immediately follows that

gA0 þ �Ag ¼ ~A0 þ � ~Ag, ð13Þ

where A0,Ag 2 R
n�n and �2R.

LEMMA 2 (Jury 1974): Let A 2 R
n�n. Then mspecð ~AÞ ¼

f�iðAÞ þ �jðAÞ, i ¼ 2, 3, . . . , n, j ¼ 1, 2, . . . , i� 1g.

The next Corollary follows immediately from
Lemma 2.

Corollary 2: Let A 2 R
n�n, let ~A as in (9) and assume

that A is Hurwitz. Then

(i) ~A is Hurwitz.
(ii) det ~A 6¼ 0.

Remark 2: The determinant of the bialternate sum of
a matrix with itself cannot be used as a guardian map
of A. To see this, let a matrix A 2 R

n�n having only
one eigenvalue zero and all other eigenvalues in the
open left half complex plane. In this case, A 2 @A, but
det ~A 6¼ 0. However, the map

�2ðAÞ ¼ detA det ~A ð14Þ

is a guardian map which guards the setA. First, it is easy
to see that �2ðAÞ 6¼ 0 if A 2 A. Moreover, if A 2 @A,
some eigenvalues of the matrix A are on the j!-axis
and all the others are in the open left half plane of C.
Let F be the set of matrices in @A with at most one
eigenvalue at the origin

F : ¼
�
A 2 @A: �iðAÞ ¼ 0 and

�jðAÞ 6¼ 0 for all j 6¼ i, i, j 2 In

	
: ð15Þ

If A 2 F then detA ¼ 0 and if A 2 @A n F then
det ~A ¼ 0. In either case, �2ðAÞ ¼ 0. Hence, �2(A) is a
guardian map for the set A according to Definition 1.
Moreover, �2(A) is easier to compute than �1ðAÞ since
the dimension of ~A is 1

2 nðn� 1Þ � 1
2 nðn� 1Þ whereas

that of �A is n2 � n2.
The following definitions will be used in the sequel.

Definition 2: Given M 2 R
n�n, let ~�iðMÞ, i ¼ 1, . . . , p

denote the real non-zero eigenvalues of M, where
repeated eigenvalues are counted only once. If p¼ 0,
let ~�0ðMÞ ¼ 0. The open interval NðMÞ is defined as
follows:

NðMÞ :¼ �
1

max
i2I0

p

~�iðMÞ
, �

1

min
i2I0

p

~�iðMÞ

0B@
1CA, ð16Þ

where

�
1

max
i2I0

p

~�iðMÞ
¼ �1 if max

i2I 0
p

~�iðMÞ ¼ 0,

�
1

min
i2I0

p

~�iðMÞ
¼ þ1 if min

i2I0
p

~�iðMÞ ¼ 0: ð17Þ

The following Corollary is a direct consequence of
Definition 2.

Corollary 3: For any M 2 R
n�n,

(i) 0 2 N ðMÞ

(ii) detðIþ rMÞ 6¼ 0, for all r 2 N ðMÞ

Definition 3: Given M 2 R
n�n, let ~�iðMÞ, i ¼ 1, . . . , p

denote the real non-zero eigenvalues of M taking only
once occurrence of repeated eigenvalues. Let r0 ¼ �1,
rpþ1 ¼ þ1 and ri ¼ �1= ~�iðMÞ, i ¼ 1, 2, . . . , p. Define
the ordered set (after, perhaps, a relabeling of the
indices) BðMÞ :¼ fr0, r1, r2, . . . , rp, rpþ1g such that
ri < riþ1.

Remark 3: From the definition of BðMÞ, it follows
that, for any r 2 R, detðIþ rMÞ ¼ 0 if and only if
r 2 BðMÞ.

3. Maximal stability domain of single

parameter-dependent LTI systems

3.1 Maximum stability interval about the origin

Saydy et al. (1990) and Barmish (1994) derived a stabi-
lity condition for a family of n� n parameter-dependent
matrices given by Að�Þ ¼

Pm
i¼0 �

iAi. Their result tests
whether A(�) is robustly stable for all � 2 ½0, 1�. In
Rern et al. (1994) the authors construct an interval
which guarantees robust stability for single and multi-
parameter dependent LTI systems. However, this
interval is derived from sufficient conditions and hence
it is not the maximal robust stability interval. Fu and
Barmish (1988) presented a method to synthesize the
maximal stability interval containing the origin for
single parameter-dependent LTI systems. Next, we
re-state the theorem in Fu and Barmish (1988) but we
give an alternate proof that will provide an insight for
the extensions proposed in the subsequent sections.

Theorem 1: Given an open interval � � R and A0,
Ag 2 R

n�n, define �A0 :¼ A0 � A0 and �Ag :¼ Ag � Ag.
Then, the following two statements are equivalent

(i) 0 2 � and Að�Þ :¼ A0 þ �Ag is Hurwitz for all
�2�.

(ii) A0 is Hurwitz and 0 2 � � Nð �A0
�1 �AgÞ:

Computing for LTI systems 1049



Proof: First note that if Að�Þ ¼ A0 þ �Ag we can write

�Að�Þ :¼Að�Þ � Að�Þ ¼ Að�Þ � In þ In � Að�Þ

¼ ðA0 � In þ In � A0Þ þ �ðAg � In þ In � AgÞ

¼ �A0 þ � �Ag:

We can now proceed as follows:

ðiÞ ) ðiiÞ: If A(�) is Hurwitz for all �2� and 0 2 �, then
A0 is Hurwitz. Then from Corollary 1 it follows that
det �A0 6¼ 0 and �A�1

0 exists. Furthermore, since A(�) is
Hurwitz for all �2� then also from Corollary 1,
det �Að�Þ 6¼ 0 for all �2�. Therefore,

0 6¼ detð �A0 þ � �AgÞ ¼ det½ �A0ðIþ � �A�1
0

�AgÞ�

¼ det �A0 detðIþ � �A�1
0

�AgÞ 8� 2 �:

Hence 0 6¼ detðIþ � �A�1
0

�AgÞ for all �2�. This, in turn,
implies that

��ið �A
�1
0

�AgÞ 6¼ �1, 8i 2 I n2 , 8� 2 �: ð18Þ

If �A�1
0

�Ag has no real eigenvalues or if the only real
eigenvalues lie at the origin then Nð �A0

�1 �AgÞ ¼

ð�1,1Þ and trivially � � Nð �A0
�1 �AgÞ. If �A�1

0
�Ag has

some non-zero real eigenvalues, then the largest interval
which includes �¼ 0 such that ��ið �A

�1
0

�AgÞ 6¼ �1,
i ¼ 1, 2, . . . , n2 is given by the definition of Nð �A0

�1 �AgÞ.
Hence from (18), � � Nð �A0

�1 �AgÞ.

ðiiÞ ) ðiÞ: The proof follows by contradiction. Assume
A0 is Hurwitz and 0 2 � � Nð �A0

�1 �AgÞ but suppose
A(�) is not Hurwitz for all �2�. Then, there exists a
�1 2 � such that Re½�kðAð�1Þ� � 0 for some k 2 I n. If
�1 ¼ 0, the proof is complete since A0 is assumed
Hurwitz. Consequently, and without loss of generality,
we may assume that �1 > 0 (the case for �1 < 0 being
identical). Because Re½�iðA0Þ� < 0 for every i 2 In and
the eigenvalues of A(�) change continuously with �
(see Horn and Johnson (1991), Appendix D), there
exists �2 2 ð0, �1� � � such that Re½�kðAð�2Þ� ¼ 0 for
some k 2 I n. There are two possibilities:
First, �kðAð�2ÞÞ ¼ 0. Then by Lemma 1, there

exists m 2 I n2 such that �mð �Að�2ÞÞ ¼ �kðAð�2ÞÞ þ
�kðAð�2ÞÞ ¼ 0. Second, �kðAð�2ÞÞ ¼ j! and ! 6¼ 0. Since
Að�2Þ 2 R

n�n, there exists k0 2 In such that
�k0 ðAð�2ÞÞ ¼ �j! and hence by Lemma 1, there exists
m 2 In2 such that �mð �Að�2ÞÞ ¼ �kðAð�2ÞÞ þ
�k0 ðAð�2ÞÞ ¼ 0.
Consequently, in either case, there exists m 2 In2 such

that �mð �Að�2ÞÞ ¼ 0 with �2 2 � and det �Að�2Þ ¼ 0.
However, since A0 is Hurwitz, �A�1

0 exists (by
Corollary 1) and we can write:

0 ¼ det �Að�2Þ ¼ detð �A0 þ �2 �AgÞ

¼ det½ �A0ðIþ �2 �A�1
0

�AgÞ�

¼ det �A0 detðIþ �2 �A�1
0

�AgÞ:

Since det �A0 6¼ 0 (A0 is Hurwitz), it follows necessarily
that detðIþ �2 �A�1

0
�AgÞ ¼ 0. This contradicts the fact

that �2 2 � and � � Nð �A0
�1 �AgÞ (see Corollary 3),

thus completing the proof. œ

Corollary 4: Given A0,Ag 2 R
n�n such that A0 is

Hurwitz, the interval Nð �A0
�1 �AgÞ is the largest continu-

ous interval of R containing the origin for which the
matrix A0 þ �Ag is Hurwitz.

In the next section, Theorem 1 is extended so as to
reduce the computations involved through the use of
the bialternate sum of matrices.

3.2 Improved stability condition for single-parameter
dependent LTI systems

The application of the stability condition of Theorem 1
is limited owing to the large number of computations
required to calculate the inverse of the n2 � n2 matrix
�A0, especially when the system is of high order. This
limitation can be overcome somewhat by using the
guardian map of Remark 2, which involves the determi-
nant of the bialternate sum of a matrix with itself. The
resulting improved stability condition requires the calcu-
lation of the inverses of an n� n and an 1

2 nðn� 1Þ�
1
2 nðn� 1Þ matrix. Using the map induced by the
bialternate sum, one can easily obtain the following
robust stability condition, which can also be used to
synthesize the maximal continuous robust stability
interval that includes the origin.

Theorem 2: Given an open interval � in R, and
A0, Ag 2 R

n�n, define ~A0 :¼ 2A0 ? I and ~Ag :¼ 2Ag ? I.
Then, the following two statements are equivalent

(i) 0 2 � and Að�Þ :¼ A0 þ �Ag is Hurwitz for all �2�
(ii) A0 is Hurwitz and 0 2 � � NðA�1

0 AgÞ \ N ð ~A�1
0

~AgÞ:

Proof: First, recall from the definition of the bialter-
nate sum of the matrix Að�Þ, that

~Að�Þ :¼2Að�Þ ? I ¼ ð2A0 ? IÞ þ �ð2Ag ? IÞ

¼ ~A0 þ � ~Ag: ð19Þ

We can then proceed as follows.

ðiÞ ) ðiiÞ: If A(�) is Hurwitz for all �2� and 0 2 �, then
A0 is Hurwitz. Then, from Corollary 2, det ~A0 6¼ 0 and
~A�1
0 exists. Furthermore, since A(�) is Hurwitz for all

�2� and, using Corollary 2 again, det ~Að�Þ 6¼ 0 for all
�2�. Therefore,

0 6¼ detð ~A0 þ � ~AgÞ ¼ det½ ~A0ðIþ � ~A�1
0

~AgÞ�

¼ det ~A0detðIþ � ~A�1
0

~AgÞ 8� 2 �:
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Hence, detðIþ � ~A�1
0

~AgÞ 6¼ 0 for all �2�. It follows that

��ið ~A
�1
0

~AgÞ 6¼ �1 8i 2 Ið1=2Þnðn�1Þ, 8� 2 �: ð20Þ

If ~A�1
0

~Ag has no real eigenvalues or the only real eigen-
values lie at the origin then Nð ~A0

�1 ~AgÞ ¼ ð�1,1Þ and,
trivially, � � Nð ~A�1

0
~AgÞ. If ~A�1

0
~Ag has some non-zero

real eigenvalues, then the largest continuous interval
which includes �¼ 0 such that ��ið ~A

�1
0

~AgÞ 6¼ �1 for all
i ¼ 1, 2, . . . , 1

2 nðn� 1Þ is given by Nð ~A�1
0

~AgÞ. Hence
from (20), � � Nð ~A0

�1 ~AgÞ. Furthermore, since Að�Þ ¼
A0 þ �Ag is Hurwitz for all �2�, detðA0 þ �AgÞ 6¼ 0.
This implies that detðIþ �A�1

0 AgÞ 6¼ 0 for all � 2 �,
and hence the largest continuous interval which includes
� ¼ 0 for which ��iðA

�1
0 AgÞ 6¼ �1 for all i ¼ 1, 2, . . . , n

is given by NðA�1
0 AgÞ. Hence � � NðA�1

0 AgÞ and thus
finally � � NðA�1

0 AgÞ \ N ð ~A�1
0

~AgÞ.

ðiiÞ ) ðiÞ: The proof follows by contradiction. Assume
A0 is Hurwitz and 0 2 � � NðA�1

0 AgÞ \ N ð ~A�1
0

~AgÞ but
suppose A(�) is not Hurwitz for all �2�. Then, there
exists a �1 2 � such that Re½�iðAð�1Þ� � 0 for some
i 2 In. If �1 ¼ 0, the proof is complete since A0 is
assumed Hurwitz. Consequently, and without loss of
generality, let us assume that �1 > 0 (the case �1 < 0
being identical). Since Re½�iðA0Þ� < 0 for all i 2 In and
the eigenvalues of A(�) change continuously with �
(see Horn and Johnson (1991), Appendix D), there
exists �2 2 ð0, �1� � � such that Re½�kðAð�2Þ� ¼ 0 for
some k 2 I n. There are two possibilities:
First, �kðAð�2ÞÞ ¼ 0. This implies that detðA0 þ

�2AgÞ ¼ 0 which, in turn, implies that detðIþ
�2A

�1
0 AgÞ ¼ 0. This cannot be satisfied when �2 2 �

since � � NðA�1
0 AgÞ, hence we get a contradiction.

Second, �kðAð�2ÞÞ ¼ j! and ! 6¼ 0. Since Að�2Þ 2 R
n�n,

there exists k0 2 In such that �k0 ðAð�2ÞÞ ¼ �j! and
hence by Lemma 2, there exists m 2 I 1

2nðn�1Þ such that
�mð ~Að�2ÞÞ ¼ �kðAð�2ÞÞ þ �k0 ðAð�2ÞÞ ¼ 0. Consequently,
det ~Að�2Þ ¼ 0 with �2 2 �. However, since A0 is
Hurwitz, by Corollary 2, ~A�1

0 exists and we can write

0 ¼ det ~Að�2Þ ¼ detð ~A0 þ �2 ~AgÞ

¼ det ~A0 detðIþ �2 ~A�1
0

~AgÞ for some �2 2 �:

This implies that �2�ið ~A
�1
0

~AgÞ ¼ �1 for some
i 2 Ið1=2Þnðn�1Þ. This condition cannot be satisfied
when �2 2 � and � � Nð ~A0

�1 ~AgÞ, thus completing the
proof. œ

Corollary 5: Let A0,Ag 2 R
n�n with A0 Hurwitz.

Define ~A0 :¼ 2A0 ? I and ~Ag :¼ 2Ag ? I. Then
NðA�1

0 AgÞ \ N ð ~A�1
0

~AgÞ is the largest continuous interval
of R containing the origin for which the matrix
A0 þ �Ag is Hurwitz.

The following result follows immediately from
Corollary 4 and Corollary 5.

Corollary 6: Let A0,Ag 2 R
n�n with A0 Hurwitz. Then,

Nð �A�1
0

�AgÞ ¼ N ðA�1
0 AgÞ \ N ð ~A�1

0
~AgÞ: ð21Þ

4. Complete stability domain of single

parameter-dependent LTI systems

4.1 Stability condition using the kronecker sum

Theorems 1 and 2 give the maximal continuous stability
interval in R which includes the origin. These two
theorems, nonetheless, provide only sufficient conditions
for a single-parameter dependent matrix to be Hurwitz,
because in many cases the maximal stability interval
around the origin is not the complete stability domain.
Additionally, the requirement that A0 is Hurwitz limits
the applicability of Theorems 1 and 2. In this section,
we provide a methodology for computing the complete
stability domain without requiring A0 to be Hurwitz.

Theorem 3: Let A0,Ag 2 R
n�n with detðA0 � A0Þ 6¼ 0.

If there exists a stability domain � � R such that
A0 þ �Ag is Hurwitz for all �2�, then this domain �
is an open interval or a union of disjoint open intervals
of R and the number of such intervals is finite.
Furthermore, this number is no larger than ðn2 þ 1Þ.

Proof: Since the eigenvalues �j
�
A0 þ �Ag

�
,

j ¼ 1, 2, . . . , n vary continuously with the parameter �,
if A0 þ �iAg is Hurwitz for some �i 2 �, then there
exists �>0 such that A0 þ �Ag is Hurwitz for all
� 2 ð�i � �, �i þ �Þ. Therefore, if � exists, it must be an
open interval or a disjoined union of open intervals.
Let � be expressed as � ¼

Sm
i¼1ð�i, ��iÞ (with the

possibility that ��1¼�1 and ��m ¼ þ1), where
�
i
< ��i and m is the (perhaps infinite) number of the

disjoint open intervals composing �. Since � is the
entire stability region of �, it follows that for each
�
i
2 R, i 2 Im, Re½�kðA0 þ �

i
AgÞ� ¼ 0 for some k 2 In.

Hence, by Lemma 2, detð �A0 þ �
i
�AgÞ ¼ 0. Since

detðA0 � A0Þ ¼ det �A0 6¼ 0, �A0
�1

exists. Thus,

detðIþ �
i
�A0

�1 �AgÞ ¼ 0, 8 i 2 Im

ðexcluding i ¼ 1 if �
1
¼ �1Þ: ð22Þ

Since this equation has a finite number of solutions,
m < 1. By Definition 3 and equation (22), it follows
that �

i
2 Bð �A0

�1 �AgÞ, i 2 Im. Similarly, one can show
that ��i 2 Bð �A0

�1 �AgÞ, i 2 Im. Therefore,

m � B
#
ð �A0

�1 �AgÞ � 1: ð23Þ

From the definition of the set Bð �A0
�1 �AgÞ it is clear that

B
#
ð �A0

�1 �AgÞ � n2 þ 2. Using (23) it follows that
m � n2 þ 1. œ
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Theorem 4: Let A0,Ag 2 R
n�n with detðA0 � A0Þ 6¼ 0.

Define �A0 :¼ A0 � A0 and �Ag :¼ Ag � Ag and let
p ¼ B

#
ð �A0

�1 �AgÞ � 2. Suppose there exists a real
number �i 2

�
ri, riþ1

�
, where ri, riþ1 are consecutive mem-

bers of Bð �A0
�1 �AgÞ, i 2 I0

p such that A0 þ �iAg is Hurwitz.
Then A0 þ �Ag is Hurwitz for all � 2

�
ri, riþ1

�
.

Proof: The map �1: R
n�n

! R given in (5) is a guar-
dian map for the set A of stable n� n matrices (see
Barmish (1994), page 303). Let Að�Þ :¼ A0 þ �Ag.
According to the definition of Bð �A0

�1 �AgÞ, if ri, riþ1 are
consecutive members of Bð �A0

�1 �AgÞ, such that
ri, riþ1 6¼ 	1, then �1ðAðriÞÞ ¼ 0 and �1ðAðriþ1ÞÞ ¼ 0.
Furthermore, �1ðAð�ÞÞ 6¼ 0 for all ri < � < riþ1. Let
now some �i 2

�
ri, riþ1

�
such that A0 þ �iAg is

Hurwitz. Since �1 is a guardian map, it follows that
A(�) is Hurwitz for all � 2 ðri, riþ1Þ.

Theorem 5: Given A0,Ag 2 R
n�n with detðA0 � A0Þ 6¼

0, let �A0 :¼ A0 � A0, �Ag :¼ Ag � Ag and let
p ¼ B

#
ð �A0

�1 �AgÞ � 2. Define the open set

�� :¼
[
i2I

ðri, riþ1Þ, ð24Þ

where ri, riþ1 are consecutive members of Bð �A0
�1 �AgÞ and

the index set I is given by

I :¼
�
i 2 I 0

p : A0 þ �iAg is Hurwitz for some �i 2 ðri, riþ1Þ,

ri, riþ1 consecutive members of Bð �A0
�1 �AgÞ

	
: ð25Þ

Then, A0 þ �Ag is Hurwitz if and only if � 2 ��.

Proof: To prove sufficiency, choose � 2 �� and let
� 2 ðri, riþ1Þ for some i 2 I . From Theorem 4 and the
fact that A0 þ �iAg is Hurwitz for �i 2 ðri, riþ1Þ, it
follows that A0 þ �Ag is Hurwitz. To prove necessity,
assume that A0 þ �Ag is Hurwitz. It follows that
� =2Bð �A0

�1 �AgÞ. Therefore, there exists i 2 I0
p such that

ri < � < riþ1. Since A0 þ �Ag is Hurwitz, it follows
that i 2 I . Hence, � 2 ðri, riþ1Þ � ��. œ

Remark 4: Theorem 5 can be used to find the exact
stability domain �� for a parameter-dependent matrix
Að�Þ ¼ A0 þ �Ag where �2� and A0, Ag 2 R

n�n. The
procedure involves four steps.

1. Calculate �A0, �Ag and the eigenvalues of the matrix
�A0

�1 �Ag.
2. Choose the real non-zero eigenvalues (ignoring

repetitions) of the matrix �A0
�1 �Ag and construct the

set Bð �A0
�1 �AgÞ according to Definition 3.

3. Check whether the matrix A0 þ �iAg is Hurwitz for
some �i 2 ðri, riþ1Þ, i 2 I 0

p, p ¼ B
#
ð �A0

�1 �AgÞ � 2, and
construct the index set I .

4. Let �� as in (24).

4.2 Stability condition using the bialternate sum

The need for intensive numerical calculations in order to

calculate the inverse and the eigenvalues of the n2 � n2

matrix �A0 ¼ detðA0 � A0Þ (Step 1 in the algorithm of

Remark 4) limits the applicability of Theorem 5. This

limitation can be overcome somewhat using a map

induced by the bialternate sum of a matrix with itself

(see (14) and Remark 2).

Theorem 6: Let A0,Ag 2 R
n�n with detðA0 � A0Þ 6¼ 0.

If there exists a stability domain � � R such that

A0 þ �Ag is Hurwitz for all �2�, then this domain �

is an open interval or a union of disjointed open

intervals of R, and the number of such intervals is

finite. Furthermore, this number is no larger than
1
2 ðn

2 þ nþ 2Þ.

Proof: The fact that the stability domain is an open

interval or a union of disjoined open intervals follows

from the proof of Theorem 3. � can therefore be

expressed, as explained before, as � ¼
Sm

i¼1ð�i, ��iÞ,
where �

i
< ��i and m is the number of the disjointed

open intervals composing �. Since � is the entire stabi-

lity region of �, it follows that for every �
i
2 R, i 2 Im,

Re½�kðA0 þ �
i
AgÞ� ¼ 0 for some k 2 I n. Next,

notice that the condition detðA0 � A0Þ 6¼ 0 implies

that detA0 6¼ 0 and det ~A0 6¼ 0. Following now an

argument similar to the one in the proof of

Theorem 2, one can show that �
i
2 BðA�1

0 AgÞ[

Bð ~A�1
0

~AgÞ for all i 2 Im. Similarly, one can show that

for every ��i 2 R, i 2 Im, Re½�kðA0 þ ��iAgÞ� ¼ 0 for

some k 2 In. Then ��i 2 BðA�1
0 AgÞ [ Bð ~A�1

0
~AgÞ for all

i 2 Im. Therefore,

m � ðBðA�1
0 AgÞ [ Bð ~A�1

0
~AgÞÞ

#
� 1: ð26Þ

From the definition of the sets BðA�1
0 AgÞ and Bð ~A�1

0
~AgÞ,

it is clear that B
#
ðA�1

0 AgÞ � nþ 2 and B
#
ð ~A�1

0
~AgÞ �

1
2 nðn� 1Þ þ 2. Using (26) and the fact that f�1, þ1g

belongs to both sets, it follows that m � 1
2 ðn

2 þ nþ 2Þ.

Remark 5: Since 1
2 ðn

2 þ nþ 2Þ � ðn2 þ 1Þ for all n � 1,

Theorem 6 gives a better estimate for the number of

stability intervals than Theorem 3.

Theorem 7: Given A0,Ag 2 R
n�n with detðA0 � A0Þ 6¼ 0

let ~A0 :¼ 2A0 ? I and ~Ag :¼ 2Ag ? I. Let p ¼ ðB�

ð ~A0
�1 ~AgÞ �[BðA0

�1AgÞÞ
#
� 2. Suppose there exists a real

number �i 2 ðri, riþ1Þ, where ri, riþ1 are consecutive mem-

bers of Bð ~A0
�1 ~AgÞ �[BðA0

�1AgÞ, i 2 I 0
p, such that

A0 þ �iAg is Hurwitz. Then A0 þ �Ag is Hurwitz for all

� 2 ðri, riþ1Þ.

Proof : The map �2: R
n�n

! R given in (14) is a

guardian map for the set A of stable n� n matrices
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(see Remark 2). Let Að�Þ :¼ A0 þ �Ag. Then,

�2ðAð�ÞÞ ¼ detAð�Þdet ~Að�Þ

¼ detðA0 þ �AgÞdetð ~A0 þ � ~AgÞ

¼ detA0det ~A0detðIþ �A�1
0 AgÞdetðIþ � ~A�1

0
~AgÞ:

According to the definition of BðA�1
0 AgÞ and Bð ~A�1

0
~AgÞ,

if ri, riþ1 2 BðA�1
0 AgÞ �[Bð ~A0

�1 ~AgÞ and ri, riþ1 6¼ 	1,
�2ðAðriÞÞ ¼ 0 and �2ðAðriþ1ÞÞ ¼ 0. Furthermore,
�2ðAð�ÞÞ 6¼ 0 if ri < � < riþ1. Let now some
�i 2

�
ri, riþ1

�
be such that A0 þ �iAg is Hurwitz. Since

�2 is a guardian map, it follows that A(�) is Hurwitz
for all � 2 ðri, riþ1Þ. œ

Theorem 8: Given A0,Ag 2 R
n�n with detðA0�

A0Þ 6¼ 0, let ~A0 :¼ 2A0 ? I, ~Ag :¼ 2Ag ? I and p ¼

ðBðA�1
0 AgÞ �[Bð ~A0

�1 ~AgÞÞ
#
� 2. Define the open set

�� :¼
[
i2I

ðri, riþ1Þ, ð27Þ

where ri, riþ1 are consecutive members of
BðA�1

0 AgÞ �[Bð ~A0
�1 ~AgÞ and the index set I is given by

I :¼
�
i 2 I 0

p: A0 þ �iAg is Hurwitz for some �i 2 ðri, riþ1Þ,

ri, riþ1 consecutive members of

BðA�1
0 AgÞ �[Bð ~A0

�1 ~AgÞ
	
: ð28Þ

Then, A0 þ �Ag is Hurwitz if and only if � 2 ��.

Proof: To prove sufficiency, choose � 2 �� and let
� 2 ðri, riþ1Þ for some i 2 I . From Theorem 7 and the
fact that A0 þ �iAg is Hurwitz for �i 2 ðri, riþ1Þ, it
follows that A0 þ �Ag is Hurwitz. To prove necessity,
assume that A0 þ �Ag is Hurwitz. Since �2ðAð�ÞÞ ¼
detA0det ~A0detðIþ �A�1

0 AgÞdetðIþ � ~A�1
0

~AgÞ 6¼ 0, it fol-
lows that � =2BðA�1

0 AgÞ �[Bð ~A0
�1 ~AgÞ. Therefore there

must exist i 2 I0
p such that ri < � < riþ1 with ri, riþ1

being consecutive members of BðA�1
0 AgÞ �[Bð ~A0

�1 ~AgÞ.
Since A0 þ �Ag is Hurwitz, it follows that i 2 I and
hence � 2 ðri, riþ1Þ � ��.

Remark 6: The computational bottleneck in
Theorem 7 is due to the computation of the inverse
and the eigenvalues of the matrix ~A0 of dimension
1
2 nðn� 1Þ � 1

2 nðn� 1Þ. On the other hand, Theorem 5
requires the inverse and the eigenvalues of the n2 � n2

matrix �A0. Recall that the number of
computations required for calculating the inverse of an
n� n matrix is of the order Oðn3Þ, in general, and of
order Oðnlog 7= log 2Þ ¼ Oðn2:81Þ at best, using Strassen’s
method (Strassen, 1969, Bailey et al. 1990, Dumitrescu,
1998). Calculation of the eigenvalues of an n� n
matrix, using the QR algorithm (Golub and Van Loan
1989, Geist and Davis 1990) is of complexity Oðn3Þ.

Therefore, the complexity of Theorem 5 is of order
Oðn2

2:81
Þ þOðn2

2:81
Þ þOðn2

3
Þ ¼ OðC1n

6Þ. By the same
token, the complexity of Theorem 5 is of order
OðC2n

6Þ. The gains from the use of Theorem 7 in lieu
of Theorem 5 is hidden in the constant C2. One can
easily show that C1=C2 
 8=1.

Alternatively, one can compute the sets mspecð �A�1
0

�AgÞ

or mspecð ~A�1
0

~AgÞ in Theorems 5 and 7, while avoiding
the computation of the inverse of the matrices �A0 or
~A0 by solving a generalized eigenvalue problem for the
pair of matrices ð �A0, �AgÞ or ð ~A0, ~AgÞ, respectively. The
solution of the generalized eigenvalue problem for a
pair of matrices (A,B) of dimension n� n using the
QZ algorithm, for example (including the initial reduc-
tion of the matrix A in Hessenberg form), is of order
Oðn3Þ (Moller and Stewart 1973), which is of the same
order as before. The benefits from using the generalized
eigenvalue problem formulation stems from the fact that
its solution is more numerically stable than computing
the inverse of a matrix, especially when the matrix
dimensions are large.

5. Generalized stability condition for multi-parameter

dependent LTI systems

In this section, the robust stability condition for the
following multi-parameter dependent LTI system will
be studied

_x ¼ A0 þ
Xk
i¼1

�iAg, i

 !
x: ð29Þ

Rern et al. (1994) give a stability condition for a system
of the form (29), however that condition is only suffi-
cient. Saydy et al. (1988) used a semi-guardian map
(A map � from the set of n� n real Hurwitz matrices
A onto R is a semi-guardian map if it is continuous,
not identically zero and A 2 @A ) �ðAÞ ¼ 0Þ to investi-
gate robust stability for the following two-parameter
quadratically-dependent matrix over the domain
ðr1, r2Þ 2 ½0, 1� � ½0, 1�

Að�1, �2Þ ¼
Xi1þi2¼m

i1, i2¼0

�i11 �
i2
2Ai1, i2 : ð30Þ

The stability test in (Saydy et al. 1988) requires the para-
meter domain to be known a priori. Consequently,
the test checks whether the matrix is Hurwitz for all
values of the parameters in a given domain. In this
section, we extend the results of x 4.2 to synthesize the
entire stability region for systems of the form (29).
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Lemma 3: Given the vector ð�1, �2, . . . , �kÞ
T
2 R

k,
k � 2, there exists a real number r and k� 1 scalars
�i 2 ½0,�Þ, i ¼ 2, . . . , k such that

ð�1, �2, . . . , �kÞ
T
¼ rvð�Þ, ð31Þ

where � :¼ ð�2, . . . , �kÞ
T
2 ½0,�Þk�1 and

vð�Þ :¼ ðcos �2, sin �2 cos �3, sin �2 sin �3 cos �4, . . . ,

sin �2 sin �3 . . . sin �k�1 cos �k,

sin �2 sin �3 � � � sin �kÞ
T
2 ½�1, þ 1�k, ð32Þ

Proof: The proof follows by induction.

1. Let k¼ 2. Define

r ¼ r2 ¼ sgnð�2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�21 þ �22

q
and �2 ¼ cos�1 �1

r2

� �
2 ½0,�Þ:

ð33Þ

Note that sin �2 ¼ �2=r2 � 0. Let vð�Þ ¼ ðcos �2,
sin �2Þ

T. It follows that rvð�Þ ¼ ð�1, �2Þ as required.
2. Suppose for k>2, we have that

ð�2,�3, . . . ,�kþ1Þ ¼ rk
�
cos �k2 , sin �

k
2 cos �

k
3 , . . . ,

sin �k2 sin �
k
3 . . . sin �

k
k�1 cos �

k
k,

sin �k2 sin �
k
3 . . . sin �

k
k

�
¼ rkvð�

kÞ
T

ð34Þ

where �k :¼ ð�k2 , �
k
3 , . . . , �

k
kÞ 2 ½0,�Þk�1.

3. For kþ 1, we have that

ð�1, �2, . . . , �k, �kþ1Þ ¼ �1, ð�2, . . . , �k, �kþ1Þð Þ

¼ �1, rkvð�
kÞ

T
� �

: ð35Þ

Let rkþ1 ¼ sgnðrkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�21 þ r2k

q
and �kþ1

2 ¼

cos�1 �1=rkþ1ð Þ 2 ½0,�Þ. Note that sin �kþ1
2 ¼

rk=rkþ1 � 0. It follows that

ð�1,�2, . . . ,�k,�kþ1Þ ¼ rkþ1 cos �kþ1
2 , sin �kþ1

2 vð�kÞT
� �

¼ rkþ1

�
cos �kþ1

2 , sin �kþ1
2 cos �k2 , . . . ,

sin �kþ1
2 sin �k2, . . . , sin �

k
k�1 cos �

k
k,

sin �kþ1
2 sin �k2, . . . , sin �

k
k

�
:

Letting now �kþ1
iþ1 ¼ �ki , i ¼ 2, 3, . . . , k, the proof is

complete. œ

We now use the stability condition of Theorem 5, to
obtain the following stability condition for the LTIPD
system in (29).

Theorem 9: Given A0,Ag, i 2 R
n�n, i ¼ 1, . . . , k with

detðA0 � A0Þ 6¼ 0, define �A0 :¼ A0 � A0 and let

ð�1, �2, . . . , �kÞ
T
¼ rvð�Þ as in Lemma 3. Let p ¼

B
#
ð �A�1

0
�Agð�ÞÞ � 2 where �Agð�Þ :¼ Agð�Þ � Agð�Þ,

Agð�Þ :¼
Pk

i¼1 Ag, ivið�Þ and við�Þ are the components of
vector v(�). Then define the following open set:

��ð�Þ ¼
[

i2Ið�Þ

ðri, riþ1Þ, ð36Þ

where ri, riþ1 are consecutive members of Bð �A0
�1 �Agð�ÞÞ

and the index set Ið�Þ is given by

Ið�Þ ¼
�
i 2 I0

p: A0 þ r0iAgð�Þ is Hurwitz

for some r0i 2 ðri, riþ1Þ,

ri, riþ1 consecutive members of Bð �A0
�1 �Agð�ÞÞ

	
:

Furthermore, let

�0
� :¼

[
�2½0,�Þk�1

yð�Þ 2 R
k: yð�Þ ¼ rvð�Þ, r 2 ��ð�Þ

� 	
: ð37Þ

Then A0 þ
Pk

i¼1 �iAg, i is Hurwitz if and only if
ð�1, . . . , �kÞ

T
2 �0

�.

Proof: Applying Lemma 3, the vector ð�1, . . . , �kÞ
T
2

R
k can be expressed as ð�1, . . . , �kÞ

T
¼ r ðv1ð�Þ, . . . ,

vkð�ÞÞ
T. The system matrix in equation (29) can then

be rewritten as

A0 þ
Xk
i

�iAg, i ¼ A0 þ r
Xk
i¼1

Ag, ivið�Þ ¼ A0 þ rAgð�Þ:

ð38Þ

When the angle vector � 2 ½0,�Þk�1 is given, the system
matrix in (38) is a single-parameter matrix which
dependents on r 2 R. Applying Theorem 5, the complete
stability domain for r in the direction � can be calculated
as in (36). The set defined by (37) is the union of the
exact stability domains for the parameter r for each
� 2 ½0,�Þk�1. Therefore �0

� is the exact stability domain
for ð�1, �2, . . . , �kÞ

T
2 R

k. œ

In a similar manner, the entire stability domain using the
guardian map induced by the bialternate sum for multi-
parameter dependent systems is given below.

Theorem 10: Given A0,Ag, i 2 R
n�n, i ¼ 1, . . . , k with

detðA0 � A0Þ 6¼ 0, define ~A0 :¼ 2A0 ? I and let
ð�1, �2, . . . , �kÞ

T
¼ rvð�Þ as in Lemma 3. Let p ¼�

BðA�1
0 Agð�ÞÞ �[Bð ~A

�1
0

~Agð�ÞÞ
�#

� 2 where ~Agð�Þ :¼
2Agð�Þ ? In, Agð�Þ :¼

Pk
i¼1 Ag, ivið�Þ and við�Þ are the

components of vector v(�). Then define the following
open set:

��ð�Þ ¼
[
i2Ið�Þ

ðri, riþ1Þ, ð39Þ
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where ri, riþ1 are consecutive members of
BðA�1

0 Agð�ÞÞ �[Bð ~A0
�1 ~Agð�ÞÞ and the index set Ið�Þ is

given by

Ið�Þ ¼
�
i 2 I 0

p: A0 þ r0iAgð�Þ is Hurwitz for

some r0i 2 ðri, riþ1Þ,

ri, riþ1 consecutive members of

BðA�1
0 Agð�ÞÞ �[Bð ~A0

�1 ~Agð�ÞÞ
	
:

Furthermore, let

�0
� :¼

[
�2½0,�Þk�1

yð�Þ 2 R
k: yð�Þ ¼ rvð�Þ, r 2 ��ð�Þ

� 	
: ð40Þ

Then A0 þ
Pk

i¼1 �iAg, i is Hurwitz if and only if
ð�1, . . . , �kÞ

T
2 �0

�.

Proof: The proof is similar to the one of Theorem 7
and thus, it is omitted. œ

Theorems 9 and 10 give the complete stability domain
for multi parameter-dependent matrices. Moreover,
these two results do not require that the matrix A0 is
Hurwitz. The drawback of the approach is that for
k > 1 the calculation of �0

� requires gridding of the
space ½0,�Þk�1, implying exponential dependence on
the problem data. However, this is probably the best
we can expect, as it is well known that the problem of
determining the exact domain of stability of a multi-
parameter LTI system is NP-hard (Blondel and
Tsitsiklis 1995, Peaucelle and Arzelier 2001). Given the
inherent computational difficulty of the problem
(in the multi-variable case) in x 7 we will summarize
some observations concerning the computational
complexity of the proposed algorithms.

6. Numerical examples

6.1 Single-parameter case

In the following examples, the stability domain for the
matrix Að�Þ ¼ A0 þ �Ag, with A0, Ag 2 R

n�n, �2�,
will be calculated by means of Theorems 1 and 2.

Example 1: Consider the system matrix Að�Þ ¼
A0 þ �Ag with

A0 ¼
�1 0
0 �1

� �
, Ag ¼

0 1
0 0

� �
:

The eigenvalues of A(�) are f�1, � 1g for all �2R.
Hence, the largest stability domain for this example is
ð�1, þ1Þ.

From Theorem 1, we calculate

�A�1
0

�Ag ¼

0 �0:5 �0:5 0

0 0 0 �0:5

0 0 0 �0:5

0 0 0 0

26664
37775,

and mspecð �A�1
0

�AgÞ ¼ f0, 0, 0, 0g. The largest continuous
interval of � which includes zero and guarantees stability
for the matrix A(�) is ð�1, þ1Þ. This agrees with the
eigenvalue analysis. Using Theorem 2, we have
~A0 ¼ �2, ~Ag ¼ 0, ~A�1

0
~Ag ¼ 0, and

Nð ~A�1
0

~AgÞ ¼ N ð0Þ ¼ ð�1, þ1Þ

N ðA�1
0 AgÞ ¼ N

0 �1

0 0

� �� �
¼ ð�1, þ1Þ:

The stability domain is Nð ~A�1
0

~AgÞ \ N ðA�1
0 AgÞ ¼

ð�1, þ1Þ, which coincides with the result from
Theorem 1 and the direct eigenvalue analysis.

Example 2: Consider the system matrix Að�Þ ¼
A0 þ �Ag, where

A0 ¼
�2 0
0 �2

� �
, Ag ¼

0 1
�1 0

� �
:

Since the eigenvalues of matrix A(�) are f�2	 �ig, the
largest stability interval of � is ð�1, þ1Þ. Using
Theorem 1, one obtains

�A�1
0

�Ag ¼

0 �0:25 �0:25 0

0:25 0 0 �0:25

0:25 0 0 �0:25

0 0:25 0:25 0

26664
37775,

and mspecð �A�1
0

�AgÞ ¼ f0, 0, � 0:5i, 0:5ig. The largest
continuous interval which includes 0 and guarantees
stability for A(�) is ð�1, þ1Þ. Applying Theorem 1,
one obtains that ~A0 ¼ �4, ~Ag ¼ 0, ~A�1

0
~Ag ¼ 0 and

Nð ~A�1
0

~AgÞ ¼ N ð0Þ ¼ ð�1, þ1Þ

N ðA�1
0 AgÞ ¼ N

� 1
2 0

0 � 1
2

" #
0 1

�1 0

" # !

¼ N
0 � 1

2

1
2 0

" # !
¼ ð�1, þ1Þ:

The stability domain is Nð ~A�1
0

~AgÞ \ N ðA�1
0 AgÞ ¼

ð�1, þ1Þ, which coincides with the result from
Theorem 1 and the direct eigenvalue analysis.
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Example 3: Consider the matrix Að�Þ ¼ A0 þ �Ag,
where

A0 ¼
�2 0
0 �1

� �
, Ag ¼

�1 0
0 �1

� �
:

Direct eigenvalue analysis of A(�) shows that
�1 ¼ �2� � and �2 ¼ �1� �. Hence A(�) is Hurwitz
when � > �1. Using Theorem 1, one obtains

�A�1
0

�Ag ¼

1
2 0 0 0
0 2

3 0 0
0 0 2

3 0
0 0 0 1

2664
3775,

and mspecð �A�1
0

�AgÞ ¼ f0:5, 0:6667, 0:6667, 1g. The largest
continuous interval of � which includes zero and
guarantees stability for A(�) is ð�1,1Þ according to
Theorem 1, which agrees with the eigenvalue analysis.
Using Theorem 2, one obtains ~A0 ¼ �3, ~Ag ¼ �2,
~A�1
0

~Ag ¼ 2=3 and

Nð ~A�1
0

~AgÞ ¼ N ð2=3Þ ¼ ð�3=2, þ1Þ

N

�
A�1

0 Ag

�
¼ N

1
2 0

0 1

" # !
¼ ð�1, þ1Þ:

The stability domain is Nð ~A�1
0

~AgÞ \ N ðA�1
0 AgÞ ¼

ð�1, þ1Þ \ � 3
2 , þ1Þ ¼ ð�1, þ1Þ, which coincides

with the result by Theorem 1 and the eigenvalue
analysis.

Example 4: Consider the matrix Að�Þ ¼ A0 þ �Ag,
where

A0 ¼
�2 0
0 �1

� �
, Ag ¼

1 0
0 �1

� �
:

Direct eigenvalue analysis of A(�) gives �1 ¼ �2þ �,
�2 ¼ �1� �, hence A(�) is Hurwitz when �1 < � < 2.
Using Theorem 1,

�A�1
0

�Ag ¼

� 1
2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

26664
37775,

and mspecð �A�1
0

�AgÞ ¼ f�0:5, 0, 0, 1g. The largest continu-
ous interval of � which includes 0 that guarantees
stability for A(�) is ð�1, 2Þ, which agrees with the
eigenvalue analysis. Using Theorem 2, one obtains
~A0 ¼ �3, ~Ag ¼ 0, ~A�1

0
~Ag ¼ 0 and

Nð ~A�1
0

~AgÞ ¼ N ð0Þ ¼ ð�1, þ1Þ

N

�
A�1

0 Ag

�
¼ N

�0:5 0

0 1

� �� �
¼ ð�1, þ 2Þ:

The stability domain is Nð ~A�1
0

~AgÞ \ N ðA�1
0 AgÞ ¼

ð�1, þ1Þ \ ð�1, þ 2Þ ¼ ð�1, þ 2Þ, which coincides

with the result of Theorem 1 and the direct eigenvalue

analysis.
In order to compare Theorems 1 and 2 and Theorems

5 and 7 we consider the following three examples.

Example 5: Consider the matrix Að�Þ ¼ A0 þ �Ag,

where

A0 ¼

62:563 �121:34 �217:75 �111:86 309:77

�64:806 123:09 214:78 115:44 �319:39

�7:6195 19:044 25:231 21:651 �52:037

4:3314 1:9045 �9:3643 �3:8729 1:8837

�44:276 91:392 150:51 85:741 �235:05

2666666664

3777777775
,

Ag ¼

�5:9399 �21:242 23:809 11:251 �6:9852

�8:8534 �35:439 24:579 22:030 0:98018

�10:049 �21:452 20:026 13:640 �4:3113

0:77706 �24:138 15:174 9:3705 1:5890

2:2073 �14:157 13:148 3:8678 �8:9941

2666666664

3777777775
:

Notice that for this example, both A0 and Ag are

Hurwitz, but A0 þ Ag is not Hurwitz. It is clear that in

this case the maximal stability interval �� is composed

of at least two disjoint open intervals. Theorems 1 and

2 give the maximal continuous stability domain as

ð�0:02306, 0:11802Þ, which includes the origin.

Theorems 5 and 8, on the other hand, give the whole

stability domain, which is equal to ð�0:02306,
0:11802Þ [ ð4:30818, þ1Þ.

Example 6: Consider the matrix Að�Þ ¼ A0 þ �Ag,

where

A0 ¼

�10:64 3:395 8:841 4:558 �10:25

�11:28 �0:1536 14:67 9:852 �13:53

0:7320 3:811 �0:6074 2:408 �10:44

�12:14 4:938 9:649 1:152 �6:297

�11:66 6:451 11:70 9:453 �17:28

2666666664

3777777775
,

Ag ¼

�110:9 �247:0 162:4 �57:61 194:2

241:82 731:3 �446:6 87:68 �511:8

366:8 987:5 �617:4 181:9 �777:1

385:3 1118:5 �666:7 137:4 �809:4

100:8 237:1 �142:4 57:89 �234:3

2666666664

3777777775
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Theorems 1 and 2 give the maximal stability interval
around the origin, which is ð�0:04632, 0:00241Þ.
Theorems 5 and 8 give the exact stability domain,
which is ð�0:04632, 0:00241Þ [ ð4:2279, þ1Þ.

6.2 Multi-parameter case

Example 7: This example is from Rern et al. (1994).
Consider the matrix Að�Þ ¼ A0 þ �1A1 þ �2A2, where

Að�Þ ¼

�2 0 �1

0 �3 0

�1 �1 �4

264
375þ �1

1 0 1

0 0 0

1 0 1

264
375

þ �2

0 0 0

0 1 0

0 1 0

264
375: ð41Þ

The exact robust stability region for this problem is
ð�1, 1:75Þ � ð�1, 3Þ (see Rern et al. 1994).
Theorem 9 or Theorem 10, give this exact stability
domain as seen in figure 1. The figure shows how the
exact two-dimensional stability region was constructed.
This was done by considering the maximal one-dimen-
sional stability region along a particular direction,
which for the case, say, � ¼ 80� is

ð�1 �2Þ
T
2 � ¼ r vð�Þ: r 2 ð�1, 3:0463Þ,
�
vð�Þ ¼ ðcos 80� sin 80�ÞT

	
,

and repeating this over all directions � 2 ½0,�Þ.

Example 8: Consider the matrix Að�Þ ¼ A0þ

�1A1 þ �2A2, where

A0 ¼

�2 0 �1

0 �3 0

�1 �1 �4

264
375,

A1 ¼

0:15087 0:86001 0:49655

0:69790 0:85366 0:89977

0:37837 0:59356 0:82163

264
375,

A2 ¼

0:64491 0:34197 0:53408

0:81797 0:28973 0:72711

0:66023 0:34119 0:30929

264
375:

Both Theorem 9 and Theorem 10 give the same stability
domain for the matrix A(�), which is shown in figure 2.

Example 9: Consider the matrix Að�Þ ¼ A0 þ �1A1 þ

�2A2, where

A0 ¼

�2 0 �1

0 �3 0

�1 �1 �4

264
375,

A1 ¼

0:98017 �0:0033774 �0:35993

0:57772 �0:57207 0:92020

�0:12268 0:28698 0:45326

264
375,

A2 ¼

�0:26414 �0:18023 �0:86232

0:73370 1:3001 1:0177

�0:69616 0:55000 0:38635

264
375:

−30 −25 −20 −15 −10 −5 0 5 10
−30

−25

−20

−15

−10
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0

5
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ρ 2
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STABILITY REGION

Figure 1. Robust stability domain for Example 7.
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It can be easily verified that both Theorems 9 and 10
give the same stability domain for the matrix A(�),
which is depicted in figure 3.

Example 10: Consider the matrix Að�Þ ¼ A0 þ �1A1þ

�2A2, where

A0 ¼

�2 0 �1

0 �3 0

�1 �1 �4

264
375,

A1 ¼

0:916 �0:8119 �0:2168

�0:6863 �0:1001 �0:4944

�0:1673 0:7383 �0:2912

2664
3775,

A2 ¼

1:215 1:664 �2:209

0:7542 �0:1501 0:2109

2:199 0:6493 �0:2214

2664
3775: ð42Þ

−8 −6 −4 −2 0 2 4 6 8
−20

−15
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Figure 2. Robust stability domain for Example 8.

−4 −3 −2 −1 0 1 2
−5

−4

−3

−2

−1

0

1

2

3

ρ1

ρ 2

INSTABILITY REGION 

STABILITY REGION

Figure 3. Robust stability domain for Example 9.
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Both Theorem 9 and Theorem 10 give the same stability
domain for the matrix A(�), shown in figure 4.

Example 11: Consider the matrix Að�Þ ¼ A0 þ �1A1þ

�2A2, where

A0 ¼

62:56 �121:3 �217:7 �111:9 309:7eþ 002

�64:81 123:1 214:78 115:4 �319:4

�7:619 19:04 25:23 21:651 �52:04

4:331 1:904 �9:364 �3:873 1:884

�44:28 91:39 150:5 85:74 �235:0

0BBBBBBBB@

1CCCCCCCCA
,

A1 ¼

�0:1340 0:1139 0:2959 0:03392 0:2288

0:1747 �0:2621 0:1509 0:2436 0:2165

0:1528 0:2313 �0:06069 0:2725 0:1955

0:02228 0:09418 0:2484 �0:2981 0:2262

0:05797 0:1914 0:2753 0:03664 �0:1461

0BBBBBBBB@

1CCCCCCCCA
,

A2 ¼

�5:940 �21:24 23:81 11:25 �6:985

�8:853 �35:44 24:58 22:03 0:9802

�10:05 �21:45 20:03 13:64 �4:311

0:7771 �24:14 15:17 9:370 1:589

2:207 �14:16 13:15 3:868 �8:994

0BBBBBBBB@

1CCCCCCCCA
:

Again, both Theorems 9 and 10 give the same stability
domain for the matrix A(�), which is shown figure 5.
In this case, the two-dimensional parameter stability

space is composed of two disconnected sets. The area

close the origin is zoomed in and is depicted in
figure 5(b).

7. Computational complexity

The proposed method suffers from the ‘‘curse of dimen-
sionality’’ (the term typically reflects the fact that the
problem scales exponentially – as opposed to polynomi-
ally – with the problem data) since it requires gridding
of the parameter space (in the multi-parameter case).
Although some improvements are possible (see
Remark 6) the unfavorable growth of the problem
complexity is nonetheless unavoidable since the problem
is known to be NP-hard (Blondel and Tsitsiklis 1995,
Peaucelle and Arzelier 2001). In this section, via several
numerical examples, we provide some insights of the
complexity of the methods in terms of the dimension
of the matrices involved, n, and the dimension of the
parameter vector, m.

Specifically, several examples were conducted for
several values of n and m. For m > 1 gridding of the
parameter space is performed using 50 points in each
dimension. The computation times (cpu-seconds) were
recorded and are shown in table 1. All computations
were performed on a 2.0GHz/525RAM Wintel PC
running MATLAB version 6.5.0.18091 3a Release 13.

From table 1 it is evident that the complexity is domi-
nated by the exponential growth owing to the gridding
of the parameter space.

8. Conclusions

In this paper we address the problem of stability for
Linear Time Invariant Parameter Dependent (LTIPD)
systems. We extend previous results in the
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0

5

10

15

20
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ρ 2
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INSTABILITY REGION

Figure 4. Robust stability domain for Example 10.
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literature and derive conditions that can be used to

compute the exact stability region in the

parameter space. Our methodology makes use of the

guardian maps induced by the Kronecker and the bial-
ternate sum of a matrix with itself. Although both

these maps can be used (yielding identical results),

the latter has the benefit of a reduced number of

computations. Both single-parameter and multi-

parameter LTIPD systems are treated. The computa-
tional complexity of both approaches in terms of the

problem data is briefly commented upon. In the multi-

parameter case, our approach requires gridding

which may limit the applicability of the results to low-
parameter dimensions. Several examples are presented

to demonstrate the applicability of the derived results.
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